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Abstract. Filtrations with the property that every stopping time
is predictable are of some importance in stochastic analysis, especially
in connection with the Girsanov transformation (¢f. e Chung and
Williams [1]). Presumably for that reason, S. Kwapien stated the prob-
lem whether any given filtration can be extended (in a sense defined
below) to a filtration for which every stopping time is predictable, In
this paper, this problem of Kwapien is solved positively: Any filtration
has a predictable extension.

The extension we construct has even the stronger property: any
square integrable martingale is a stochastic integral process relative to
a certain Brownian motion.

1. Statement of the problem. Let (Q, &, P) be a given probability space. If
¥ = (F)iz0 is a given filtration indexed by R,, we set as usual

F,i=\/ #.
tz0
Let &7 1= 4 (§) denote the family of all P-null sets of the P-completion of Z,,.
Then §& is called a standard filtration if § is right continuous and if 4" < %, for
all teR,. We will also consider filtrations § = (%),; indexed by a subset
I < R,. Such a filtration can always be naturally extended to a right con-
tinuous filtration § = (F);0 indexed by R,: If t = inf{sel | s > t}, we set

F = ﬂ Fs
s>t,5e]
and if inf{sel|s >t} >t (with inf@ = o0), we set
Fi=\ &
s5tael

in case of {sel|s<t}#@, and

Fi= N &

s>1,88f
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in case of {sel|s <t} =9. Sometimes, we will tacitly identify a filtration
(Fher with its natural extension (Fi)zo. For example, if § = (Feun
(0 < a<b <o) then (F1)», is just the filtration given by

F = #, for 0<t<b,
‘& for bt

Now suppose that § = (%7),» ¢ is a standard filtration and denote by 2 the
predictable o-field on R, x £, ie. the o-field generated by the (%)-adapted
real-valued continuous processes. A stopping time 7: € — R, is then called
predictable if

[]:={t o) | t(@)=t}eP
(cf. e.g. Metivier [3] for equivalent characterizations).

The following result is well known and not very difficult to prove (cf. e.g.
Chung and Williams [1], p. 30}

ProvositTion 1.1. Every (%)-stopping time is predictable if and only if every
(% )-martingale has a continuous version.

We will call a filtration § = (F )20 predwmble if every §-stopping time is
predmtabla

Let (3, %, P) be a second probability space. Then @ will be called an
extension of Q if there exists a map n: £ — @ such that z~ (%) = F and
n(P) = P. We will call = the projection associated with Q. f § = ()5, is
a nght continuous filtration on @, then a filtration §§ = (ﬁ )0 On the exten-
sion @ is called an extension of § if n ' (F)c %, for all t=0 and
Focn YFIv N, W = N (). For (F)e (I < R,), a filtration § = (F)zo
on @ is called an extension of (), if § is an extension of the associated right
continuous filtration § = (F:so of (Fher- Finally, if an extension § = (#);>0
of a filtration (%) is a standard filtration and also predictable, then § is
called shortly a predictable extension of (% ).

The aim of this paper is to prove the general result that every filtration has
a predictable extension.

Let us first show that this general problem can easily be reduced to a par-
tial problem, which looks a little bit more simple. Let us call a filtration (#),ep
on Q a discrete filtration if D = {t, | ne N} for a decreasing sequence (f,),1
in Ry. Then we have the following simple result:

ProprosITION 1.2. If every discrete filtration has a predictable extension,
then every filtration has a predictable extension.

Proof. Let § = (#F)»0 be a given right continuous filtration on Q. We
take a strictly decreasing sequence (t,),>; in R, with lim,., ¢, =0 and set
D = {1, | ne N}. Then we define 4,, := #, and 4, := &, _, for n = 2. By as-
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sumption, the filtration ® = (%,),p has a predictable extension & = (%)), on
an extension @ of Q. If ' = (¥}),», denotes the associated right continuous
extension of & on £, then obviously % < %, and hence

" (F)=@, forall t=0,
and also
‘ Gocn Y IV =a" Y F)v N
by the right continuity of §. Hence @ is also a predictable extension of §. =

2. The solution of the problem for a special case. In this section we solve the
problem for the very simple filtrations being of the form & = (Fpn
(0 € a < b < w). An essential ingredient of the proof is to make use of a Brow-
nian motion living on a different probability space. In the next result we collect
some simple properties of a Brownian motion which we need later.

Lemma 2.1. Suppose that B = (B} o is @ Brownian motion on a probability
space (S, Z, Q) and let (Z),»o denote the standard filtration generated by B.
Consider the Brownian motion (B,),<.<» restricted to the interval [a, bl and
define for a<t<b

4
Nr = I(b_ u)‘" 1/2 dBu:y

I3
By=Ny_g-ge-s» and Z;=2Zy 4 g.-s (for 0< s < o0).

Then B = (B),50 is a (Z,)-Brownian motion.

