PREDICTABLE EXTENSIONS OF GIVEN FILTRATIONS

BY

EGBERT DETTWEILER (TÜbingen)

Abstract

Filtrations with the property that every stopping time is predictable are of some importance in stochastic analysis, especially in connection with the Girsanov transformation (cf. e.g. Chung and Williams [1]). Presumably for that reason, S. Kwapien stated the problem whether any given filtration can be extended (in a sense defined below) to a filtration for which every stopping time is predictable. In this paper, this problem of Kwapień is solved positively: Any filtration has a predictable extension.

The extension we construct has even the stronger property: any square integrable martingale is a stochastic integral process relative to a certain Brownian motion.

1. Statement of the problem. Let $(\Omega, \mathscr{F}, \boldsymbol{P})$ be a given probability space. If $\mathcal{F}=\left(\mathscr{F}_{)_{t}}\right)_{t 0}$ is a given filtration indexed by \boldsymbol{R}_{+}, we set as usual

$$
\mathscr{F}_{\infty}:=\bigvee_{t \geqslant 0} \mathscr{F}_{t}
$$

Let $\mathcal{N}:=\mathcal{N}(\mathscr{F})$ denote the family of all \boldsymbol{P}-null sets of the \boldsymbol{P}-completion of \mathscr{F}_{∞}. Then \mathfrak{F} is called a standard filtration if \mathfrak{F} is right continuous and if $\mathscr{N} \subset \mathscr{F}_{t}$ for all $t \in \boldsymbol{R}_{+}$. We will also consider filtrations $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \in I}$ indexed by a subset $I \subset \boldsymbol{R}_{+}$. Such a filtration can always be naturally extended to a right continuous filtration $\mathscr{F}^{\prime}=\left(\mathscr{F}_{t}^{\prime}\right)_{t \geqslant 0}$ indexed by $\boldsymbol{R}_{+}:$If $t=\inf \{s \in I \mid s>t\}$, we set

$$
\mathscr{F}_{t}^{\prime}=\bigcap_{s>t, s \in I} \mathscr{\mathscr { F }}_{s},
$$

and $\operatorname{if} \inf \{s \in I \mid s>t\}>t$ (with $\inf \varnothing=\infty$), we set

$$
\mathscr{F}_{t}^{\prime}=\bigvee_{s \leqslant t, s \in I} \mathscr{F}_{s}
$$

in case of $\{s \in I \mid s \leqslant t\} \neq \varnothing$, and

$$
\mathscr{F}_{t}^{\prime}=\bigcap_{s>t, s \in I} \mathscr{F}_{s}
$$

in case of $\{s \in I \mid s \leqslant t\}=\varnothing$. Sometimes, we will tacitly identify a filtration $\left(\mathscr{F}_{t}\right)_{t \in I}$ with its natural extension $\left(\mathscr{F}_{t}^{\prime}\right)_{t \geqslant 0}$. For example, if $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \in\{a, b\}}$ $(0 \leqslant a<b<\infty)$, then $\left(\mathscr{F}_{t}^{\prime}\right)_{t \geqslant 0}$ is just the filtration given by

$$
\mathscr{F}_{t}^{\prime}= \begin{cases}\mathscr{F}_{a} & \text { for } 0 \leqslant t<b, \\ \mathscr{F}_{b} & \text { for } b \leqslant t\end{cases}
$$

Now suppose that $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ is a standard filtration and denote by \mathscr{P} the predictable σ-field on $\boldsymbol{R}_{+} \times \Omega$, i.e. the σ-field generated by the $\left(\mathscr{F}_{t}\right)$-adapted real-valued continuous processes. A stopping time $\tau: \Omega \rightarrow \overline{\boldsymbol{R}}_{+}$is then called predictable if

$$
[\tau]:=\{(t, \omega) \mid \tau(\omega)=t\} \in \mathscr{P}
$$

(cf. e.g. Metivier [3] for equivalent characterizations).
The following result is well known and not very difficult to prove (cf. e.g. Chung and Williams [1], p. 30).

Proposition 1.1. Every $\left(\mathscr{F}_{t}\right)$-stopping time is predictable if and only if every $\left(\mathscr{F}_{t}\right)$-martingale has a continuous version.

We will call a filtration $\mathfrak{F}=\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ predictable if every \mathfrak{F}-stopping time is predictable.

Let $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{P})$ be a second probability space. Then $\tilde{\Omega}$ will be called an extension of Ω if there exists a map $\pi: \tilde{\Omega} \rightarrow \Omega$ such that $\pi^{-1}(\mathscr{F}) \subset \tilde{\mathscr{F}}$ and $\pi(\widetilde{P})=\boldsymbol{P}$. We will call π the projection associated with $\widetilde{\Omega}$. If $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ is a right continuous filtration on Ω, then a filtration $\tilde{\mathscr{F}}=\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ on the extension $\tilde{\Omega}$ is called an extension of \mathscr{F} if $\pi^{-1}\left(\mathscr{F}_{t}\right) \subset \tilde{\mathscr{F}}_{t}$ for all $t \geqslant 0$ and $\tilde{\mathscr{F}}_{0} \subset \pi^{-1}\left(\mathscr{F}_{0}\right) \vee \tilde{\mathcal{N}}, \tilde{\mathcal{N}}=\mathscr{N}(\tilde{\mathscr{F}})$. For $\left(\mathscr{\mathscr { F }}_{t}\right)_{t \in I}\left(I \subset \mathbb{R}_{+}\right)$, a filtration $\tilde{\mathscr{F}}=\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ on $\tilde{\Omega}$ is called an extension of $\left(\mathscr{F}_{t}\right)_{t \in I}$ if $\tilde{\mathscr{F}}$ is an extension of the associated right continuous filtration $\mathscr{F}^{\prime}=\left(\mathscr{F}_{t}^{\prime}\right)_{t \geqslant 0}$ of $\left(\mathscr{F}_{t}\right)_{t \in I}$. Finally, if an extension $\tilde{F}=\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ of a filtration $\left(\mathscr{F}_{F^{\prime}}\right)_{t \in I}$ is a standard filtration and also predictable, then $\tilde{\mathscr{F}}$ is called shortly a predictable extension of $\left(\mathscr{F}_{t}\right)_{t \in I}$.

The aim of this paper is to prove the general result that every filtration has a predictable extension.

Let us first show that this general problem can easily be reduced to a partial problem, which looks a little bit more simple. Let us call a filtration $\left(\mathscr{F}_{t}\right)_{t \in D}$ on Ω a discrete filtration if $D=\left\{t_{n} \mid n \in N\right\}$ for a decreasing sequence $\left(t_{n}\right)_{n \geqslant 1}$ in \mathbb{R}_{+}. Then we have the following simple result:

Proposition 1.2. If every discrete filtration has a predictable extension, then every filtration has a predictable extension.

Proof. Let $\mathfrak{F}=\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ be a given right continuous filtration on Ω. We take a strictly decreasing sequence $\left(t_{n}\right)_{n \geqslant 1}$ in \mathbb{R}_{+}with $\lim _{n \rightarrow \infty} t_{n}=0$ and set $D=\left\{t_{n} \mid n \in N\right\}$. Then we define $\mathscr{G}_{t_{1}}:=\mathscr{F}_{\infty}$ and $\mathscr{G}_{t_{n}}:=\mathscr{F}_{t_{n-1}}$ for $n \geqslant 2$. By as-
sumption, the filtration $\mathscr{G}=\left(\mathscr{G}_{\mathrm{G}}\right)_{t \in D}$ has a predictable extension $\tilde{\mathscr{G}}=\left(\tilde{\mathscr{G}}_{t}\right)_{t \geqslant 0}$ on an extension $\tilde{\Omega}$ of Ω. If $\mathscr{F}^{\prime}=\left(\mathscr{G}_{t}^{\prime}\right)_{t \geqslant 0}$ denotes the associated right continuous extension of \mathscr{G} on Ω, then obviously $\mathscr{F}_{t} \subset \mathscr{G}_{t}^{\prime}$, and hence

$$
\pi^{-1}\left(\mathscr{F}_{t}\right) \subset \widetilde{\mathscr{G}}_{t} \quad \text { for all } t \geqslant 0
$$

and also

$$
\widetilde{\mathscr{G}}_{0} \subset \pi^{-1}\left(\mathscr{G}_{0}^{\prime}\right) \vee \tilde{\mathscr{N}}=\pi^{-1}\left(\mathscr{F}_{0}\right) \vee \tilde{\mathscr{N}}
$$

by the right continuity of \mathfrak{F}. Hence \mathfrak{F} is also a predictable extension of \mathbb{F}.
2. The solution of the problem for a special case. In this section we solve the problem for the very simple filtrations being of the form $\mathfrak{F}=\left(\mathscr{F}_{t}\right)_{t \in\{a, b\}}$ $(0 \leqslant a<b<\infty)$. An essential ingredient of the proof is to make use of a Brownian motion living on a different probability space. In the next result we collect some simple properties of a Brownian motion which we need later.

Lemma 2.1. Suppose that $B=\left(B_{t}\right)_{t \geqslant 0}$ is a Brownian motion on a probability space (S, Σ, Q) and let $\left(\Sigma_{t}\right)_{t \geqslant 0}$ denote the standard filtration generated by B. Consider the Brownian motion $\left(B_{t}\right)_{a \leqslant t<b}$ restricted to the interval $[a, b[$ and define for $a \leqslant t<b$

$$
\begin{gathered}
N_{t}=\int_{a}^{t}(b-u)^{-1 / 2} d B_{u}, \\
\bar{B}_{s}=N_{b-(b-a) e^{-s}}, \quad \text { and } \quad \bar{\Sigma}_{s}=\Sigma_{b-(b-a) e^{-s}}(\text { for } 0 \leqslant s<\infty) .
\end{gathered}
$$

Then $\bar{B}=\left(\bar{B}_{s}\right)_{s \geqslant 0}$ is a $\left(\bar{\Sigma}_{s}\right)$-Brownian motion.
Suppose that \mathscr{G} is a sub- σ-algebra of Σ such that $\left(B_{t}\right)_{a \leqslant t \leqslant b}$ is a Brownian motion for the filtration $\left(\mathscr{G}_{t}\right)_{a \leqslant t \leqslant b}$ defined by $\mathscr{G}_{t}=\mathscr{G} \vee \Sigma_{t}$ for $t \in[a, b]$. Then for every square integrable $\left(\mathscr{G}_{t}\right)$-martingale $\left(M_{t}\right)_{a \leqslant t \leqslant b}$ with $M_{a}=0$ a.s. there exists $a\left(\mathscr{G}_{t}\right)$-progressively measurable function $f_{M}:[a, b] \times S \rightarrow \boldsymbol{R}$ such that

$$
M_{t}=\int_{a}^{t} f_{M}(s) d B_{s} \text { a.s. for all } t \in[a, b] .
$$

Proof. By definition, the process $\left(N_{t}\right)_{a \leqslant t<b}$ is a martingale with quadratic variation [N] given by

$$
[N](t)=\int_{a}^{t}(b-u)^{-1} d u=-\log \frac{b-t}{b-a} \quad(a \leqslant t<b) .
$$

It follows that $[\bar{B}](s)=s$ for every $s \geqslant 0$, and hence \bar{B} is a $\left(\bar{\Sigma}_{s}\right)$-Brownian motion.

If $\left(B_{t}\right)_{a \leqslant t \leqslant b}$ is a $\left(\mathscr{G}_{t}\right)$-Brownian motion, then the assertion on the representation of $\left(\mathscr{G}_{t}\right)$-martingales as stochastic integrals is probably well known (cf. Karatzas and Shreve [2], Theorem 3.4.15, for the basic theorem), but for lack of an exact reference we give the proof.

We set $B_{t}^{\prime}=B_{t}-B_{a}$ for $a \leqslant t \leqslant b$ and denote by $\left(\Sigma_{t}^{\prime}\right)_{a \leqslant t \leqslant b}$ the standard filtration of the canonical filtration generated by $\left(B_{t}^{\prime}\right)_{a \leqslant t \leqslant b}$. Then $\mathscr{G}_{t}=\mathscr{G}_{a} \vee \Sigma_{t}^{\prime}$ for $a \leqslant t \leqslant b$ and \mathscr{G}_{a} and Σ_{t}^{\prime} are independent.