Suppose that & is a sub-a-algebra of X such that (B,),<:<p is @ Brownian
motion for the filtration (%),<.<p defined by 4, = 4 v Z, for te[a, b]. Then for
every square integrable (% )-martingale (M ),<,<p with M, = 0 a.s. there exists
a (%,)-progressively measurable function fy: [a, b1 x 8 — R such that

M, = { fu(s)dB; as. for all te[a, b].

Proof. By definition, the process (N,),<,<p is @ martingale with quadratic
variation [N] given by

[N1@®) = j'(ﬁ -u)” 1du--lug§ - {a<gt<bh).

1t follows that [B](s)=s for every s> 0, and hence B is a (£,)-Brownian
motion.

If (Ba<e<p is @ (%,)-Brownian motion, then the assertion on the represen-
tation of (%,)-martingales as stochastic integrals is probably well known (cf.
Karatzas and Shreve [2], Theorem 3.4.15, for the basic theorem), but for lack
of an exact reference we give the proof.
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We set B, = B,—B, for a <t < b and denote by (X}),<,<p the standard
filtration of the canonical ﬁltratlcn generated by (B)a<i<p- Then %, =4, v X}
for a<t<b and ¥, and X} are independent.

Now suppose first that Y is a bounded %,-measurable random variable on
S and that Z is a bounded ZXj-measurable random variable on S suoch that
E{Z|Z,} =0 as. Then

E{YZ|%}=YE{Z|%}=YE{Z|%;} for every te[a, b].
If (M,(Z))a<:<» denotes a cadlag-version of the martingale (E {Z|Z}})a<<ss

then it follows from Theorem 3.4.15 in Karatzas and Shreve [2] that there
exists a (Zj)-progressively measurable function g, such that

] i
M,(Z) = [gz(s)dB, = [ gz(s)dB,.
Hence we have
i
E{YZ|%) = [Yg,(s)dB, as. for every te[a, b].

Now let & denote the vector space of all ¥,-measurable random variables
on S of the form X =Y __ Y. Z;, where the Y; are bounded %,-measurable and
the Z; are bounded Z}-measurable with E{Z;| X} = 0 a.s. By linearity it fol-
lows from the above argument that

. .
E{X|%} = {fx(s)dB, as. for every te[a, b],

where fy is the progressively measurable function fy = E?:lﬁgzw

Finally, let M = (M,),<.<» be a given square integrable (¥)-martingale
with M, = 0 a.s. Then there exists, by a monotone class argument, a sequence
(X,) in & such that im X, = M, in I7(S, %,, Q). Especially, (X,) is a Cauchy
sequence and

:
E(E{Xn%}~E{X,|9)) = E[(fx,,(9—fx. ()" ds < E(X,,—X,)?
a
implies that there exists a progressively measurable function fy; such that
t
M, = | fu(s)dB; for all te[a, b].

Thus the lemma is proved. =

Remark. The second part of Lemma 2.1 gives especially non-trivial exam-
ples of predictable filtrations.
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THEOREM 2.2. Let § = (F o,y be the filtration on (Q, &, P) given by
Fo=1{0, Q} and F, = F. Then there exist

— an extension (8, #, P) of Q,

— an extension § = (F)so of § on @, and

— an §-Brownian motion B = (B),»o,
such that for every square integrable §-martingale M = (M), there exists an
§-progressively measurable function fyz: [0, 0] x @ — R such that

M, = EM+{ fii(s)dB, P-a.s. for all t=0.
1]

As an immediate consequence, &% has a predictable extension.
Proof. (1) First we define (2, %, P). We set simply

@, Z P):=T] (@ #.PIx(S5,2,Q) with Q,=Q for k>0.
kz0
If we denote by m, (k > 0), respectively ng, the canonical projections from
@ onto @, respectively S, then we will view & as an extension of Q relative to
the projection n = mg.

(2) For the definition of § we need some preparations.

(i) For every interval [27@*1 27 et N* = (N])3-t+ngr<2-» be the mar-
tingale defined by the Brownian motion (B);-m+n<i<2-» 00 S as described in
Lemma 2.1. We will identify every martingale N” on § with its canonical
extension (N7omng). It follows easily from Lemma 2.1 that for every N” the
hitting time 7" of {—1, 1} fulfills " < 27" as. and that for g, := N7 we have

Ple,=1}=P{e, = —1} = 1/2.

Moreover, Lemma 2.1 implies that the sequence (N"),»¢ is independent, and
hence also (g,).z0 is independent, ie. a Bernoulli sequence.

(i) For the definition of § we need also the following sequence (/,)u>; of
transformations y,: & — Q. For every n > 1 and every @& = ()0, 5)€ £ we
define

Yul(@)520, 5) = (@30, 9)

by setting
o {@ianr for j= Q2T L @2 2 and k=0,
77 l@j-gn-r for j= (2:.:4»1)2“ L k+1)2" 4271 1 and k>0,

ie. every ¥, interchanges the (2k)-th block of w/s of length 2"~ with the
(2k + 1)-st block. Every ¥, is clearly measurable and y, 0y, = Ids. Moreover,
since P is a product measure and every ¥, is defined by a permutation of the
coordinates, for any random variable X on & the distribution of X is equal to
the distribution of Xo,.
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With the aid of the transformations , we now define by induction for
every n > 0 a family £, of random variables on Q. Let # denote the projection
from @ onto [, @ Then we set

Ro:={XeL(D)| X =Zod for some Ze L°([] @)}

k20
Suppose that we have already defined %, for n > 1. Then we set
Rp:={XeL°(@Q)| X =Y+Youy, or X =¢,_(Y—You,)
for some Ye £°(2, a(#,-1))}-
Finally, for every n > 0 we define
Hyi= () Bw)-
mzEn

(i) Now we are ready to define the filtration §. For all t > 0 we set
f! =Ty ! (2, and gx = B,omg, so that B= (Ez}t%ﬂ isa (EJ*BI‘OW‘DJM motion
on (. We set
Fpi=HyvE, forevery t=1,
Fi= M, vE,  for te[270FD 277 (n 2 0),
and
ﬁg = ﬂ .%M;

>0

Then § = (%) is an extension of § if %, < o (#), where 4" denotes the null
sets of the P-completion of %,,. This will be later a consequence of the asserted
integral representation.

(3) For the proof of the integral representation we first discuss some essen-
tial properties of the filtration §.

(i) ﬁgwn = ﬁgw{n%uv'fz—n fﬂr E'Uery i 8 ; 0.

Proof. By the definition of § we have to show that

Hir VO BIVEyon=H1vEr-a  OF  0(R) S HpirVEs-n

Now, for any Ye #°(, o(#,)) the random variables ¥+ Yo, and
&,(Y—You,,,) are 5, , ,-measurable by definition and &, is £, - .~-measurable.
Since

Y = (Y + Y0l )+ (Y=Y 0 i)

Y is #,.,v E,-«-measurable.
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(ii) Denote by B"=(B})»2-wm+n the Brownian motion defined by
B' = B,— B, -t+1ny. Then %5-ws1y and B" are independent for every n = 0.

Proof. Every 4, can be written in the form
Ryi={X | X =3(Y+Yoy)+}e-1(Y—Yoy,) or
X =$(Y+Yoy)—}en (Y= You,) for Ye£°(o(®,- 1)},

and it follows that ¢ (%,) is {,-invariant. An easy induction argument — using
that o (%) is Y,-invariant for all n and that Y, 0, = ¥, 00, for all n, me N —
implies that o (%,) is even y,-invariant for every meN. By this observation it
follows now easily that

gz‘zu{hJ-n o G(«%ﬂ+ 1)Vf2wum~ 13} fﬂr ev&ry = 05.

and hence it is sufficient to prove that ¢ (%,, ) and B" are independent. We will
even prove by induction that ¢(%,) and £ = n5 ! (Z) are independent for all
n 2 0. This is clear for n = 0. So suppose that we know the independence for n.
We introduce the notation

ZY)=3(Y+ Yoy, )+3e(Y— Yoy, 1)
and
Z(Y)=4(Y+ Yo, )—3e,(Y— You,.s)

for all Y& £°(0(#,)). Now we take 4 random variables Y;, ..., Y, £°(0 (%),
a measurable bounded map F: R* - R, and a f-measurable bounded map
G: @ - R. For a shorter notation we set

Y=(%,... Y,
Z@)=(2(%),...Z(%) and Z(D)=(Z(Y), ... Z(Xa).
Then we obtain
E{F(z(D), Z(}) G}
=E{F(Z(¥), Z¥)) G 14~} +E{F(Z(¥), Z(1)) G 11, =4}
=E{F(Y, You,+1) G- Lp )} +E{F (Youys1, 1) G 1=y}
=E{F(Y, Yoy, O} -E{G- 1[anf~=1}}+E{F(?C"f”n+1s N} -E{G- L= -1}
(by induction hypothesis)
= E{F(Y, Yoy,+1)}-E{G} = E{F(Z(¥), Z(Y))} - E{G}.
The last but one equality is valid since
F(Yoynsr, Doy =F(¥, Yoyu.y),

which implies that F(¥, Yoy,,,) and F(¥Yo,.,, ¥) have the same dis-
tribution. Since the equation we have just proved is valid for all deN, all
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Yy, .. Y;€ L%(0(,), and all functions F and G of the above type, we have
proved that ¢ (#,) and £ are independent for all n > 0. Especially, 0 (%, +,) and
B" are independent for all n 2 0. &

(4) It follows from (3) that (B);», is an (%)),>,-Brownian motion for r > 0.
The second part of Lemma 2.1 now implies that for every square integrable
&-martingale and every r > O there exists an §§-progressively measurable func-
tion fi,: [r, o[ @ - R such that

H
M,—M, = j fiar()dB; as. for every ¢ >r.

Moreover, it is easy to see that for Lebesgue measure A

Jigr| ool xd = S (ﬂ@ﬁ)—as for u>r.