Now suppose first that Y is a bounded \mathscr{G}_{a}-measurable random variable on S and that Z is a bounded Σ_{b}^{\prime}-measurable random variable on S such that $\boldsymbol{E}\left\{Z \mid \Sigma_{a}^{\prime}\right\}=0$ a.s. Then

$$
E\left\{Y Z \mid \mathscr{G}_{t}\right\}=Y \mathbb{E}\left\{Z \mid \mathscr{G}_{t}\right\}=Y E\left\{Z \mid \Sigma_{t}^{\prime}\right\} \quad \text { for every } t \in[a, b] .
$$

If $\left(M_{t}(Z)\right)_{a \leqslant t \leqslant b}$ denotes a cadlag-version of the martingale $\left(E\left\{Z \mid \Sigma_{t}^{\prime}\right)_{a \leqslant t \leqslant b}\right.$, then it follows from Theorem 3.4.15 in Karatzas and Shreve [2] that there exists a $\left(\Sigma_{t}^{\prime}\right)$-progressively measurable function g_{z} such that

$$
M_{t}(Z)=\int_{a}^{t} g_{Z}(s) d B_{s}^{\prime}=\int_{a}^{t} g_{Z}(s) d B_{s} .
$$

Hence we have

$$
E\left\{Y Z \mid \mathscr{G}_{t}\right\}=\int_{a}^{t} Y g_{Z}(s) d B_{s} \text { a.s. } \quad \text { for every } t \in[a, b] .
$$

Now let \mathscr{E} denote the vector space of all \mathscr{G}_{b}-measurable random variables on S of the form $X=\sum_{i=1}^{n} Y_{i} Z_{i}$, where the Y_{i} are bounded \mathscr{G}_{a}-measurable and the Z_{i} are bounded Σ_{b}^{\prime}-measurable with $E\left\{Z_{i} \mid \Sigma_{a}^{\prime}\right\}=0$ a.s. By linearity it follows from the above argument that

$$
\boldsymbol{E}\left\{X \mid \mathscr{G}_{4}\right\}=\int_{a}^{t} f_{X}(s) d B_{s} \text { a.s. } \quad \text { for every } t \in[a, b]
$$

where f_{X} is the progressively measurable function $f_{X}=\sum_{i=1}^{n} Y_{i} g_{Z_{i}}$.
Finally, let $M=\left(M_{t}\right)_{a \leqslant t \leqslant b}$ be a given square integrable $\left(\mathscr{G}_{t}\right)$-martingale with $M_{a}=0$ a.s. Then there exists, by a monotone class argument, a sequence $\left(X_{n}\right)$ in \mathscr{E} such that $\lim X_{n}=M_{b}$ in $L^{2}\left(S, \mathscr{G}_{b}, Q\right)$. Especially, $\left(X_{n}\right)$ is a Cauchy sequence and

$$
E\left(E\left\{X_{m} \mid \mathscr{G}_{n}\right\}-E\left\{X_{n} \mid \mathscr{C}_{t}\right\}\right)^{2}=E \int_{a}^{t}\left(f_{X_{m}}(s)-f_{X_{n}}(s)\right)^{2} d s \leqslant E\left(X_{m}-X_{n}\right)^{2}
$$

implies that there exists a progressively measurable function f_{M} such that

$$
M_{\mathrm{t}}=\int_{a}^{t} f_{M}(s) d B_{s} \quad \text { for all } t \in[a, b] .
$$

Thus the lemma is proved.
Remark. The second part of Lemma 2.1 gives especially non-trivial examples of predictable filtrations.

Theorem 2.2. Let $\mathfrak{F}=\left(\mathscr{F}_{t}\right)_{t \in[0,1]}$ be the filtration on $(\Omega, \mathscr{F}, \mathbb{P})$ given by $\mathscr{F}_{0}=\{\varnothing, \Omega\}$ and $\mathscr{F}_{1}=\mathscr{F}$. Then there exist

- an extension $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathbb{P}})$ of Ω,
- an extension $\tilde{\mathscr{F}}=\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ of \tilde{F} on $\tilde{\Omega}$, and
- an $\tilde{\mathbb{Z}}$-Brownian motion $\tilde{B}=\left(\tilde{B_{t}}\right)_{t \geqslant 0}$,
such that for every square integrable $\tilde{\mathfrak{F}}$-martingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$ there exists an §゙-progressively measurable function $f_{\tilde{M}}:[0, \infty] \times \tilde{\Omega} \rightarrow \boldsymbol{R}$ such that

$$
\tilde{M}_{t}=E \tilde{M}_{0}+\int_{0}^{t} f_{\tilde{M}}(s) d \tilde{B}_{s} \tilde{\mathcal{P}} \text {-a.s. for all } t \geqslant 0 .
$$

As an immediate consequence, \mathfrak{F} has a predictable extension.
Proof. (1) First we define ($\tilde{\Omega}, \mathscr{\mathscr { F }}, \widetilde{P}$). We set simply

$$
(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{P}):=\prod_{k \geqslant 0}\left(\Omega_{k}, \mathscr{F}_{k}, P_{k}\right) \times(S, \Sigma, Q) \quad \text { with } \Omega_{k}=\Omega \text { for } k \geqslant 0
$$

If we denote by $\pi_{k}(k \geqslant 0)$, respectively π_{S}, the canonical projections from $\tilde{\Omega}$ onto Ω_{k}, respectively S, then we will view $\tilde{\Omega}$ as an extension of Ω relative to the projection $\pi=\pi_{0}$.
(2) For the definition of $\tilde{\mathscr{F}}$ we need some preparations.
(i) For every interval $\left[2^{-(n+1)}, 2^{-n}\left[\right.\right.$ let $N^{n}=\left(N_{t}^{n}\right)_{2-(n+1) \leqslant t<2^{-n}}$ be the martingale defined by the Brownian motion $\left(B_{t}\right)_{2^{-(n+1)} \leqslant t<2^{-n}}$ on S as described in Lemma 2.1. We will identify every martingale N^{n} on S with its canonical extension ($N_{t}^{n} \circ \pi_{S}$). It follows easily from Lemma 2.1 that for every N^{n} the hitting time τ^{n} of $\{-1,1\}$ fulfills $\tau^{n}<2^{-n}$ a.s. and that for $\varepsilon_{n}:=N_{\tau^{n}}^{n}$ we have

$$
\widetilde{P}\left\{\varepsilon_{n}=1\right\}=\tilde{\boldsymbol{P}}\left\{\varepsilon_{n}=-1\right\}=1 / 2
$$

Moreover, Lemma 2.1 implies that the sequence $\left(N^{n}\right)_{n \geqslant 0}$ is independent, and hence also $\left(\varepsilon_{n}\right)_{n \geqslant 0}$ is independent, i.e. a Bernoulli sequence.
(ii) For the definition of $\tilde{\mathscr{F}}$ we need also the following sequence $\left(\psi_{n}\right)_{n \geqslant 1}$ of transformations $\psi_{n}: \tilde{\Omega} \rightarrow \tilde{\Omega}$. For every $n \geqslant 1$ and every $\tilde{\omega}=\left(\left(\omega_{j}\right)_{j \geqslant 0}, s\right) \in \tilde{\Omega}$ we define

$$
\psi_{n}\left(\left(\omega_{j}\right)_{j \geqslant 0}, s\right)=\left(\left(\omega_{j}^{\prime}\right)_{j \geqslant 0}, s\right)
$$

by setting

$$
\omega_{j}^{\prime}= \begin{cases}\omega_{j+2^{n-1}} & \text { for } j=(2 k) 2^{n-1}, \ldots,(2 k) 2^{n-1}+2^{n-1}-1 \\ \omega_{j-2^{n-1}} & \text { for } j=(2 k+1) 2^{n-1}, \ldots,(2 k+1) 2^{n-1}+2^{n-1}-1 \text { and } k \geqslant 0,\end{cases}
$$

i.e. every ψ_{n} interchanges the ($2 k$)-th block of ω_{j} 's of length 2^{n-1} with the $(2 k+1)$-st block. Every ψ_{n} is clearly measurable and $\psi_{n} \circ \psi_{n}=\operatorname{Id}_{\tilde{\Omega}}$. Moreover, since \tilde{P} is a product measure and every ψ_{n} is defined by a permutation of the coordinates, for any random variable \tilde{X} on $\tilde{\Omega}$ the distribution of \tilde{X} is equal to the distribution of $\tilde{X} \circ \psi_{n}$.

With the aid of the transformations ψ_{n} we now define by induction for every $n \geqslant 0$ a family \mathscr{R}_{n} of random variables on $\tilde{\Omega}$. Let $\tilde{\pi}$ denote the projection from $\tilde{\Omega}$ onto $\prod_{k \geqslant 0} \Omega_{k}$. Then we set

$$
\mathscr{R}_{0}:=\left\{X \in \mathscr{L}^{0}(\tilde{\Omega}) \mid X=Z \circ \tilde{\pi} \text { for some } Z \in \mathscr{L}^{0}\left(\prod_{k \geqslant 0} \Omega_{k}\right)\right\}
$$

Suppose that we have already defined \mathscr{R}_{n-1} for $n \geqslant 1$. Then we set

$$
\begin{aligned}
\mathscr{R}_{n}:=\left\{X \in \mathscr{L}^{0}(\tilde{\Omega}) \mid X=Y+Y \circ \psi_{n}\right. \text { or } & X=\varepsilon_{n-1}\left(Y-Y \circ \psi_{n}\right) \\
& \text { for some } \left.Y \in \mathscr{L}^{0}\left(\tilde{\Omega}, \sigma\left(\mathscr{R}_{n-1}\right)\right)\right\} .
\end{aligned}
$$

Finally, for every $n \geqslant 0$ we define

$$
\mathscr{H}_{n}:=\sigma\left(\bigcup_{m \geqslant n} \mathscr{R}_{m}\right) .
$$

(iii) Now we are ready to define the filtration \tilde{f}. For all $t \geqslant 0$ we set $\tilde{\Sigma_{t}}=\pi_{S}^{-1}\left(\Sigma_{t}\right)$ and $\tilde{B_{t}}=B_{t} \circ \pi_{S}$, so that $\tilde{B}=\left(\tilde{B}_{t}\right)_{t \geqslant 0}$ is a $\left(\tilde{\Sigma_{t}}\right)$-Brownian motion on $\tilde{\Omega}$. We set

$$
\begin{gathered}
\tilde{\mathscr{F}}_{t}:=\mathscr{H}_{0} \vee \tilde{\Sigma}_{t} \quad \text { for every } t \geqslant 1, \\
\tilde{\mathscr{F}}_{t}:=\mathscr{H}_{n+1} \vee \tilde{\Sigma}_{t} \quad \text { for } t \in\left[2^{-(n+1)}, 2^{-n}[(n \geqslant 0),\right.
\end{gathered}
$$

and

$$
\tilde{\mathscr{F}}_{0}:=\bigcap_{t>0} \tilde{\mathscr{F}}_{t} .
$$

Then $\tilde{\mathscr{F}}=\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ is an extension of \mathscr{F} if $\tilde{\mathscr{F}}_{0} \subset \sigma(\tilde{\mathcal{N}})$, where $\tilde{\mathcal{N}}$ denotes the null sets of the \tilde{P}-completion of $\tilde{\mathscr{F}}_{\infty}$. This will be later a consequence of the asserted integral representation.
(3) For the proof of the integral representation we first discuss some essential properties of the filtration \tilde{F}.
(i) $\tilde{\mathscr{F}}_{2-n}=\tilde{\mathscr{F}}_{2-(n+1)} \vee \tilde{\Sigma}_{2^{-n}}$ for every $n \geqslant 0$.