Hence there exists a progressively measurable function fiz: [0, o[ x@ - R
such that

4
M,~M,={fa(s)dB; as. for 0<r<t.

(5) By (4) it remains to prove that for every square integrable §-martingale
M = (M), the limit lim,_,o M,, which exists by the convergence theorem for
backward martingales, is necessarily equal to a constant P-a.s. Of course, this
constant can only be EM,.

Proof (i) For every n = 0 let (£),»,-« be the standard filtration of the

Brownian motion (B,—B,-.),5,-». Then we set
Do = fglm D= frih"'m
%;n SQOV'”V-@m and *@n:‘-}(‘nb X""Xn”&"'“l}—i (”g‘&@“‘@ﬁzn—*l)‘

 Therefore we have %, =\/ , (%,v%.).

{ii) Now we prove that for every n >0 and every X e ¥'(#,v¥,) the
conditional expectation E{X|#,-.} is &,V o (o, ..., £,~1)-measurable. It is
sufficient to prove “this for every X e %*(#,v %, of the form

X"—‘: Y.Zﬂi-*zoj

where Y is #,-measurable and the Z; are %, -measurable. We prove this by
induction. For n = 0 the assertion is frue since

E{YZ,|%5-0} = YE(Z) =: X
is %,-measurable. Suppose that we have already proved that
X0 Y= E{YZy...Zy—1 | F2-tn-1}
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is B,vole, ..., &-z)-measurable. Then we infer that
E{YZ,y...Z,| %}
=E{Z,E{YZy...Zy-1|F1-0-0}|Fs-n} = E{X""VZ,|F,-n}
= EJ(X" U+ X" Vo) Zyt+ep (X=X DoY) (En-1Z,)| Fo-n}
= (X" DL X VoY) E(Z,)
38 (XOT =X DoY) E(ey-1Z,) =: X
is 9,voleg, ..., &n—y)-measurable. It follows that X™ is of the form
Xx® ='§1 Y fileos - o5 Ba-1)s

where every Y, is #,-measurable and the f; are functions on {0, 1}". It is not
difficult to derive the exact formula for X, but for our aim the above structure
is sufficient.

(iii) The proof below is based on the following observation. If ¥ is 4,-
-measurable, then

Yoy 15 (ManX ... X Wgns1-1) " (Fon®...® Fyn+1_,)-measurable.
For the X™ above we therefore get
E{X®| %)} = EZXO+ XD 0, ) +1e, (XM~ XD 0,1 1)e, | Fo-nen}

an
= %(Xm‘i' x® OYpey) = Z (‘% (Y + }?:.z))‘fk(ﬁas cres Eg—1)s
k=1

where ¥ ; := ¥ and Y, ,:= Y 04, is independent of % ;. More generally,
one can prove by induction the following structure for

X(n+m3 L= E {X”ﬂ i =ﬁ2f—m+m)} == E {X ‘ ﬁz»m+m)}¢

For every k=1, ..., 2" there exists an independent sequence (Y ;> with
.1 = Y, such that

(1 o2m
X{H‘l’m) — z’ (iﬁ Z Y’hj)_ﬁz(ﬁog seny Bp— 1)1
i=1

k=0

By the strong law of large numbers we obtain

an ,
lim E{X|#-mim} = Y. (EY) fi(Eo, .-, £a=1) P-as.,
m=co k=0

and thus

E{X|%} = ;EJE(YP‘)EM‘(%, vees By—1)) = const = EX P-as.
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for every X € (8, v €,). Since F,, = \/ __ (B, v €,), it follows now by a stan-

dard argument that

E{X|%,} = EX P-as. for every Xe ¥ (%,).

n?ﬂﬂliI

Especially, we have proved that, for every square integrable §-martingale
M = (M !)!2 Oy

ﬂg = Eﬁn ﬁ"a.s.,

and the theorem is proved. =

Remark 2.3. An inspection of the proof shows that the filtration § only
depends on the given filtration and the Brownian motion B and not on the
special probability measure P. This will be essential in the following.

Suppose that ¥ and # are two sub-g-algebras of % Let us recall that
a regular conditional probability of # given % is defined as a map

K:Qx# —[0,1]

such that
(i) K{w, ") is a probability measure on 5 for every we(2,
(i) K(-, B) is ¥-measurable for every Bes#, and
(i) P(4An B) =j1A(m)K(a), B)P(dw) for A% and Bed#t.
If T is a Polish space with Borel field #(T) and if n: Q — T is a map such
that n~*(#(T)) = 5, then a regular conditional probability of # given
% exists.

Lemma 2.4. For the given probability space (Q, &, P) let (Q, F) be the
measurable space defined by

(ﬁn ﬁ) = H (Qkﬁ gﬁt)

k=0

with (@, #,) = (Q, F) for every k = 0. As before, we will denote the canonical
projections from £ onto Q,, by m,. Let % be a fixed sub-c-algebra of #. Then there
exists a unique probability measure P on § with the following property: For every
sub-o-algebra 3# of F, for which there exists a regular conditional probability
K, of # given %, one has

FE;?&Z* = Kﬂ’(mv ')%z". P(dm):
Le.

BT A) = [] Koe (e, 40 P (de2)

k20 k20

Jor every sequence {(Aplso in H.
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Proof Let @ denote the family of all countable subsets of ¥°(#) direct-
ed by inclusion. For ¢ = {X, | neN}e®d, a(¢) = (X,, X4,..) " (#(RY)), and
hence there exists a regular conditional probability K, of o(¢) under %. Fur-
thermore

F=\o@)= o

Pl e

If ¢ < o, then Ky4(-, B) = K, (+, B) P|g-as. for every Beo(¢). It follows that
the function

P: | a($)®% 10, 1],

ded
given by
Plogyoz. = Kylo, -)®%* P(dw) for ¢ped,

is well defined, and it is clear that P is finitely additive on the algebra
o=\ e o ($)®%+ which generates # ®#+, To prove that P can be (uniquely)
extended to a probability measure on & ®%+ we show that P is g-additive on
. Now, if (B,) is a decreasing sequence in .« with intersection @, then we may
suppose that B,ec(¢,)®%*, where (¢,) is an increasing sequence in . But
Y := | J¢, is again in &, and hence B,ea (f)®%* for all n. Since P is a probabili-
ty measure on o ()®%+, we have lim P(B,) = 0. This proves that P is g-additive
on o#.

Now let # be a sub-g-algebra of # for which there exists a regular
conditional probability K, of # under 4. If ¥ denotes the family of all
countable subsets of ¥°(#), then ¥ < & and, for every e,

Kl&('! B) == K.}?’( " B) P;@'a'sﬂa
and hence P| sz, = Ky (o, ")®%* P(dw) follows by the definition of P.

Remark. On the probability space (2, #, P) the kernel K. (-, -)®%+ is
- just a regular conditional probability of #®%+ under ¥ if ¢ is identified with

g ' (%).

THEOREM 2.5. Suppose that %, %, are two sub-g-algebras of # such that
Fo < Fy. Then for the filtration § = (F)eqo,1) there exists

— an extension (3, #. P) of 2,

~ an extension § = (F)so of § on G, and

— an §-Brownian motion B = (B).,
such that for every square integrable §-martingale M = (M), there exists an
&-progressively measurable function fiz: [0, co[ x @ — R such that

£
M, =M, +{ fia(s) dB, P-as. for every t 2 0.
13

As a consequence, § has a predictable extension.
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Proof. (1) As in Lemma 2.1 let (S, Z, Q) be a probability space in which
there exists a Brownian motion B = (B,),»,. We denote by (2}, the standard
filtration generated by B. As in Lemma 24 we set

@, F)= (@, F®%)
and denote by P the unique measure on (&, #) of the structure
| Plyoz. = Ky (@, -)®%* P(do)

- for every sub-g-algebra # — % for which there exists a regular conditional
probability of # under %,. Then we define
> @, F,P):=(0xS5, FRZ, PRQ).

(2) Let B = (B,),:.O be the canonical extension of B to &, ie. B, = B,oTs,
and denote by (2“);&?0 the canonical extension of (Z,),» ¢ to €. For the definition
of the filtration (% ;> below let us reformulate the construction in the proof
of Theorem 2.2. For a given g-algebra ¥ < % on Q we first defined by induc-
tion a sequence (#,(%))u>o of families of random variables on @G. Then we
defined a sequence (#,(@))z0 of sub-c-algebras of & by

jﬁq(@) =0 ( U *’gm (g))

mEn
Finally, we defined the filtration (£,(%))>0 — denoted by (#)»o in Theo-
rem 2.2 — by
E(B):=Hy(HVvE, forrz1,

EB):=H, (@) vE, for te[270FD 27 (n=0),
and

86(%):= () £.9).

>0

Then it was proved in Theorem 2.2 that (&,(%))>0 is an extension of the
filtration (% )ej0,1;, Where %o = {, 2} and ¥, = 4.

For the present theorem we now define the filtration € (%) = (éf; (90 by
&%) = Fov (%) for t =0, and, finally, § = €(F)).

(3) Now we can prove that B is an §-Brownian motion and that every
square integrable §-martingale has the asserted integral representation.

() B is an §-Brownian motion.

For the proof, for every 5 = 0 we set

Ey:=o(B,—B,; t > s).

So we have to prove that %, and %, are independent for every s > 0. Let us
denote by Z(%,) the family of all sub-g-algebras # < #, for which there
exists a regular conditional probability K, of # given %,. Then

Fy = {# | # eR(Fo)}
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and it follows that
' F, = o(&.(H); H e R(F).
Hence it is sufficient to prove that &,(#) and %, are independent for every
5= 0. Since &,(#) = F,v &,(#), it suffices to prove
PANBNCO)=PFAnBFO

for all Ae %y, Be &,(#) and Ce¥%,. Let us denote by K, (w, ) the probability
measure on (&, ), which is the extension of K 4(w, "), ie.