Proof. By the definition of $\tilde{\oiint}$ we have to show that

$$
\mathscr{H}_{n+1} \vee \sigma\left(\mathscr{R}_{n}\right) \vee \tilde{\Sigma}_{2-n}=\mathscr{H}_{n+1} \vee \tilde{\Sigma}_{2-n} \quad \text { or } \quad \sigma\left(\mathscr{R}_{n}\right) \subset \mathscr{H}_{n+1} \vee \tilde{\Sigma}_{2-n}
$$

Now, for any $Y \in \mathscr{L}^{0}\left(\tilde{\Omega}, \sigma\left(\mathscr{R}_{n}\right)\right)$ the random variables $Y+Y \circ \psi_{n+1}$ and $\varepsilon_{n}\left(Y-Y \circ \psi_{n+1}\right)$ are \mathscr{H}_{n+1}-measurable by definition and ε_{n} is $\tilde{\Sigma}_{2-n}$-measurable. Since

$$
Y=\frac{1}{2}\left(Y+Y \circ \psi_{n+1}\right)+\frac{1}{2} \varepsilon_{n}\left(Y-Y \circ \psi_{n+1}\right) \varepsilon_{n}
$$

Y is $\mathscr{H}_{n+1} \vee \tilde{\Sigma}_{2-n}$-measurable.
(ii) Denote by $B^{n}=\left(B_{t}^{n}\right)_{t \geqslant 2-(n+1)}$ the Brownian motion defined by $B_{t}^{n}={\widetilde{B_{t}}}_{t}-\tilde{B}_{2-(n+1)}$. Then $\tilde{\mathscr{F}}_{2-(n+1)}$ and B^{n} are independent for every $n \geqslant 0$.

Proof. Every \mathscr{R}_{n} can be written in the form

$$
\begin{aligned}
\mathscr{R}_{n}:=\{ & X \left\lvert\, X=\frac{1}{2}\left(Y+Y \circ \psi_{n}\right)+\frac{1}{2} \varepsilon_{n-1}\left(Y-Y \circ \psi_{n}\right)\right. \text { or } \\
& \left.X=\frac{1}{2}\left(Y+Y \circ \psi_{n}\right)-\frac{1}{2} \varepsilon_{n-1}\left(Y-Y \circ \psi_{n}\right) \text { for } Y \in \mathscr{L}^{0}\left(\sigma\left(\mathscr{R}_{n-1}\right)\right)\right\},
\end{aligned}
$$

and it follows that $\sigma\left(\mathscr{R}_{n}\right)$ is ψ_{n}-invariant. An easy induction argument - using that $\sigma\left(\mathscr{R}_{0}\right)$ is ψ_{n}-invariant for all n and that $\psi_{n} \circ \psi_{m}=\psi_{m} \circ \psi_{n}$ for all $n, m \in N-$ implies that $\sigma\left(\mathscr{R}_{n}\right)$ is even ψ_{m}-invariant for every $m \in N$. By this observation it follows now easily that

$$
\tilde{\mathscr{F}}_{2-(n+1)} \subset \sigma\left(\mathscr{R}_{n+1}\right) \vee \tilde{\Sigma}_{2-(n+1)} \quad \text { for every } n \geqslant 0,
$$

and hence it is sufficient to prove that $\sigma\left(\mathscr{R}_{n+1}\right)$ and B^{n} are independent. We will even prove by induction that $\sigma\left(\mathscr{R}_{n}\right)$ and $\tilde{\Sigma}=\pi_{S}^{-1}(\Sigma)$ are independent for all $n \geqslant 0$. This is clear for $n=0$. So suppose that we know the independence for n. We introduce the notation

$$
Z(Y)=\frac{1}{2}\left(Y+Y \circ \psi_{n+1}\right)+\frac{1}{2} \varepsilon_{n}\left(Y-Y \circ \psi_{n+1}\right)
$$

and

$$
\bar{Z}(Y)=\frac{1}{2}\left(Y+Y \circ \psi_{n+1}\right)-\frac{1}{2} \varepsilon_{n}\left(Y-Y \circ \psi_{n+1}\right)
$$

for all $Y \in \mathscr{L}^{0}\left(\sigma\left(\mathscr{R}_{n}\right)\right)$. Now we take d random variables $Y_{1}, \ldots, Y_{d} \in \mathscr{L}^{0}\left(\sigma\left(\mathscr{R}_{n}\right)\right)$, a measurable bounded map $F: \boldsymbol{R}^{2 d} \rightarrow \boldsymbol{R}$, and a $\tilde{\Sigma}$-measurable bounded map $G: \tilde{\Omega} \rightarrow \boldsymbol{R}$. For a shorter notation we set

$$
\begin{gathered}
\hat{Y}=\left(Y_{1}, \ldots, Y_{d}\right), \\
Z(\hat{Y})=\left(Z\left(Y_{1}\right), \ldots, Z\left(Y_{d}\right)\right) \quad \text { and } \quad \bar{Z}(\hat{Y})=\left(\bar{Z}\left(Y_{1}\right), \ldots, \bar{Z}\left(Y_{d}\right)\right) .
\end{gathered}
$$

Then we obtain

$$
\begin{aligned}
& \boldsymbol{E}\{F(Z(\hat{Y}), \bar{Z}(\hat{Y})) \cdot G\} \\
= & \boldsymbol{E}\left\{F(Z(\hat{Y}), \bar{Z}(\hat{Y})) \cdot G \cdot 1_{\left\{\varepsilon_{n}=1\right\}}\right\}+\boldsymbol{E}\left\{F(Z(\hat{Y}), \bar{Z}(\hat{Y})) \cdot G \cdot 1_{\left\{\varepsilon_{n}=-1\right\}}\right\} \\
= & \boldsymbol{E}\left\{F\left(\hat{Y}, \hat{Y} \circ \psi_{n+1}\right) \cdot G \cdot 1_{\left\{\varepsilon_{n}=1\right\}}\right\}+\boldsymbol{E}\left\{F\left(\hat{Y} \circ \psi_{n+1}, \hat{Y}\right) \cdot G \cdot 1_{\left\{\varepsilon_{n}=-1\right\}}\right\} \\
= & \boldsymbol{E}\left\{F\left(\hat{Y}, \hat{Y} \circ \psi_{n+1}\right)\right\} \cdot \boldsymbol{E}\left\{G \cdot 1_{\left\{\varepsilon_{n}=1\right\}}\right\}+\boldsymbol{E}\left\{F\left(\hat{Y} \circ \psi_{n+1}, \hat{Y}\right)\right\} \cdot \boldsymbol{E}\left\{G \cdot 1_{\left\{\varepsilon_{n}=-1\right\}}\right\}
\end{aligned}
$$

(by induction hypothesis)

$$
=\boldsymbol{E}\left\{F\left(\hat{Y}, \hat{Y} \circ \psi_{n+1}\right)\right\} \cdot \boldsymbol{E}\{G\}=\mathbb{E}\{F(Z(\hat{Y}), \bar{Z}(\hat{Y}))\} \cdot \boldsymbol{E}\{G\} .
$$

The last but one equality is valid since

$$
F\left(\hat{Y} \circ \psi_{n+1}, \hat{Y}\right) \circ \psi_{n+1}=F\left(\hat{Y}, \hat{Y} \circ \psi_{n+1}\right),
$$

which implies that $F\left(\hat{Y}, \hat{Y} \circ \psi_{n+1}\right)$ and $F\left(\hat{Y} \circ \psi_{n+1}, \hat{Y}\right)$ have the same distribution. Since the equation we have just proved is valid for all $d \in N$, all
$Y_{1}, \ldots, Y_{d} \in \mathscr{L}^{0}\left(\sigma\left(\mathscr{R}_{n}\right)\right)$, and all functions F and G of the above type, we have proved that $\sigma\left(\mathscr{R}_{n}\right)$ and $\tilde{\Sigma}$ are independent for all $n \geqslant 0$. Especially, $\sigma\left(\mathscr{R}_{n+1}\right)$ and B^{n} are independent for all $n \geqslant 0$.
(4) It follows from (3) that $\left(\tilde{B}_{t}\right)_{t \geqslant r}$ is an $\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant r}$-Brownian motion for $r>0$. The second part of Lemma 2.1 now implies that for every square integrable $\tilde{\mathscr{y}}$-martingale and every $r>0$ there exists an $\tilde{\mathscr{y}}$-progressively measurable function $f_{\tilde{M}, r}:[r, \infty[\times \tilde{\Omega} \rightarrow \boldsymbol{R}$ such that

$$
\tilde{M}_{t}-\tilde{M}_{r}=\int_{r}^{t} f_{\tilde{M}, r}(s) d \tilde{B}_{s} \text { a.s. } \quad \text { for every } t>r
$$

Moreover, it is easy to see that for Lebesgue measure λ

$$
\left.f_{\tilde{M}, r}\right|_{[u, \infty[\times \tilde{\Omega}}=f_{\tilde{M}, u}(\lambda \otimes \tilde{P})-\text { a.s. } \quad \text { for } u>r .
$$

Hence there exists a progressively measurable function $f_{\tilde{M}}:[0, \infty[\times \widetilde{\Omega} \rightarrow \boldsymbol{R}$ such that

$$
\tilde{M}_{t}-\tilde{M}_{r}=\int_{r}^{t} f_{\tilde{M}}(s) d \tilde{B}_{s} \text { a.s. } \quad \text { for } 0<r<t .
$$

(5) By (4) it remains to prove that for every square integrable $\tilde{\mathscr{F}}$-martingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$ the limit $\lim _{r \rightarrow 0} \tilde{M}_{r}$, which exists by the convergence theorem for backward martingales, is necessarily equal to a constant $\tilde{\mathbb{P}}$-a.s. Of course, this constant can only be $\boldsymbol{E} \tilde{M}_{0}$.

Proof. (i) For every $n \geqslant 0$ let $\left(\tilde{\Sigma}_{t}^{n}\right)_{t \geqslant 2-n}$ be the standard filtration of the Brownian motion $\left(\tilde{B}_{t}-\widetilde{B}_{2-n}\right)_{t \geqslant 2-n}$. Then we set

$$
\begin{aligned}
& \mathscr{D}_{0}=\tilde{\Sigma}_{\infty}^{0}, \quad \mathscr{D}_{k}=\tilde{\Sigma}_{2-(k-1)}, \\
& \mathscr{C}_{n}=\mathscr{D}_{0} \vee \ldots \vee \mathscr{D}_{n}, \quad \text { and } \quad \mathscr{B}_{n}=\left(\pi_{0} \times \ldots \times \pi_{2^{n-1}}\right)^{-1}\left(\mathscr{F}_{0} \otimes \ldots \otimes \mathscr{F}_{2^{n-1}}\right) .
\end{aligned}
$$