Ryp(w, )= Kgp(w, )?%*®Q for every wef.
Now Theorem 2.2 implies that
Ry(®, BnC) =Ky (@, B Ky(w, C) = K (0, BQ(C) (C =ns(0),
and from the definition of P we obtain
P(ANBAC) = [1,(0) [ 1pnc (@) Re (@, dd3) P (de)
= [14(@) Ky (0, BP(d0)Q(C) = P(4n B F(O),

which proves that B is an §-Brownian motion.
(i) We will prove that for every X e #*(%,,) there exists an §-progres-
sively measurable function fz: [0, co[ x 2 — R such that

(*) E{X|#}=E{X|%}+ f fz(s)dB, P-as.
0

By arguments as in the proof of Theorem 2.2 it is sufficient to prove this
for random variables X which are of the special form X = YZ, where Y
is a bounded (7mgX...Xmm_4) "  (FT?")-measurable random variable and
Z is a bounded ¥.measurable random variable for some s > 0. Since we
will work with conditional expectations relative to different probability
measures on (@, &), in the following we will write more precisely Ex{-|-}
for ﬁﬁle conditional expectation symbol if R is the relevant probability measure
on £,

Since F, = 0 (&,(3); # € R (Fy)), it is sufficient for the proof of equation
() to show that, for every # e Z (%), every Bed,(#) and Ae F,

(+4) J Ep(X\F}aP = | ([ fr()dB.+Es(R|Fo}) P

for a certain progressively measurable function fz. By the special choice of
X we see that Y is #§%*-measurable for some #, € #(Fo). So let # € & (F,)
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with # o i, be given, and suppose that A%, and Bed,(#). Then

| Es{X|#}dP = [ XdP = j jfdﬁw(m)l’(dw}

AnE AnB

= [ [ Eg ) {X | £,(#)} dK ¢ () P (dw).
AB
Now Theorem 2.2 (with the same measure K ,({w) on @) yields
Eg i (X1 €.(#)} = [ f3(5)dB.+ Eg (%) R (0)as.,
4]

where fg is €(#)-progressively measurable. An inspection of the proof of
Theorem 2.2 shows also that for every # one gets the same f;. Since

Eg,(X)=Es{X|%,} P-as.,
we have proved (#+), and hence (x) for our special X = YZ, and standard ar-
guments yield () for all X € #?(#.,). This completes the proof of the theorem. =

3. The solution in the general case. In this section we will prove that every
filtration has a predictable extension. The special case stated in Theorem 2.5
will be used as an important building block for the general construction.

LemMmA 3.1. Suppose that O<upg<..<u,<oo (m=1) and that
& = (Prctuo,...uny 18 the given filtration on (Q, F, P). For every (ky, ..., k)€ Z" we set

(ﬂh,.‘..,i‘:m; gg,'h;_,m,ﬂm} = (Q= ﬁ)
and
(g("""“'"’”}g g?,(na,,.mum)) = H (leu..,km’ q.’;«;:ku ..... km).
ks ren k) €2
For every te{ug, ..., u,} we denote further by F*=* the g-algebra #, in
Q¥-km_Syppose that we have already defined the probability measure Po»-n-2
on (Wortm=-1)" and that Q¥--*m=2 s identified with Q**m-29 Denote by

@( | @ | ﬁk; - 10)

Wy~ 1

the family of all sub-o-algebras # of @ g, pp-nF *m=10 for which there
exists a regular conditional probability K. of # given & Fkiikm=19 Then
Pliotim) is defined as the unigue probability measure on Qow-#m) su:ch that

P‘(’ug,...ﬂu.,,}lﬁ@h = Kxﬂ(fﬁg .)@an F(uu,m.um-ﬁ(d@)

(cf. Lemma 2.4). Finaliy, we set

Then there exists a ﬁltrazion
@(un,...,um} — ( {@jﬁm um})@ o
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on Qo) which is an extension of , such that for every square integrable
Flommlomartingale M = (M,),» o there exisis a progressively measurable func-
tion

foit [Uos ] x Glorim) _ R

such that, for every te[ug, t,],
¥
M —M,, = } fia(s)dB, Plo-mm_gg
iy

where B = (B, <i<u,, 15 an Z {orecttml) <~ Brownian motion (as a process,
B is just the canonical extension of (B st<un, to QUuotm)y - Fyupthermore,
M,=M,, for t <u, and M,= M, for t = u,,.

Proof. The assertions are proved by induction in m = 1. For m = 1 the
assertions are essentially proved in Theorem 2.5. The minor modifications will
become clear by the proof that the assertions are true for m if they are true for
m~—1. So suppose that the lemma is true for m—1 (m= 2).

(i) Let us first show that the probability space (o is in fact an
extension of (Q, #, P). As a projection map we take the canonical projection

Then = is surely measurable and it remains to prove that m(Pte-wm) = P,
Let X € ' () be given. There is a regular conditional probability Ky (-, )
of X given #,,_, = F %% and Ky(n(-), ") is also a regular conditional

probability of ¢(Xon) given & Fhikm-10 By the definition of Plo--tm
we get

[ X omdPor-m = [ [(X o m)dK y (m(c3)) Boo-4m-2) (dep)
= [[XdKx(w)P(dw) (by induction hypothesis)
= [ Xxap.