Therefore we have $\tilde{\mathscr{F}}_{\infty}=\bigvee_{n \geqslant 0}\left(\mathscr{B}_{n} \vee \mathscr{C}_{n}\right)$.
(ii) Now we prove that for every $n \geqslant 0$ and every $X \in \mathscr{L}^{1}\left(\mathscr{B}_{n} \vee \mathscr{C}_{n}\right)$ the conditional expectation $\mathbb{E}\left\{X \mid \tilde{\mathscr{F}}_{2-n}\right\}$ is $\mathscr{B}_{n} \vee \sigma\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)$-measurable. It is sufficient to prove this for every $X \in \mathscr{L}^{1}\left(\mathscr{B}_{n} \vee \mathscr{C}_{n}\right)$ of the form

$$
X=Y Z_{n} \ldots Z_{0}
$$

where Y is \mathscr{B}_{n}-measurable and the Z_{k} are \mathscr{D}_{k}-measurable. We prove this by induction. For $n=0$ the assertion is true since

$$
\mathbb{E}\left\{Y Z_{0} \mid \tilde{\mathscr{F}}_{2}-0\right\}=Y E\left(Z_{0}\right)=: X^{(0)}
$$

is \mathscr{B}_{n}-measurable. Suppose that we have already proved that

$$
X^{(n-1)}:=\mathbb{E}\left\{Y Z_{0} \ldots Z_{n-1} \mid \tilde{\mathscr{F}}_{2-(n-1)}\right\}
$$

is $\mathscr{B}_{n} \vee \sigma\left(\varepsilon_{0}, \ldots, \varepsilon_{n-2}\right)$-measurable. Then we infer that

$$
\begin{aligned}
& \boldsymbol{E}\left\{Y Z_{0} \ldots Z_{n} \mid \tilde{\mathscr{F}}_{2-n}\right\} \\
= & \boldsymbol{E}\left\{Z_{n} \boldsymbol{E}\left\{Y Z_{0} \ldots Z_{n-1} \mid \tilde{\mathscr{F}}_{2-(n-1)}\right\} \mid \tilde{\mathscr{F}}_{2}-n\right\}=\boldsymbol{E}\left\{X^{(n-1)} Z_{n} \mid \widetilde{\mathscr{F}}_{2-n}\right\} \\
= & \mathbb{E}\left\{\left.\frac{1}{2}\left(X^{(n-1)}+X^{(n-1)} \circ \psi_{n}\right) Z_{n}+\frac{1}{2} \varepsilon_{n-1}\left(X^{(n-1)}-X^{(n-1)} \circ \psi_{n}\right)\left(\varepsilon_{n-1} Z_{n}\right) \right\rvert\, \tilde{\mathscr{F}}_{2-n}\right\} \\
= & \frac{1}{2}\left(X^{(n-1)}+X^{(n-1)} \circ \psi_{n}\right) \mathbb{E}\left(Z_{n}\right) \\
& +\frac{1}{2} \varepsilon_{n-1}\left(X^{(n-1)}-X^{(n-1)} \circ \psi_{n}\right) \mathbb{E}\left(\varepsilon_{n-1} Z_{n}\right)=: X^{(n)}
\end{aligned}
$$

is $\mathscr{B}_{n} \vee \sigma\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)$-measurable. It follows that $X^{(n)}$ is of the form

$$
X^{(n)}=\sum_{k=1}^{2^{n}} Y_{k} f_{k}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)
$$

where every Y_{k} is \mathscr{B}_{n}-measurable and the f_{k} are functions on $\{0,1\}^{n}$. It is not difficult to derive the exact formula for $X^{(n)}$, but for our aim the above structure is sufficient.
(iii) The proof below is based on the following observation. If Y is $\mathscr{B}_{n^{-}}$ -measurable, then
$Y \circ \psi_{n+1}$ is $\left(\pi_{2^{n}} \times \ldots \times \pi_{2^{n+1}-1}\right)^{-1}\left(\mathscr{F}_{2^{n}} \otimes \ldots \otimes \mathscr{F}_{2^{n+1}-1}\right)$-measurable.
For the $X^{(n)}$ above we therefore get

$$
\begin{aligned}
\boldsymbol{E}\left\{X^{(n)} \mid \tilde{\mathscr{F}}_{2-(n+1)}\right\} & =\boldsymbol{E}\left\{\left.\frac{1}{2}\left(X^{(n)}+X^{(n)} \circ \psi_{n+1}\right)+\frac{1}{2} \varepsilon_{n}\left(X^{(n)}-X^{(n)} \circ \psi_{n+1}\right) \varepsilon_{n} \right\rvert\, \tilde{\mathscr{F}}_{2-(n+1)}\right\} \\
& =\frac{1}{2}\left(X^{(n)}+X^{(n)} \circ \psi_{n+1}\right)=\sum_{k=1}^{2^{n}}\left(\frac{1}{2}\left(Y_{k, 1}+Y_{k, 2}\right)\right) f_{k}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right),
\end{aligned}
$$

where $Y_{k, 1}:=Y_{k}$ and $Y_{k, 2}:=Y_{k} \circ \psi_{n+1}$ is independent of $Y_{k, 1}$. More generally, one can prove by induction the following structure for

$$
X^{(n+m)}:=E\left\{X^{(n)} \mid \tilde{\mathscr{F}}_{2}-(n+m)\right\}=\mathbb{E}\left\{X \mid \tilde{\mathscr{F}}_{2-(n+m)}\right\} .
$$

For every $k=1, \ldots, 2^{n}$ there exists an independent sequence $\left(Y_{k, j}\right)_{j \geqslant 1}$ with $Y_{k, 1}=Y_{k}$, such that

$$
X^{(n+m)}=\sum_{k=0}^{2^{n}}\left(\frac{1}{2^{m}} \sum_{j=1}^{2^{m}} Y_{k, j}\right) f_{k}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)
$$

By the strong law of large numbers we obtain

$$
\lim _{m \rightarrow \infty} \boldsymbol{E}\left\{X \mid \tilde{\mathscr{F}}_{2-(n+m)}\right\}=\sum_{k=0}^{2^{n}}\left(\mathbb{E} Y_{k}\right) f_{k}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right) \tilde{\mathcal{P}} \text {-a.s. }
$$

and thus

$$
\mathbb{E}\left\{X \mid \tilde{\mathscr{F}}_{0}\right\}=\sum_{k=0}^{2^{n}} \boldsymbol{E}\left(Y_{k}\right) \boldsymbol{E}\left(f_{k}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)\right)=\mathrm{const}=\boldsymbol{E} X \tilde{\mathbb{P}} \text {-a.s. }
$$

for every $X \in \mathscr{L}^{1}\left(\mathscr{B}_{n} \vee \mathscr{C}_{n}\right)$. Since $\tilde{\mathscr{F}}_{\infty}=V_{n \geqslant 0}\left(\mathscr{B}_{n} \vee \mathscr{C}_{n}\right)$, it follows now by a standard argument that

$$
\boldsymbol{E}\left\{X \mid \tilde{\mathscr{F}}_{0}\right\}=\boldsymbol{E} X \quad \tilde{\boldsymbol{P}} \text {-a.s. } \quad \text { for every } X \in \mathscr{L}^{1}\left(\tilde{\mathscr{F}}_{\infty}\right)
$$

Especially, we have proved that, for every square integrable formartingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$,

$$
\tilde{M}_{0}=\boldsymbol{E} \tilde{M}_{0} \quad \tilde{\mathbb{P}} \text {-a.s. }
$$

and the theorem is proved.
Remark 2.3. An inspection of the proof shows that the filtration \tilde{f} only depends on the given filtration and the Brownian motion B and not on the special probability measure \boldsymbol{P}. This will be essential in the following.

Suppose that \mathscr{G} and \mathscr{H} are two sub- σ-algebras of \mathscr{F}. Let us recall that a regular conditional probability of \mathscr{H} given \mathscr{G} is defined as a map

$$
K: \Omega \times \mathscr{H} \rightarrow[0,1]
$$

such that
(i) $K(\omega, \cdot)$ is a probability measure on \mathscr{H} for every $\omega \in \Omega$,
(ii) $K(\cdot, B)$ is \mathscr{G}-measurable for every $B \in \mathscr{H}$, and
(iii) $\boldsymbol{P}(A \cap B)=\int 1_{A}(\omega) K(\omega, B) \boldsymbol{P}(d \omega)$ for $A \in \mathscr{G}$ and $B \in \mathscr{H}$.

If T is a Polish space with Borel field $\mathscr{B}(T)$ and if $\pi: \Omega \rightarrow T$ is a map such that $\pi^{-1}(\mathscr{B}(T))=\mathscr{H}$, then a regular conditional probability of \mathscr{H} given \mathscr{G} exists.

Lemma 2.4. For the given probability space $(\Omega, \mathscr{F}, \mathbb{P})$ let $(\bar{\Omega}, \overline{\mathscr{F}})$ be the measurable space defined by

$$
(\bar{\Omega}, \overline{\mathscr{F}})=\prod_{k \geqslant 0}\left(\Omega_{k}, \mathscr{F}_{k}\right)
$$

with $\left(\Omega_{k}, \mathscr{F}_{k}\right)=(\Omega, \mathscr{F})$ for every $k \geqslant 0$. As before, we will denote the canonical projections from $\bar{\Omega}$ onto Ω_{k} by π_{k}. Let \mathscr{G} be a fixed sub- σ-algebra of \mathscr{F}. Then there exists a unique probability measure $\overline{\boldsymbol{P}}$ on $\bar{\Omega}$ with the following property: For every sub- σ-algebra \mathscr{H} of \mathscr{F}, for which there exists a regular conditional probability $K_{\mathscr{H}}$ of \mathscr{H} given \mathscr{G}, one has

$$
\left.\overline{\boldsymbol{P}}\right|_{\mathscr{H} \otimes Z_{+}}=K_{\mathscr{H}}(\omega, \cdot)^{\otimes Z_{+}} \boldsymbol{P}(d \omega)
$$

i.e.

$$
\overline{\mathcal{P}}\left(\prod_{k \geqslant 0} A_{k}\right)=\int \prod_{k \geqslant 0} K_{\mathscr{H}}\left(\omega, A_{k}\right) \mathbb{P}(d \omega)
$$

for every sequence $\left(A_{k}\right)_{k \geqslant 0}$ in \mathscr{H}.

Proof. Let Φ denote the family of all countable subsets of $\mathscr{L}^{0}(\mathscr{F})$ directed by inclusion. For $\phi=\left\{X_{n} \mid n \in N\right\} \in \Phi, \sigma(\phi)=\left(X_{1}, X_{2}, \ldots\right)^{-1}\left(\mathscr{B}\left(\mathbb{R}^{N}\right)\right)$, and hence there exists a regular conditional probability K_{ϕ} of $\sigma(\phi)$ under \mathscr{G}. Furthermore

$$
\mathscr{F}=\bigvee_{\phi \in \Phi} \sigma(\phi)=\bigcup_{\phi \in \Phi} \sigma(\phi)
$$

If $\phi \subset \psi$, then $K_{\phi}(\cdot, B)=\left.K_{\psi}(\cdot, B) \mathbb{P}\right|_{g}$-a.s. for every $B \in \sigma(\phi)$. It follows that the function

$$
\overline{\boldsymbol{P}}: \bigcup_{\phi \in \Phi} \sigma(\phi)^{\otimes \mathbf{z}_{+}} \rightarrow[0,1],
$$

given by

$$
\left.\overline{\boldsymbol{P}}\right|_{\sigma(\phi)^{\otimes \mathbf{z}_{+}}}:=K_{\phi}(\omega, \cdot)^{\otimes \mathbf{Z}_{+}} \boldsymbol{P}(d \omega) \quad \text { for } \phi \in \Phi
$$

is well defined, and it is clear that $\overline{\boldsymbol{P}}$ is finitely additive on the algebra $\mathscr{A}=\bigcup_{\phi \in \Phi} \sigma(\phi)^{\otimes \mathbf{Z}_{+}}$which generates $\mathscr{F}^{\otimes \mathbf{Z}_{+}}$. To prove that $\overline{\boldsymbol{P}}$ can be (uniquely) extended to a probability measure on $\mathscr{F} \otimes Z_{+}$we show that \widetilde{P} is σ-additive on \mathscr{A}. Now, if $\left(B_{n}\right)$ is a decreasing sequence in \mathscr{A} with intersection \emptyset, then we may suppose that $B_{n} \in \sigma\left(\phi_{n}\right)^{\otimes Z_{+}}$, where $\left(\phi_{n}\right)$ is an increasing sequence in Φ. But $\psi:=\bigcup \phi_{n}$ is again in Φ, and hence $B_{n} \in \sigma(\psi)^{\otimes \mathbf{Z}_{+}}$for all n. Since $\overline{\boldsymbol{P}}$ is a probability measure on $\sigma(\psi)^{\otimes \mathbf{Z}_{+}}$, we have $\lim \overline{\boldsymbol{P}}\left(B_{n}\right)=0$. This proves that \bar{P} is σ-additive on \mathscr{A}.

Now let \mathscr{H} be a sub- σ-algebra of \mathscr{F} for which there exists a regular conditional probability $K_{\mathscr{H}}$ of \mathscr{H} under \mathscr{G}. If Ψ denotes the family of all countable subsets of $\mathscr{L}^{0}(\mathscr{H})$, then $\Psi \subset \Phi$ and, for every $\psi \in \Psi$,

$$
K_{\psi}(\cdot, B)=\left.K_{\mathscr{H}}(\cdot, B) \boldsymbol{P}\right|_{\mathscr{F}} \text {-a.s. }
$$

and hence $\left.\overline{\boldsymbol{P}}\right|_{\mathscr{H} \otimes \boldsymbol{z}_{+}}=K_{\mathscr{H}}(\omega, \cdot)^{\otimes \boldsymbol{Z}_{+}} \boldsymbol{P}(d \omega)$ follows by the definition of $\overline{\boldsymbol{P}}$. \mathbf{x}
Remark. On the probability space $(\bar{\Omega}, \overline{\mathscr{F}}, \overline{\mathcal{P}})$ the kernel $K_{\mathscr{H}}(\cdot, \cdot)^{\otimes \mathbf{Z}_{+}}$is just a regular conditional probability of $\mathscr{H}^{\otimes \mathbf{z}_{+}}$under \mathscr{G} if \mathscr{G} is identified with $\pi_{0}^{-1}(\mathscr{G})$.

Theorem 2.5. Suppose that $\mathscr{F}_{0}, \mathscr{F}_{1}$ are two sub- σ-algebras of \mathscr{F} such that $\mathscr{F}_{0} \subset \mathscr{F}_{1}$. Then for the filtration $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \in\{0,1\}}$ there exists

- an extension $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{P})$ of Ω,
- an extension $\tilde{\tilde{F}}=(\tilde{\mathscr{F}})_{t \geqslant 0}$ of \tilde{F} on $\tilde{\Omega}$, and
- an $\tilde{\xi}$-Brownian motion $\widetilde{B}=\left(\tilde{B}_{t}\right)_{t} \geqslant 0$,
such that for every square integrable $\tilde{\tilde{\delta}}$-martingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$ there exists an $\tilde{\tilde{E}}$-progressively measurable function $f_{\tilde{M}}:[0, \infty[\times \widetilde{\Omega} \rightarrow \boldsymbol{R}$ such that

$$
\tilde{M}_{t}=\tilde{M}_{0}+\int_{0}^{t} f_{\tilde{M}}(s) d \tilde{B}_{s} \tilde{\mathcal{P}} \text {-a.s. for every } t \geqslant 0
$$

As a consequence, \mathfrak{F} has a predictable extension.

Proof. (1) As in Lemma 2.1 let (S, Σ, Q) be a probability space in which there exists a Brownian motion $B=\left(B_{t}\right)_{t \geqslant 0}$. We denote by $\left(\Sigma_{t}\right)_{t \geqslant 0}$ the standard filtration generated by B. As in Lemma 2.4 we set

$$
(\bar{\Omega}, \overline{\mathscr{F}})=\left(\Omega^{\mathbf{Z}_{+}}, \mathscr{F} \otimes \mathbf{Z}_{+}\right)
$$

and denote by $\overline{\boldsymbol{P}}$ the unique measure on $(\bar{\Omega}, \overline{\mathscr{F}})$ of the structure

$$
\left.\overline{\boldsymbol{P}}\right|_{\mathscr{H} \otimes \mathbf{z}_{+}}=K_{\mathscr{H}}(\omega, \cdot)^{\otimes \mathbf{z}_{+}} \boldsymbol{P}(d \omega)
$$

for every sub- σ-algebra $\mathscr{H} \subset \mathscr{F}$ for which there exists a regular conditional probability of \mathscr{H} under \mathscr{F}_{0}. Then we define

$$
(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathbb{P}}):=(\bar{\Omega} \times S, \overline{\mathscr{F}} \otimes \Sigma, \overline{\mathbb{P}} \otimes Q)
$$

(2) Let $\tilde{B}=\left(\tilde{B}_{t}\right)_{t \geqslant 0}$ be the canonical extension of B to $\tilde{\Omega}$, i.e. $\widetilde{B_{t}}=B_{t} \circ \pi_{S}$, and denote by $\left(\tilde{\Sigma}_{t}\right)_{t \geqslant 0}$ the canonical extension of $\left(\Sigma_{t}\right)_{t \geqslant 0}$ to $\tilde{\Omega}$. For the definition of the filtration $\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ below let us reformulate the construction in the proof of Theorem 2.2. For a given σ-algebra $\mathscr{G} \subset \mathscr{F}$ on Ω we first defined by induction a sequence $\left(\mathscr{R}_{n}(\mathscr{G})\right)_{n \geqslant 0}$ of families of random variables on $\tilde{\Omega}$. Then we defined a sequence $\left(\mathscr{H}_{n}(\mathscr{G})\right)_{n \geqslant 0}$ of sub- σ-algebras of \mathscr{F} by

$$
\mathscr{H}_{n}(\mathscr{G})=\sigma\left(\bigcup_{m \geqslant n} \mathscr{R}_{m}(\mathscr{G})\right) .
$$

Finally, we defined the filtration $\left(\mathscr{E}_{t}(\mathscr{G})_{t \geqslant 0}-\right.$ denoted by $\left(\tilde{\mathscr{F}}_{t}\right)_{t \geqslant 0}$ in Theorem 2.2 - by

$$
\begin{gathered}
\mathscr{E}_{t}(\mathscr{G}):=\mathscr{H}_{0}(\mathscr{G}) \vee \tilde{\Sigma_{t}} \quad \text { for } t \geqslant 1, \\
\mathscr{E}_{t}(\mathscr{G}):=\mathscr{H}_{n+1}(\mathscr{G}) \vee \tilde{\Sigma_{t}} \quad \text { for } t \in\left[2^{-(n+1)}, 2^{-n}[(n \geqslant 0),\right.
\end{gathered}
$$

and

$$
\mathscr{E}_{0}(\mathscr{G}):=\bigcap_{t>0} \mathscr{E}_{t}(\mathscr{G})
$$

Then it was proved in Theorem 2.2 that $\left(\mathscr{E}_{t}(\mathscr{G})\right)_{t \geqslant 0}$ is an extension of the filtration $\left(\mathscr{G}_{t}\right)_{t \in\{0,1\}}$, where $\mathscr{G}_{0}=\{\varnothing, \Omega\}$ and $\mathscr{G}_{1}=\mathscr{G}$.

For the present theorem we now define the filtration $\tilde{\mathscr{C}}(\mathscr{G})=\left(\tilde{E}_{t}(\mathscr{G})\right)_{t} \geqslant 0$ by $\widetilde{\mathscr{E}}_{t}(\mathscr{G})=\mathscr{F}_{0} \vee \mathscr{E}_{t}(\mathscr{G})$ for $t \geqslant 0$, and, finally, $\tilde{\mathscr{F}}=\tilde{\mathbb{C}}\left(\dot{\mathscr{F}}_{1}\right)$.
(3) Now we can prove that \tilde{B} is an $\tilde{\mathscr{F}}$-Brownian motion and that every square integrable $\tilde{\xi}$-martingale has the asserted integral representation.
(i) \tilde{B} is an $\tilde{\mathscr{E}}$-Brownian motion.

For the proof, for every $s \geqslant 0$ we set

$$
\mathscr{C}_{s}:=\sigma\left(B_{t}-B_{s} ; t>s\right) .
$$

So we have to prove that $\tilde{\mathscr{F}}_{s}$ and \mathscr{C}_{s} are independent for every $s \geqslant 0$. Let us denote by $\mathscr{R}\left(\mathscr{F}_{0}\right)$ the family of all sub- σ-algebras $\mathscr{H} \subset \mathscr{F}_{1}$ for which there exists a regular conditional probability $K_{\mathscr{H}}$ of \mathscr{H} given \mathscr{F}_{0}. Then

$$
\mathscr{F}_{1}=\bigcup\left\{\mathscr{H} \mid \mathscr{H} \in \mathscr{R}\left(\mathscr{F}_{0}\right)\right\}
$$

and it follows that

$$
\tilde{\mathscr{F}}_{s}=\sigma\left(\tilde{E}_{s}(\mathscr{H}) ; \mathscr{H} \in \mathscr{R}\left(\mathscr{F}_{0}\right)\right) .
$$

Hence it is sufficient to prove that $\tilde{\mathscr{E}}_{s}(\mathscr{H})$ and \mathscr{C}_{s} are independent for every $s \geqslant 0$. Since $\widetilde{E}_{s}(\mathscr{H})=\mathscr{F}_{0} \vee \mathscr{E}_{s}(\mathscr{H})$, it suffices to prove

$$
\tilde{\mathbb{P}}(A \cap B \cap C)=\tilde{\mathbb{P}}(A \cap B) \tilde{P}(C)
$$

for all $A \in \mathscr{F}_{0}, B \in \mathscr{E}_{s}(\mathscr{H})$ and $C \in \mathscr{C}_{s}$. Let us denote by $\tilde{K}_{\mathscr{H}}(\omega, \cdot)$ the probability measure on $(\tilde{\Omega}, \mathscr{F})$, which is the extension of $K_{\mathscr{H}}(\omega, \cdot)$, i.e.

$$
\tilde{K}_{\mathscr{P}}(\omega, \cdot)=K_{\mathscr{H}}(\omega, \cdot)^{\otimes Z_{+}+\otimes Q \quad \text { for every } \omega \in \Omega ~}
$$

Now Theorem 2.2 implies that

$$
\tilde{K}_{\mathscr{H}}(\omega, B \cap C)=\tilde{K}_{\mathscr{H}}(\omega, B) \tilde{K}_{\mathscr{H}}(\omega, C)=\tilde{K}_{\mathscr{H}}(\omega, B) Q\left(C^{\prime}\right) \quad\left(C^{\prime}=\pi_{S}(C)\right),
$$

and from the definition of \bar{P} we obtain

$$
\begin{aligned}
\tilde{\mathbb{P}}(A \cap B \cap C) & =\int 1_{A}(\omega) \int 1_{B \cap C}(\tilde{\omega}) \tilde{K}_{\mathscr{H}}(\omega, d \tilde{\omega}) \boldsymbol{P}(d \omega) \\
& =\int 1_{A}(\omega) \tilde{K}_{\mathscr{H}}(\omega, B) \boldsymbol{P}(d \omega) Q\left(C^{\prime}\right)=\tilde{\mathbb{P}}(A \cap B) \tilde{\boldsymbol{P}}(C),
\end{aligned}
$$

which proves that \tilde{B} is an $\tilde{\mathscr{E}}$-Brownian motion.
(ii) We will prove that for every $\tilde{X} \in \mathscr{L}^{2}\left(\tilde{\mathscr{F}}_{\infty}\right)$ there exists an $\tilde{\mathscr{F}}$-progressively measurable function $f_{\tilde{X}}:[0, \infty[\times \tilde{\Omega} \rightarrow \boldsymbol{R}$ such that

$$
\begin{equation*}
\boldsymbol{E}\left\{\tilde{X} \mid \tilde{\mathscr{F}}_{t}\right\}=\boldsymbol{E}\left\{\tilde{X} \mid \tilde{\mathscr{F}}_{0}\right\}+\int_{0}^{t} f_{\tilde{X}}(s) d \tilde{B}_{s} \tilde{\mathbb{P}} \text {-a.s. } \tag{*}
\end{equation*}
$$

By arguments as in the proof of Theorem 2.2 it is sufficient to prove this for random variables \tilde{X} which are of the special form $\tilde{X}=Y Z$, where Y is a bounded $\left(\pi_{0} \times \ldots \times \pi_{2^{n-1}}\right)^{-1}\left(\mathscr{F}_{1}^{\otimes 2^{n}}\right)$-measurable random variable and Z is a bounded \mathscr{C}_{s}-measurable random variable for some $s>0$. Since we will work with conditional expectations relative to different probability measures on ($\tilde{\Omega}, \tilde{\mathscr{F}}$), in the following we will write more precisely $E_{R}\{\cdot \mid \cdot\}$ for the conditional expectation symbol if R is the relevant probability measure on $\tilde{\Omega}$.