(i:i) Next we define ﬁ;”ﬂp-n-ﬂm) fort < U1 if @’(uu,mmm«ﬂ on ﬁ(xmy.mum =1 g
given. We denote by

T SE(“D"“'“"‘) s ﬁ{ng,..”um-l)
the projection map defined by
Lo ((w‘h""'km)‘mau....,kmaﬂs S) = ((wki""‘k"'”1’“)&@9,..‘.&..“1;0: S)-
Then we set

ﬁguu,--.,uml - ﬂ; 1 (ﬁguu...,.wmun]) for t < T

8 — PAMS 202
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(iti) Now, using Theorem 2.5 we define G fpovim) for t > u,_,. We apply
Theorem 2.5 with
O = ﬁiuﬂnmnum“l}s F' o= ﬁ(ummmmw)m P! = Plocctim- n)’

F = ® Flhiroikm=1 - G & gﬁ;-mkmw 1

Um— 1
k1200 hm-1 20 812 Miiskim =120

instead of (Q, &, P), %, #,. Moreover, instead of the Brownian motion
(BJo<:<1 which we used in the proof of that theorem for the construction
of (#)o<:<1 and the Brownian motion B, we now use the Brownian motion
B’ = (B)o<:<1 defined by

B; = 'Bﬁm—x+liﬁmmum~w for 0t L.

Then Theo_{ém 2.5 gives an extension (&', #, P') of (&, # P'), an extended
filtration (% })o<1<1 and an (#;)-Brownian motion (Bf)o<<: such that the sto-
chastic integral representation holds for square integrable martingales as stated

in that theorem. By definition, the probability space Q%% is the same as .
Hence, if we define
B’ = Bi""‘“mm 1) (ot~ 1) aﬂd gg?‘m-“s“m} = "g";!"’ﬂm‘- 11/t — then— 1) v EVMf— e

for Up_ 1 <t < Uy, then (B, _, <i<u, 15 20 (Flwormiml) < iu,~BrOWRIAD MO~
tion and for every square integrable martingale (M), _,<i<u, We have

t
M,=M,,_ ,+ | fals)dB, Pro*mas,

tha ~
Yy~ 1

for some progressively measurable function fiF. Together with the induction
hypothesis we have thus proved the assertion of the lemma. =

The next step is essential for the final result.

LemMMA 3.2. The probability space (W0 is an extension of G-, j.e.
there exists a measurable map

O Gloeatim) _y GJlene- i)

such that ¢, (Beos-tm) = Perssm)  Moreover, for every & "-martingale
(M )y <1<, the process (M, 0 Pulu, <t<u,, s an (F "), <<, -martingale and

W,0 6 = M0 bu | fir()0budBy  for telu, uy

uy

Proof. (i) We identify ((@t-tm) gF@1.-wm) with the measurable space
(Q&ukﬁi-nﬁklﬁ’ sﬁ'n!klh-;'lkfn}a

kaZz .0 km=0
and define ¢, QWortm) — Gutm) gg the canonical projection. Hence ¢, is
measurable and it remains to show that

b (E‘f{uﬂ..,.,gjm)} e Plteetim)
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It is sufficient to prove
j:Xd‘i’m (ﬁ(uﬂ,.mum)) = jfxdﬁzul ,,,,, om)
for all bounded % ® “.measurable random variables of the special form

X =YZ, where Y is ®y,50..4,.50F O*kmlmeasurable and Z is Z-measu-
rable. This means that we only have to prove

§(,Y0¢m)dﬁng,..‘.,um} — j' Y‘d?{ﬁj,.",ﬂm}w
Now we may suppose that there is a sub-g-algebra # < & for which there
exists a regular conditional probability K of # given # relative to P,

Yy = 1

and such that Y is @y, »0...4,.30 # S*2*.measurable. Then by the defini-
tion of P®o--#m we have
Epor..in { Y Oy, | F G0t} (‘(mk“""k’“" 2%, zo,...,kmao}
= [ Y0 bnd @K o ((cor-m=10)) (Pltorim- )
— j‘ Yd ®K” ((wOJm,‘m,kmu 1,0)9,
= Eptuseim { Y | F im0} (@h2eeerbm - £0)) (Pltrotimd_g g),

An easy induction shows that for every j = 1, ..., m—1 there exists a measura-
ble function

FJ: H (QOJ&:.;..,&J, ‘g,z:"?;ﬁiz....,kj) - R

k2 Z0,..,k; 20
such that
Eftuonsin { Y O Gy | Flior-td) = Fr; Pliowcsiim) g g,
and
Epa...on { Y| F&trtind) = F, Plticniim g g

Now suppose that ¥ < %,, is a o-algebra for which there exists a regular
conditional probability Ky of ¢ given &, such that F, is ¥-measurable. Then
from the definition of the measures Po--#= we get
[ Fy dP@ortm) = [ Fy P = [ [ F, dK g (w, -) P(dw)
= [F, dP = [ F, dP¥m)
and it follows that Egue.....un (Y O @) = Eft..em (¥). Thus we have proved that
¢)m(p[ug....,um)) = Pltieutiml