Since $\tilde{\mathscr{F}}_{t}=\sigma\left(\widetilde{E}_{t}(\mathscr{H}) ; \mathscr{H} \in \mathscr{R}\left(\mathscr{F}_{0}\right)\right)$, it is sufficient for the proof of equation (*) to show that, for every $\mathscr{H} \in \mathscr{R}\left(\mathscr{F}_{0}\right)$, every $B \in \mathscr{E}_{t}(\mathscr{H})$ and $A \in \mathscr{F}_{0}$,

$$
\begin{equation*}
\int_{A \cap B} \mathbb{E}_{\tilde{P}}\left\{\tilde{X} \mid \tilde{\mathscr{F}_{t}}\right\} d \tilde{\mathcal{P}}=\int_{A \cap B}\left(\int_{0}^{t} f_{\tilde{X}}(s) d \tilde{B}_{s}+\mathbb{E}_{\tilde{P}}\left\{\tilde{X} \mid \tilde{\mathscr{F}}_{0}\right\}\right) d \tilde{P} \tag{**}
\end{equation*}
$$

for a certain progressively measurable function $f_{\tilde{X}}$. By the special choice of

with $\mathscr{H} \supset \mathscr{H}_{0}$ be given, and suppose that $A \in \mathscr{F}_{0}$ and $B \in \mathscr{E}_{t}(\mathscr{H})$. Then

$$
\begin{aligned}
\int_{A \cap B} \mathbb{E}_{\tilde{P}}\left\{\tilde{X} \mid \tilde{\mathscr{F}}_{t}\right\} d \tilde{\mathcal{P}} & =\int_{A \cap B} \tilde{X} d \tilde{P}=\iint_{A B} \tilde{X} d \tilde{K}_{\mathscr{H}}(\omega) P(d \omega) \\
& =\int_{A B} \int_{\tilde{K}_{\mathscr{H}}(\omega)}\left\{\tilde{X} \mid \mathscr{E}_{t}(\mathscr{H})\right\} d \tilde{K}_{\mathscr{H}}(\omega) \boldsymbol{P}(d \omega) .
\end{aligned}
$$

Now Theorem 2.2 (with the same measure $\tilde{K}_{\mathscr{H}}(\omega)$ on $\tilde{\Omega}$) yields

$$
E_{\tilde{K}_{\mathscr{H}}(\omega)}\left\{\tilde{X} \mid \mathscr{E}_{t}(\mathscr{H})\right\}=\int_{0}^{t} f_{\tilde{X}}(s) d \tilde{B}_{s}+E_{\tilde{K}_{\mathscr{H}}(\omega)}(\tilde{X}) \quad \tilde{K}_{\mathscr{H}}(\omega) \text {-a.s. }
$$

where $f_{\tilde{X}}$ is $\tilde{\mathfrak{C}}(\mathscr{H})$-progressively measurable. An inspection of the proof of Theorem 2.2 shows also that for every \mathscr{H} one gets the same $f_{\tilde{X}}$. Since

$$
\mathbb{E}_{\tilde{K}_{\mathscr{P}^{(\cdot)}}}(\tilde{X})=\mathbb{E}_{\tilde{P}}\left\{\tilde{X} \mid \tilde{\mathscr{F}}_{0}\right\} \tilde{P} \text {-a.s. }
$$

we have proved (**), and hence (*) for our special $\tilde{X}=Y Z$, and standard arguments yield (*) for all $X \in \mathscr{L}^{2}\left(\tilde{\mathscr{F}}_{\infty}\right)$. This completes the proof of the theorem.
3. The solution in the general case. In this section we will prove that every filtration has a predictable extension. The special case stated in Theorem 2.5 will be used as an important building block for the general construction.

Lemma 3.1. Suppose that $0<u_{0}<\ldots<u_{m}<\infty \quad(m \geqslant 1)$ and that $\mathscr{F}=\left(\mathscr{F}_{t \in\{ }\left\{_{\left.u_{0}, \ldots, u_{m}\right\}}\right.\right.$ is the given filtration on (Ω, \mathscr{F}, P). For every $\left(k_{1}, \ldots, k_{m}\right) \in Z_{+}^{m}$ we set

$$
\left(\Omega^{k_{1}, \ldots, k_{m}}, \mathscr{F}^{k_{1}, \ldots, k_{m}}\right)=(\Omega, \mathscr{F})
$$

and

$$
\left(\bar{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}, \overline{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\prod_{\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}_{+}^{m}}\left(\Omega^{k_{1}, \ldots, k_{m}}, \mathscr{F}^{\left.k_{1}, \ldots, k_{m}\right)}\right)
$$

For every $t \in\left\{u_{0}, \ldots, u_{m}\right\}$ we denote further by $\mathscr{F}_{t}^{k_{1}, \ldots, k_{m}}$ the σ-algebra \mathscr{F}_{t} in $\Omega^{k_{1}, \ldots, k_{m}}$. Suppose that we have already defined the probability measure $\overline{\boldsymbol{P}}^{\left(u_{0}, \ldots, u_{m-1}\right)}$ on $\bar{\Omega}^{\left(u_{0}, \ldots, u_{m-1}\right)}$, and that $\Omega^{k_{1}, \ldots, k_{m-1}}$ is identified with $\Omega^{k_{1}, \ldots, k_{m-1}, 0}$. Denote by

$$
\mathscr{R}\left({\left.\underset{\left(k_{1}, \ldots, k_{m-1}\right) \in \mathcal{Z}_{+}^{m-1}}{\otimes} \mathscr{F}_{u_{m-1}}^{k_{1}, \ldots, k_{m-1}, 0}\right)}_{*}^{*}\right.
$$

the family of all sub- σ-algebras \mathscr{H} of $\otimes_{\left(k_{1}, \ldots, k_{m-1}\right)} \mathscr{F}^{k_{1}, \ldots, k_{m-1}, 0}$ for which there exists a regular conditional probability $K_{\mathscr{H}}$ of \mathscr{H} given $\otimes \mathscr{F}_{u_{m-1}}^{k_{1}, \ldots, k_{m-1}, 0}$. Then $\overline{\boldsymbol{P}}^{\left(u_{0}, \ldots, u_{m}\right)}$ is defined as the unique probability measure on $\bar{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$ such that

$$
\left.\overline{\boldsymbol{P}}^{\left(u_{0}, \ldots, u_{m}\right)}\right|_{\mathscr{H} \otimes \mathbf{z}_{+}}=K_{\mathscr{H}}(\bar{\omega}, \cdot)^{\otimes \mathbf{z}_{+}} \overline{\mathbf{P}}^{\left(u_{0}, \ldots, u_{m-1}\right)}(d \bar{\omega})
$$

(cf. Lemma 2.4). Finally, we set
$\left(\widetilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}, \tilde{\mathscr{F}}\left(u_{0}, \ldots, u_{m}\right), \widetilde{P}^{\left(u_{0}, \ldots, u_{m}\right)}\right):=\left(\bar{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}, \overline{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m}\right)}, \bar{P}^{\left(u_{0}, \ldots, u_{m}\right)}\right) \times(S, \Sigma, Q)$.
Then there exists a filtration

$$
\tilde{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m}\right)}=\left(\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}\right)_{t \geqslant 0}
$$

on $\tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$, which is an extension of \mathcal{F}, such that for every square integrable $\tilde{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m}\right)}$-martingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$ there exists a progressively measurable function

$$
f_{\tilde{M}}:\left[u_{0}, u_{m}\right] \times \tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)} \rightarrow \boldsymbol{R}
$$

such that, for every $t \in\left[u_{0}, u_{m}\right]$,

$$
\tilde{M}_{\mathrm{t}}-\tilde{M}_{u_{0}}=\int_{u_{0}}^{t} f_{\tilde{M}}(s) d \tilde{B}_{s} \tilde{P}^{\left(u_{0}, \ldots, u_{m)}\right)}-a . s .,
$$

where $\widetilde{B}=\left(\widetilde{B}_{t}\right)_{u_{0} \leqslant t \leqslant u_{m}}$ is an $\left(\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}\right)_{u_{0} \leqslant t \leqslant u_{m}}$-Brownian motion (as a process, \tilde{B} is just the canonical extension of $\left(B_{t}\right)_{u_{0} \leqslant t \leqslant u_{m}}$ to $\tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$. Furthermore, $\tilde{M}_{t}=\tilde{M}_{u_{0}}$ for $t \leqslant u_{0}$ and $\tilde{M}_{t}=\tilde{M}_{u_{m}}$ for $t \geqslant u_{m}$.

Proof. The assertions are proved by induction in $m \geqslant 1$. For $m=1$ the assertions are essentially proved in Theorem 2.5 . The minor modifications will become clear by the proof that the assertions are true for m if they are true for $m-1$. So suppose that the lemma is true for $m-1(m \geqslant 2)$.
(i) Let us first show that the probability space $\tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$ is in fact an extension of $(\Omega, \mathscr{F}, \mathbb{P})$. As a projection map we take the canonical projection

$$
\pi: \tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)} \rightarrow \Omega=\Omega^{0,0, \ldots, 0}(0,0, \ldots, 0(m+1 \text { times }))
$$

Then π is surely measurable and it remains to prove that $\pi\left(\widetilde{P}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\boldsymbol{P}$. Let $X \in \mathscr{L}^{1}(\mathscr{F})$ be given. There is a regular conditional probability $K_{X}(\cdot, \cdot)$ of X given $\mathscr{F}_{u_{m-1}}=\mathscr{F}_{u_{m-1}}^{0,0, \ldots, 0}$ and $K_{X}(\pi(\cdot), \cdot)$ is also a regular conditional probability of $\sigma(X \circ \pi)$ given $\otimes \mathscr{F}_{u_{m-1}}^{k_{1}, \ldots, k_{m-1}, 0}$. By the definition of $\tilde{P}^{\left(u_{0}, \ldots, u_{m}\right)}$ we get

$$
\begin{aligned}
\int X \circ \pi d \widetilde{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)} & =\iint(X \circ \pi) d K_{X}(\pi(\tilde{\omega})) \widetilde{P}^{\left(u_{0}, \ldots, u_{m-1}\right)}(d \tilde{\omega}) \\
& =\iint X d K_{X}(\omega) \mathbb{P}(d \omega) \quad \text { (by induction hypothesis) } \\
& =\int X d \mathbb{P}
\end{aligned}
$$

Since X was arbitrary, we have proved $\pi\left(\widetilde{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\boldsymbol{P}$.
(ii) Next we define $\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}$ for $t \leqslant u_{m-1}$ if $\tilde{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m-1}\right)}$ on $\tilde{\Omega}^{\left(u_{0}, \ldots, u_{m-1}\right)}$ is given. We denote by

$$
\pi_{m}: \tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)} \rightarrow \tilde{\Omega}^{\left(u_{0}, \ldots, u_{m-1}\right)}
$$

the projection map defined by

$$
\pi_{m}\left(\left(\omega^{k_{1}, \ldots, k_{m}}\right)_{k_{1} \geqslant 0, \ldots, k_{m} \geqslant 0}, s\right)=\left(\left(\omega^{k_{1}, \ldots, k_{m-1}, 0}\right)_{k_{1} \geqslant 0, \ldots, k_{m-1} \geqslant 0}, s\right) .
$$

Then we set

$$
\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}:=\pi_{m}^{-1}\left(\tilde{\mathscr{F}}\left(u_{0}, \ldots, u_{m-1}\right)\right) \quad \text { for } t \leqslant u_{m-1} .
$$

(iii) Now, using Theorem 2.5 we define $\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}$ for $t>u_{m-1}$. We apply Theorem 2.5 with

$$
\Omega^{\prime}=\bar{\Omega}^{\left(u_{0}, \ldots, u_{m-1}\right)}, \quad \mathscr{F}^{\prime}=\overline{\mathscr{F}}^{\left(u_{0}, \ldots, u_{m-1}\right)}, \quad P^{\prime}=\overline{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m-1}\right)}
$$

$$
\mathscr{F}_{0}^{\prime}=\bigotimes_{k_{1} \geqslant 0, \ldots, k_{m-1} \geqslant 0}^{\otimes} \mathscr{F}_{u_{m-1}}^{k_{1}, \ldots, k_{m-1}}, \quad \mathscr{F}_{1}^{\prime}=\bigotimes_{k_{1} \geqslant 0, \ldots, k_{m-1} \geqslant 0}^{\otimes} \mathscr{F}_{u_{m}}^{k_{1}, \ldots, k_{m-1}}
$$

instead of $(\Omega, \mathscr{F}, \mathbb{P}), \mathscr{F}_{0}, \mathscr{F}_{1}$. Moreover, instead of the Brownian motion $\left(B_{t}\right)_{0 \leqslant t \leqslant 1}$ which we used in the proof of that theorem for the construction of $\left(\tilde{\mathscr{F}}_{t}\right)_{0 \leqslant t \leqslant 1}$ and the Brownian motion \tilde{B}, we now use the Brownian motion $B^{\prime}=\left(B_{t}^{\prime}\right)_{0 \leqslant t \leqslant 1}$ defined by

$$
B_{t}^{\prime}=B_{u_{m-1}+t\left(u_{m}-u_{m-1}\right)} \quad \text { for } 0 \leqslant t \leqslant 1 .
$$

Then Theorem 2.5 gives an extension ($\left.\tilde{\Omega}^{\prime}, \tilde{\mathscr{F}}, \tilde{P}^{\prime}\right)$ of $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime}\right)$, an extended filtration $\left(\tilde{\mathscr{F}}_{t}^{\prime}\right)_{0 \leqslant t \leqslant 1}$ and an $\left(\tilde{\mathscr{F}}_{t}^{\prime}\right)$-Brownian motion $\left(\tilde{B}_{t}^{\prime}\right)_{0 \leqslant t \leqslant 1}$ such that the stochastic integral representation holds for square integrable martingales as stated in that theorem. By definition, the probability space $\tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$ is the same as $\tilde{\Omega}^{\prime}$. Hence, if we define

$$
\tilde{B}_{t}=\tilde{B}_{\left(t-u_{m-1}\right)\left(\left(u_{m}-u_{m-1}\right)\right.} \quad \text { and } \quad \tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}=\tilde{\mathscr{F}}_{\left(t-u_{m}-1\right) /\left(u_{m}-u_{m-1}\right)}^{\prime} \vee \tilde{\Sigma}_{u_{m-1}}
$$

for $u_{m-1} \leqslant t \leqslant u_{m}$, then $\left(\tilde{B}_{t}\right)_{u_{m-1}} \leqslant t \leqslant u_{m}$ is an $\left(\tilde{\mathscr{F}}_{t}^{\left(u_{0}, \ldots, u_{m}\right)}\right)_{u_{m-1}} \leqslant t \leqslant u_{m}$-Brownian motion and for every square integrable martingale $\left(\tilde{M}_{t}\right)_{u_{m-1}} \leqslant t \leqslant u_{m}$ we have

$$
\tilde{M}_{t}=\tilde{M}_{u_{m-1}}+\int_{u_{m-1}}^{t} f_{\tilde{M}}(s) d \widetilde{B}_{s} \tilde{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)} \text { a.s. }
$$

for some progressively measurable function $f_{\tilde{M}}$. Together with the induction hypothesis we have thus proved the assertion of the lemma.

The next step is essential for the final result.
Lemma 3.2. The probability space $\widetilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)}$ is an extension of $\widetilde{\Omega}^{\left(u_{1}, \ldots, u_{m}\right)}$, i.e. there exists a measurable map

$$
\phi_{m}: \tilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)} \rightarrow \tilde{\Omega}^{\left(u_{1}, \ldots, u_{m}\right)}
$$

such that $\phi_{m}\left(\tilde{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\widetilde{\mathbb{P}}^{\left(u_{1}, \ldots, u_{m}\right)}$. Moreover, for every $\tilde{\mathscr{F}}^{\left(u_{1}, \ldots, u_{m}\right)}$-martingale $\left(\tilde{M}_{t}\right)_{u_{1} \leqslant t \leqslant u_{m}}$ the process $\left(\tilde{M}_{t} \circ \phi_{m}\right)_{u_{1} \leqslant t \leqslant u_{m}}$ is an $\left(\tilde{\mathscr{F}}_{i}^{\left(u_{0}, \ldots, u_{m}\right)}\right)_{u_{1} \leqslant t \leqslant u_{m}}$-martingale and

$$
\tilde{M}_{t} \circ \phi_{m}=\tilde{M}_{u_{1}} \circ \phi_{m}+\int_{u_{1}}^{t} f_{\tilde{M}}(s) \circ \phi_{m} d \tilde{B}_{s} \quad \text { for } t \in\left[u_{1}, u_{m}\right] .
$$

Proof. (i) We identify $\left(\widetilde{\Omega}^{\left(u_{1}, \ldots, u_{m}\right)}, \tilde{\mathscr{F}}_{t}^{\left(u_{1}, \ldots, u_{m}\right)}\right)$ with the measurable space

$$
\prod_{0, \ldots, k_{m} \geqslant 0}\left(\Omega^{0, k_{2}, \ldots, k_{m}}, \mathscr{F}^{0, k_{2}, \ldots, k_{m}}\right),
$$

and define $\phi_{m}: \widetilde{\Omega}^{\left(u_{0}, \ldots, u_{m}\right)} \rightarrow \widetilde{\Omega}^{\left(u_{1}, \ldots, u_{m}\right)}$ as the canonical projection. Hence ϕ_{m} is measurable and it remains to show that

$$
\phi_{m}\left(\widetilde{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\tilde{\mathbb{P}}^{\left(u_{1}, \ldots, u_{m}\right)} .
$$

It is sufficient to prove

$$
\int X d \phi_{m}\left(\tilde{\mathbb{P}}\left(u_{0}, \ldots, u_{m}\right)\right)=\int X d \widetilde{P}^{\left(u_{1}, \ldots, u_{m}\right)}
$$

for all bounded $\mathscr{\mathscr { F }}\left(u_{1}, \ldots, u_{m}\right)$-measurable random variables of the special form $X=Y Z$, where Y is $\otimes_{k_{2} \geqslant 0, \ldots, k_{m} \geqslant 0} \mathscr{F}^{\left(0, k_{2}, \ldots, k_{m}\right)}$-measurable and Z is Σ-measurable. This means that we only have to prove

$$
\int\left(Y \circ \phi_{m}\right) d \overline{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)}=\int Y d \overline{\boldsymbol{P}}^{\left(u_{1}, \ldots, u_{m}\right)} .
$$

Now we may suppose that there is a sub- σ-algebra $\mathscr{H} \subset \mathscr{F}$ for which there exists a regular conditional probability $K_{\mathscr{H}}$ of \mathscr{H} given $\mathscr{F}_{u_{m-1}}$ relative to \mathbb{P}, and such that Y is $\otimes_{k_{2} \geqslant 0, \ldots, k_{m} \geqslant 0} \mathscr{H}^{\left(0, k_{2}, \ldots, k_{m}\right)}$-measurable. Then by the definition of $\mathbb{P}^{\left(u_{0}, \ldots, u_{m}\right)}$ we have

$$
\begin{aligned}
& \mathbb{E}_{\overline{\mathscr{P}}\left(u_{0}, \ldots, u_{m}\right)}\left\{Y \circ \phi_{m} \mid \overline{\mathscr{F}}_{u_{m-1}}^{\left(u_{0}, \ldots, u_{m}\right)}\right\}\left(\left(\omega^{k_{1}, \ldots, k_{m-1}, 0}\right)_{k_{1} \geqslant 0, \ldots, k_{m} \geqslant 0}\right) \\
&=\int Y \circ \phi_{m} d \otimes K_{\mathscr{H}}\left(\left(\omega^{k_{1}, \ldots, k_{m-1}, 0}\right)\right)\left(\overline{\mathcal{P}}^{\left(u_{0}, \ldots, u_{m}\right)}-\text { a.s. }\right) \\
&=\int Y d \otimes K_{\mathscr{H}}\left(\left(\omega^{0, k_{2}, \ldots, k_{m-1}, 0}\right)\right) \\
&=\mathbb{E}_{\bar{P}^{\left(u_{1}, \ldots, u_{m}\right)}}\left\{Y \mid \overline{\mathscr{F}}_{u_{m-1}}^{\left(u_{1}, \ldots, u_{m}\right)}\right\}\left(\left(\omega^{k_{2}, \ldots, k_{m-1}, 0}\right)\right)\left(\bar{P}^{\left(u_{1}, \ldots, u_{m}\right)}-\text { a.s. }\right) .
\end{aligned}
$$

An easy induction shows that for every $j=1, \ldots, m-1$ there exists a measurable function

$$
F_{j}: \prod_{k_{2} \geqslant 0, \ldots, k_{j} \geqslant 0}\left(\Omega^{0, k_{2}, \ldots, k_{y}}, \mathscr{F}_{u_{j}}^{0, k_{2}, \ldots, k_{j}}\right) \rightarrow \boldsymbol{R}
$$

such that

$$
\boldsymbol{E}_{\bar{P}\left(u_{0}, \ldots, u_{m}\right)}\left\{Y \circ \phi_{m} \mid \overline{\mathscr{F}}_{u_{j}}^{\left(u_{0}, \ldots, u_{m}\right)}\right\}=F_{j} \overline{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)} \text {-a.s. }
$$

and

$$
\boldsymbol{E}_{\bar{P}\left(u_{1}, \ldots, u_{m}\right)}\left\{Y \mid \overline{\mathscr{F}}_{u_{j}}^{\left(u_{1}, \ldots, u_{m}\right)}\right\}=F_{j} \overline{\boldsymbol{P}}^{\left(u_{1}, \ldots, u_{m}\right)} \text {-a.s. }
$$

Now suppose that $\mathscr{G} \subset \mathscr{F}_{u_{1}}$ is a σ-algebra for which there exists a regular conditional probability $K_{\mathscr{G}}$ of \mathscr{G} given $\mathscr{F}_{\mu_{0}}$ such that F_{1} is \mathscr{G}-measurable. Then from the definition of the measures $\bar{P}^{\left(u_{0}, \ldots, u_{m}\right)}$ we get

$$
\begin{aligned}
\int F_{1} d \overline{\boldsymbol{P}}^{\left(u_{0}, \ldots, u_{m}\right)} & =\int F_{1} d \overline{\boldsymbol{P}}^{\left(u_{0}, u_{1}\right)}=\iint F_{1} d K_{\mathscr{z}}(\omega, \cdot) \boldsymbol{P}(d \omega) \\
& =\int F_{1} d \boldsymbol{P}=\int F_{1} d \overline{\boldsymbol{P}}^{\left(u_{1}, \ldots, u_{m}\right)}
\end{aligned}
$$

and it follows that $\mathbb{E}_{\bar{P}\left(u_{0}, \ldots, u_{m}\right)}\left(Y \circ \phi_{m}\right)=\mathbb{E}_{\bar{P}\left(u_{1}, \ldots, u_{m}\right)}(Y)$. Thus we have proved that $\phi_{m}\left(\overline{\mathbb{P}}^{\left(u_{0}, \ldots, u_{m}\right)}\right)=\overline{\boldsymbol{P}}^{\left(u_{1}, \ldots, u_{m}\right)}$.
(ii) For the proof of the asserted stochastic integral representation we proceed as in (i). It is sufficient to consider martingales $\left(M_{t}\right)_{u_{1} \leqslant t \leqslant u_{m}}$ on $\tilde{\Omega}^{\left(u_{1}, \ldots, u_{m}\right)}$ which are of the form

$$
M_{t}=\mathbb{E}_{\tilde{P}\left(u_{1}, \ldots, u_{m}\right)}\left\{Y Z \mid \tilde{\mathscr{F}}_{t}^{\left(u_{1}, \ldots, u_{m}\right)}\right\}
$$

with Y and Z as in (i). If

$$
M_{t}=M_{u_{m-1}}+\int_{u_{m-1}}^{t} f_{M}(s) d \widetilde{B}_{s} \widetilde{P}^{\left(u_{1}, \ldots, u_{m}\right)}-\text { a.s }
$$

for $t \in\left[u_{m-1}, u_{m}\right]$, then it follows as in (i) that also

$$
M_{t} \circ \phi_{m}=M_{u_{m-1}} \circ \phi_{m}+\int_{u_{m-1}}^{t} f_{M}(s) \circ \phi_{m} d \tilde{B}_{s} \widetilde{P}^{\left(u_{0}, \ldots, u_{m}\right)}-\text { a.s. }
$$

(cf. part (4), (5) of the proof of Theorem 2.2 and part (3) of the proof of Theorem 2.5). Finally, the proof for the case $t \in\left[u_{j-1}, u_{j}\right](1<j<m)$ follows in the same way, and the lemma is proved.