(ii) For the proof of the asserted stochastic integral representation we
proceed as in (i). It is sufficient to consider martingales (M,),, <, <y, On QW)
which are of the form

M, = Epr...u { YZ | F 1t}
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with Y and Z as in (i). If

t
+ | fuls)dB, Perimgs,

=~

for te [y, U], then it follows as in (i) that also

M,=M

By = 3

¥
M0¢n=M,,_0¢u+ | fu(s)od,dB, PUo-smas
Wi~ 1

(cf. part (4), (5) of the proof of Theorem 2.2 and part (3) of the proof of Theo-
rem 2.5). Finally, the proof for the case te[u;-1, ¥;] (1 <j < m) follows in the
same way, and the lemma is proved. =

TreoREM 3.3. Let § = (%)= 0 be a given right-continuous filtration on the
probability space (Q, %, P). Then there exists

— an extension (3, #, P) of (Q, F, P),

— an extension § = (F)so of F on O, and

— an §-Brownian motion B = (B);so,
sgch that for every square integrable §-martingale 4’!\5{ = (M), >0 there exists an
&-progressively measurable function fy: [0, cof x 2 — R such that

M, = Mo-a-ij(s)dg P.as.  for every t > 0.

As a consequence, § has a predictable extension on Q.

Proof. It follows from Proposition 1.1 that we may suppose that § is
a discrete filtration, ie. that § = (%)ep with D = {1, | neZ.}, where (t,) is
a decreasing sequence with lim,. 1, = 0. We set =) .

With the notation of Lemma 3.1 we define

t>0

for every n > 1. From Lemma 3.2 we know that for every n > 1 there exists
a measurable map ¢,: G — @01 (G = Q) such that ¢,(P™) = PV,
If we use the same notation ¢, for the restriction of ¢, to Q", then also
¢ (P™) = P"~Y), This means that (3, ¢,)),>, and (@, ¢,))s=, are both
projective families of probability spaces. Now we define (¢, #, P) and
(@, #, P), respectively, as the projective limits of (@™),5, and (3™),5,, re-
spectively, in the sense of probability spaces. Again, we will use the same
notation ;. @ — G and y,: & — G, respectively, for the canonical projec-
tions. Then

F =\ yi'(F"), F=\ 9 '(F",

LES LN
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and P and P, respectively, are the unique measures such that y, (P) = P* and
. (P) = P", respectively. Furthermore, it follows from Lemma 3.2 that

@, %, P)= (3, 7, P)x(S, Z, Q).
Now the filtration § on & is easily defined. For every t>0 we set
n=min{m |t > t,} and define
ﬁ‘;:m' \/ w;l(ﬁgﬂ)):

nEm

ma 3.1. For t =0 we set

Foi= () i *(FE)
nzl
If yro: @ — © denotes the projection of £ to Q, then F, = 5 * (F0), since by the
definition of the spaces O™ the g-algebras #{ can be identified with #,.
Now we define B = (B),5 as the canonical extension of the Brownian
motion B defined on S to Q. Then we know that for any s > 0 and n > 1 with
s > t, the o-algebras ¥, Y(F™) and ¥,:= o(B,—B,; t = 5) are independent.
Hence also %, and ¥, are independent by the definition of £, The indepen-
dence of %, and %, is immediately clear. This shows that B is an §Brownian
motion.
It remains to prove the asserted stochastic integral representation. Since
Ty = \/1 U H(F D),
it is sufficient to prove that representation for every martingale M* = (M7¥),»,
of the form

MF = Es{X | %},

where X is bounded and y; ' (# {¥)-measurable. If X is bounded and v, * (#")-
-measurable, then we infer easily from Lemma 3.2 that for X = Yoy,
(Y" F™.measurable)

M¥ = Egm {Y"|F ™} oy, P-as. for all te[t,, to]

Let ™ [t to] x ® — R denote the progressively measurable function such that
Ep {Y"| ) = Egin (Y"| FE}+ [ /7 ()dB,  for t€[ty, 1]
tn

Now we set fy:=f"0oy, on [t,, to] x €. If m > n, then Lemma 3.2 shows that

fmawm‘['zmtﬂxﬁ = fnc‘wns
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and thus we pet a well-defined H-progressively measurable function
fx: [0, 0] x @ — R such that, for 0 <s <t < 1g,

i
MF = M¥ +{ fx(s)dB, P-as.

From the definition of %, we get
MY = Ez{X | (FI™)} - Es{X | Fo} = M5 as m— o0,

and it follows that
|4
M¥ = ME+( fy(s)dB, P-as. for every t > 0.
a

Since this holds for every n > 1 and every bounded X € #° (¢, * (# ™)), we get
such a representation for every bounded &, -measurable random variable, and
the assertion for the general square integrable §-martingales follows easily.
Thus the theorem is proved. m
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