Theorem 3.3. Let $\mathfrak{F}=\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ be a given right-continuous filtration on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Then there exists

- an extension $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{P})$ of $(\Omega, \mathscr{F}, \mathbb{P})$,
- an extension $\tilde{\mathscr{F}}=\left(\tilde{\mathscr{F}_{t}}\right)_{t \geqslant 0}$ of \mathfrak{F} on $\tilde{\Omega}$, and
- an $\tilde{\mathscr{E}}$-Brownian motion $\tilde{B}=\left(\tilde{B}_{t}\right)_{t \geqslant 0}$,
such that for every square integrable $\tilde{\mathscr{F}}$-martingale $\tilde{M}=\left(\tilde{M}_{t}\right)_{t \geqslant 0}$ there exists an $\tilde{\tilde{F}}$-progressively measurable function $f_{\tilde{M}}:[0, \infty[\times \tilde{\Omega} \rightarrow \mathbb{R}$ such that

$$
M_{t}=M_{0}+\int_{0}^{t} f_{\tilde{M}}(s) d \widetilde{B}_{s} \widetilde{\mathbb{P}}-a . s . \quad \text { for every } t \geqslant 0
$$

As a consequence, \mathfrak{F} has a predictable extension on $\tilde{\Omega}$.
Proof. It follows from Proposition 1.1 that we may suppose that \mathcal{F} is a discrete filtration, i.e. that $\mathscr{F}=\left(\mathscr{F}_{t}\right)_{t \in D}$ with $D=\left\{t_{n} \mid n \in Z_{+}\right\}$, where $\left(t_{n}\right)$ is a decreasing sequence with $\lim _{n \rightarrow \infty} t_{n}=0$. We set $\mathscr{F}_{0}:=\bigcap_{t>0} \mathscr{F}_{t}$.

With the notation of Lemma 3.1 we define

$$
\begin{aligned}
& \left(\widetilde{\Omega}^{(n)}, \tilde{\mathscr{F}}^{(n)}, \widetilde{P}^{(n)}\right):=\left(\widetilde{\Omega}^{\left(t_{n}, \ldots, t_{0}\right)}, \tilde{\mathscr{F}}^{\left(t_{n} \ldots, \ldots, t_{0}\right)}, \widetilde{P}^{\left(t_{n}, \ldots, t_{0}\right)}\right) \\
& \left(\bar{\Omega}^{(n)}, \overline{\mathscr{F}}^{(n)}, \bar{P}^{(n)}\right):=\left(\bar{\Omega}^{\left(t_{n}, \ldots, t_{0}\right)}, \overline{\mathscr{F}}^{\left(t_{n}, \ldots, t_{0}\right)}, \overline{\mathbb{P}}^{\left(t_{n}, \ldots, t_{0}\right)}\right)
\end{aligned}
$$

for every $n \geqslant 1$. From Lemma 3.2 we know that for every $n \geqslant 1$ there exists a measurable map $\phi_{n}: \tilde{\Omega}^{(n)} \rightarrow \tilde{\Omega}^{(n-1)}\left(\tilde{\Omega}^{(0)}=\Omega\right)$ such that $\phi_{n}\left(\tilde{P}^{(n)}\right)=\widetilde{P}^{(n-1)}$. If we use the same notation ϕ_{n} for the restriction of ϕ_{n} to $\bar{\Omega}^{(n)}$, then also $\phi_{n}\left(\bar{P}^{(n)}\right)=\overline{\boldsymbol{P}}^{(n-1)}$. This means that $\left(\left(\tilde{\Omega}^{(n)}, \phi_{n}\right)\right)_{n \geqslant 1}$ and $\left(\left(\bar{\Omega}^{(n)}, \phi_{n}\right)\right)_{n \geqslant 1}$ are both projective families of probability spaces. Now we define $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathbb{P}})$ and $(\bar{\Omega}, \overline{\mathscr{F}}, \bar{P})$, respectively, as the projective limits of $\left(\tilde{\Omega}^{(n)}\right)_{n \geqslant 1}$ and $\left(\bar{\Omega}^{(n)}\right)_{n \geqslant 1}$, respectively, in the sense of probability spaces. Again, we will use the same notation $\psi_{n}: \tilde{\Omega} \rightarrow \tilde{\Omega}^{(n)}$ and $\psi_{n}: \bar{\Omega} \rightarrow \bar{\Omega}^{(n)}$, respectively, for the canonical projections. Then

$$
\tilde{\mathscr{F}}=\bigvee_{n \geqslant 1} \psi_{n}^{-1}\left(\tilde{\mathscr{F}}^{(n)}\right), \quad \overline{\mathscr{F}}=\bigvee_{n \geqslant 1} \psi_{n}^{-1}\left(\overline{\mathscr{F}}^{(n)}\right),
$$

and $\tilde{\mathbb{P}}$ and $\widetilde{\mathbb{P}}$, respectively, are the unique measures such that $\psi_{n}(\widetilde{P})=\widetilde{\mathbb{P}}^{(n)}$ and $\psi_{n}(\bar{P})=\overline{\mathbb{P}}^{(n)}$, respectively. Furthermore, it follows from Lemma 3.2 that

$$
(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{P})=(\bar{\Omega}, \overline{\mathscr{F}}, \bar{P}) \times(S, \Sigma, Q)
$$

Now the filtration $\tilde{\mathscr{F}}$ on $\tilde{\Omega}$ is easily defined. For every $t>0$ we set $n_{t}:=\min \left\{m \mid t \geqslant t_{m}\right\}$ and define

$$
\widetilde{\mathscr{F}}_{t}:=\bigvee_{n \geqslant n_{t}} \psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{t}^{(n)}\right)
$$

where $\tilde{\mathscr{F}}^{(n)}=\left(\tilde{\mathscr{F}}_{t}^{(n)}\right)_{t_{n} \leqslant t \leqslant t_{0}}$ is the extension of $\left(\mathscr{F}_{t}\right)_{t \in\{t|j| j=0, \ldots, n\}}$ as defined in Lemma 3.1. For $t=0$ we set

$$
\tilde{\mathscr{F}}_{0}:=\bigcap_{n \geqslant 1} \psi_{n}^{-1}\left(\tilde{\mathscr{F}} \tilde{i}_{n}^{(n)}\right) .
$$

If $\psi_{0}: \tilde{\Omega} \rightarrow \Omega$ denotes the projection of $\tilde{\Omega}$ to Ω, then $\tilde{\mathscr{F}}_{0}=\psi_{0}^{-1}\left(\mathscr{F}_{0}\right)$, since by the definition of the spaces $\widetilde{\Omega}^{(n)}$ the σ-algebras $\tilde{\mathscr{F}}_{t_{n}}^{(n)}$ can be identified with $\mathscr{F}_{t_{n}}$.

Now we define $\tilde{B}=\left(\tilde{B}_{t}\right)_{t \geqslant 0}$ as the canonical extension of the Brownian motion B defined on S to $\tilde{\Omega}$. Then we know that for any $s>0$ and $n \geqslant 1$ with $s \geqslant t_{n}$ the σ-algebras $\psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{s}^{(n)}\right)$ and $\mathscr{C}_{s}:=\sigma\left(\tilde{B}_{t}-\tilde{B}_{s} ; t \geqslant s\right)$ are independent. Hence also $\tilde{\mathscr{F}}_{s}$ and \mathscr{C}_{s} are independent by the definition of $\tilde{\mathscr{F}}_{s}$. The independence of $\widetilde{\mathscr{F}}_{0}$ and \mathscr{C}_{0} is immediately clear. This shows that \tilde{B} is an $\tilde{\mathscr{F}}$-Brownian motion.

It remains to prove the asserted stochastic integral representation. Since

$$
\tilde{\mathscr{F}}_{t_{0}}=\bigvee_{n \geqslant 1} \psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{i_{0}}^{(n)}\right),
$$

it is sufficient to prove that representation for every martingale $M^{X}=\left(M_{t}^{X}\right)_{t \geqslant 0}$ of the form

$$
M_{t}^{X}=\mathbb{E}_{\tilde{\mathbf{P}}}\left\{X \mid \tilde{\mathscr{F}}_{t}\right\}
$$

where X is bounded and $\psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{t_{0}}^{(n)}\right)$-measurable. If X is bounded and $\psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{t_{0}}^{(n)}\right)$ --measurable, then we infer easily from Lemma 3.2 that for $X=Y^{n} \circ \psi_{n}$ ($Y^{n} \tilde{\mathscr{F}}_{t_{0}}^{(n)}$-measurable)

$$
M_{t}^{X}=\mathbb{E}_{\tilde{P}^{(n)}}\left\{Y^{n} \mid \tilde{\mathscr{F}}_{t}^{(n)}\right\} \circ \psi_{n} \widetilde{\mathbb{P}_{\text {-a.s. }} \quad \text { for all } t \in\left[t_{n}, t_{0}\right] ~}
$$

Let $f^{n}:\left[t_{n}, t_{0}\right] \times \tilde{\Omega}^{(n)} \rightarrow \mathbb{R}$ denote the progressively measurable function such that

$$
\mathbb{E}_{\tilde{P}^{(n)}}\left\{Y^{n} \mid \tilde{\mathscr{F}}_{t}^{(n)}\right\}=\mathbb{E}_{\tilde{P}^{(n)}}\left\{Y^{n} \mid \widetilde{\mathscr{F}}_{t_{n}}^{(n)}\right\}+\int_{t_{n}}^{t} f^{n}(s) d \widetilde{B}_{s} \quad \text { for } t \in\left[t_{n}, t_{0}\right] .
$$

Now we set $f_{X}:=f^{n} \circ \psi_{n}$ on $\left[t_{n}, t_{0}\right] \times \tilde{\Omega}$. If $m>n$, then Lemma 3.2 shows that

$$
\left.f^{m} \circ \psi_{m}\right|_{\left[t_{n}, t_{0}\right] \times \tilde{\Omega}}=f^{n} \circ \psi_{n}
$$

and thus we get a well-defined \mathfrak{F}-progressively measurable function $f_{X}:[0, \infty] \times \tilde{\Omega} \rightarrow \boldsymbol{R}$ such that, for $0<s<t \leqslant t_{0}$,

$$
M_{t}^{X}=M_{s}^{X}+\int_{s}^{t} f_{X}(s) d \tilde{B}_{s} \tilde{P} \text {-a.s. }
$$

From the definition of $\widetilde{\mathscr{F}}_{0}$ we get

$$
M_{t_{m}}^{X}=E_{\tilde{P}}\left\{X \mid \psi_{m}^{-1}\left(\tilde{\mathscr{F}}_{i_{m}}^{(m)}\right)\right\} \rightarrow \mathbb{E}_{\tilde{P}}\left\{X \mid \tilde{\mathscr{F}}_{0}\right\}=M_{0}^{X} \quad \text { as } m \rightarrow \infty,
$$

and it follows that

$$
M_{t}^{X}=M_{0}^{X}+\int_{0}^{t} f_{X}(s) d \widetilde{B}_{s} \tilde{P} \text {-a.s. } \quad \text { for every } t \geqslant 0
$$

Since this holds for every $n \geqslant 1$ and every bounded $X \in \mathscr{L}^{0}\left(\psi_{n}^{-1}\left(\tilde{\mathscr{F}}_{i_{0}}^{(n)}\right)\right)$, we get such a representation for every bounded $\mathscr{F}_{t_{0}}$-measurable random variable, and the assertion for the general square integrable $\mathfrak{\tilde { y }}$-martingales follows easily. Thus the theorem is proved.

REFERENCES

[1] K. L. Chung and R. J. Williams, Introduction to Stochastic Integration, 2nd edition, Birkhãuser, Boston 1990.
[2] I. Karatzas and St. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York 1988.
[3] M. Metivier, Semimartingales, W. de Gruyter, Berlin 1982.

Mathematisches Institut der Universität Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany

