
PREDICTABLE EXmNSXONS OF G I m N  RLTRATIONS 

Abstracl. Filmtiem with the property that every stopghg t h e  
is predictabIs: are of some imporbce In slochnstic analysis, esp~ially 
in mnnection with the Girsanov tran.slormaXion (ef. a.g. Chuag aad 
wrilliams [a), Pmumably ibr that reason, S, Kwapieii stated the prob- 
Im whether any given Btration can be extend& (in a sense defined 
below) to a diltraGiian for which every stopping t h e  is px~dictable; ED 
&is paper, this problem of Kwapiari is solved positively: Any ettrrr~on 
has a prdictablr: mteasion. 

The extension we Gsnstruct hag even the stronger property: any 
sqcgnare integsable mar~n&ale is a stochasric integral process dat ive  to 
a arraila Brownian motion. 

I. Statement of the problem. Let I&?, 9, B") bc: a given psobabiGty space, If 
$J -- (&)taO is a given fdiltratiorz bdexed by R, ,  we set as usual 

Let ..N : = A!' (8) denote the Bmay of all P-n~sIl sets ;elf the P-enmpletiaa of SF@. 
Then 8 is czalld a straradrardfiltration if 8 iis right eent;iouous and il .N c fm 
dl E E R , .  We will also consider filtrations 8 = indexed by a subset 
I c it+. Such a atration can always be naturally ext~mded to a right con- 
d;iauotrs filtration = (S3t30 indexed by R + :  If t .= i a f i s~ l  [ s > k), we s t  

and if Inf{s~I  I s > t )  t ( ~ t h  3nf0 = a), we set 

in case of (sell s d r") +aI and 



in case of (S E I 1 s g L) -- @* Sometimes, we will tarlitly identify a fiitra$ion 
(b@J,,f with its natural extension (.F;)t30, For ex%mple, if" & -- (q),,lanb3 
(O < a a < b moo), then (,Fi)r30 is just the fil&ation given by 

Now suppose $that 8 - (&), ., is a swnd~trd filtration and denote by 4 the 
predictable a-field s n  8, x 8 i.e, the a-field generatd by the (&&adapted 
red-vdwd mnlrisluous pramsses. A stopping  me z: 5t -, P ,  is then called 
predictable if 

(d. e.g. Metivier C39i for equivalent charaetedz;Eliansf, 

I"be followkg result is weu hown and not very a~tllt to prove: (cf. e.g. 
Chung and WGms [I], p. 30). 

PRUPOS~TION 1.1. Every (@tbstappiag time is predictable if and svaIy ifeuery 
[Fg)-marti~gale has a c~tmtivauous version. 

We will call a filtration 8 - I (~ r ) tBC)  predictable I every @-stopping -time is 
prerlictable. 

Let (a, 8 be a seeaad probabdity spm.  Then a wi13 be called zn 
exxtelasiora of Sl if there exists a map n: a +Q such that x-'(b) c # and 
x($)l = B, We will rrr: the projection associated with 6. If 8 = is 
a. right C O ~ ~ U D D S  filt rat-ion .on 4 then a Mtration @ = (Rk on the exten- 
sion d i s  caued an mtension of @j if n-I c "6 for d t 3 0 and 
gQ I.- x-'(Fo) v s ,  $ - Jf{$], For (e)ld (6 ~f R+). a Htrilliotr $ = 
on a iis GZUG$ an exteasion of (@&& if @ is an extension of the assmiat4 Icight 
conthuou~ mtratio~l 5" - (.Fa,, af Finally, if an extension 8 =: (&)13 

of a fil~ration is a standard filtra~on dss prdictable, then $f is 
called shortly a predictabk externtion of (&;l)sr+ 

The aim of this paper is to prove the general result that. every mtratiotz has 
a predictaSsle extension. 

Lett us first show that this general problem mcrzin easily be; a-educed to a par- 
tial problarrr, which looks a little bit more simple. k t  us calf a filtration (St),, 
an $2 a di.liscrete filtration X D = {t, I n; E N )  fur s d e c r e d g  s4quence (t.,),&, 
in R ,  Then we havie the following simple msult: 

Proof, Let 8 =I tPt)rsa be a given right cantinugills hltrst~on on W, We 
take a strictly demeaing seyenznce (E,),, , in R ,  with lim,+, t, .= O a;& set 
D = (tll YE EM). Then uve define g,, r - mFm and gt, :== &n-, for a & 2 By as- 



sumption, the Elba.tio~11 Oj = (st$reD has a predictable ~xtension @ = [@i)rl-O On 

an ex tension 0 af $a. If 6' = (%:), , , denof@ the asso&ded right contitinuous 
extension of Q on b;Z, then obviously fi c. FJ:, and hen* 

and also 

by the right continuity of 5. Hence 6 is also a gradic-lable extension of $j* r 

2, The mlntP'om 5f t h  prabkm far a spdal  @as@. Ja this section we solw the 
problem fos the very shple filtrations behg of the form 5 = (q)reEu,bl 

(0 d a < b < m), An es~nt ia l  ingredie~t of the proof i s  to make use of a Brow- 
nian motion living on a merent probability space. h the next result we collect 
some simple properties of a Brownim motion which we need later. 

211. Suppose that B = (BtXaa is a Brownian motiota opl a probaba'ilr't-y 
space @,X, g) alad kt (Zrb2 I, denote the st;anclard $If;raEion generated by 62. 
Consider the Bratv~lian motion (Bt)(IG,,b res tr icd  to the iateroal &a, b[ and 
define for cs d t < b 

Then --: (Ba), a is a {Es)-Brswnia~z mh'on. 
Sappose that 3 is a &-@-algebra of 2 such that (B,), g ,  * is a Brownia~a 

m o t i a ~ f i ~  the w r a t h  (fg,),G,gb d~$nsd by Q1 = BvEtJbr  i f l a ,  4. Thenfor 
every sgtame iilr~grtabie (9,)-mrsrfirrqale (M,),,,sl, with Me = O n,s, rlzm exists 
u ($r)-prtlgurssiuefy measnrrable fcrraction fM: [a, b] x S -=+ R suck that 

Pr o of. By definition, tke process [Nt)aG,,b is a martingale with quiidrtttic 
variation CN] hjjven by 

f b-=-t 
[AT(t) = j ( b - ~ ) ~ ~ d t 4  = --lag- {rt 4 E < f i ) .  

a b-a  
111 follows that [B](s) = s for every s 2 Q, and heace: i s  a (2J-Bruwnizln 
motion, 

Sf (Bf),,,,, k a (%8S,)-ltPr~~ian mcr~oa, then the asserticsa on the represen- 
tation of {BJ-martingales as stochastic h t e g d s  is pmbatbly wll known (FF. 
Raratzas and Shravc [2], Theorem 3.4.15, for the basic theorern), but for lwk 
af an exact refesnce we give the proof. 



We set B; = B, - B, far a d t G b and denote: by $$ the standdrd 
Elrratian of the cma~eal  f"rltrli.tion gmerated by (BiS:lngl -C b .  Then g8 =. v Z"j 
far n 4 t G 6 aad @@ md Xi rare ixlhpendeat. 

Now suppose first that Y is a bounded ga-measurable random vat.iable an 
S and that 2 is a bounded Z"S-mesasurabl~ random vagah1.e on S such that 
E { Z  ] G", )- 0 a,s, Then 

B { YZ I gt] -- YE {Z ] 3,) == YE (Z  J Zf )  for every t E [a, b].  

If (M, d,, , denotes a cadlag-yemion of the martingdstle ( E  { Z  [ E:)),$, b, 

then it follows from Theorem 3.4.15 in Karatas md Shrew [2] that there 
exists a (Ef)-pregressively measurabIe fmction yz such that 

t 

E (V.2 1 9,) - f Ygz (s) dl?, ass. for every t E [as &I. 
n 

Now Pet :t denote the vector space of all gb-measurable randam varlablm 
on S of the form X - x:=, &, where the I; are baunded 3n-measurrrble and 
the Zi am bounded G-measurable with E Xb] = 0 a.s. By linearfty it fol- 
lows from the above agume!nt that 

t 

E { X  I 3,) - j fx (s) dB, a.s, for every t E &a, b] , 
CJ 

where & is the progressively measurable fm~tion jx = x= , K gz, = 

Finab, let M = be a given squaw intepable (%r)-mariieagde 
with ,Ma -- 0 a.s. n e n  there exists, by a monotone class argument, a sequence 
(XP,) in C s u ~ h  that Ern X, -. Mb in (3, gb, Q). E~;peC;ially, 4x3 is a Cauchy 
sequence md 

implies that there east8 a grogrcssivrzly measurable fnsa~lisn fM such that 
t 

M , - j f M ( s ) d B a  far all t ~ [ a , b ] .  
CI 

Thus the, Imma is proved. m 

Rem ark. The slrreond piat of k m a  2.1 dyes e s e a l l y  aon-trivial exam- 
ples of paredictabh filtratiuns, 



T ~ Q R H M  2.2. Let 5 = (KhE,,Ia,l) be the flitratiota orn (O, ,% P$) gium by 
Fo = (El? Q) a d  gX. = g. m e n  there exist 

- ar% extelasbn @, &@$ P) af Rg 
- an extension $j = ( f i ~ ~ ~  of 8 on 6, and 
- arz $-~retvnian mtion .@ {Bf)tZO, 

such that for every square integrable @=martingale = there exists an 
@ - p r ~ B r e ~ ~ i u e l y  maarable fmction fa: [0, caJ x a --, R s w k  that 

f 

M E  = * + j f ( 1  d a ,  for all t 3 0. 
0 

As an immdiate consequencer 5 has a predictable extensim. 

Proof. (1) First we deE"me (a, +@i"j, We set simply 

If we denote by n;k (k 3 t)), respe~tiveiy n,, the: ~anuni~sal projwtions from 
a onto Dk, respectively S, thien we will view 0 as an extension of D relative to 
the projection .~s =. E O .  

(2) For the defmition of @ we nmd some preparatiesns. 
ti) For every intervd C2"@"+'{ 2 7  let W = -m+ Z - n  be the mar- 

tingale defind by the PCrowxziaa motion (BJz - m + r j  & p ,  -. 0n S as desc~bed in 
Lemma 2.1. We will identify every narl-ingale Sll" on S with its catloaicaf 
extmian (M: a 4. It EOUDWS easily from Lemma 2,1 that for every N" the 
hittkg t h e  .e%f { - 1, I) fulfiUls z" < 2-" a.s. and t h t  for E, : = N7m we have 

Mareover, Lemma 21 implies that the squeace (NmIfiaa is indepndeat, a d  
heram dso (t:JIIB, is illdepedent, ice. a Bernoulli sequmce. 

fii) For the defiEitilon of 8 we n d  dse the following sequence j@,),31 of 
transfopmations &: d -* d For every n 3 t and wry ui = ( l ~ ~ ) ~ ~ ~ ~  S ) E  a we 
define 

$ M ( C f U j ) i 9 @ 3  3) = ( [@jl~%O, 3) 
by sating 

i.e. every $, interchange8 the (2k)-th black of m,"s of leirgtlh 2"-X with the 
/Zk 3- 1)-st block. Every $a SS d e d y  rneasurabh and $,o +a = Id$. MOPEOVG;~, 
since $U is sr product tneasure and every $, i s  d1:hed by a permutation of the 
corjrdhates, for my random vmiable 8 an d tQ@ &stribufion af 8 i s  equal to 
the dist~butisn of 2 o $,. 



With the aid ef the tr;rmforrnatians $, we now de3"inc: by induction for 
every n 2 2, a family g, af random variabbs are 0. Let n" denote the projection 
from fi onto n,,,P,. Then we set 

go:= { X E ~ ~ C ~ )  ir); I X= Z o #  for some Z E ~ O ( ~  A&)). 
R3o 

Suppose that we have already deb"xnexl gnml for n 3 1. Then we set 

Finally, for every ra 8 0 evt: define 

,en ;= o( tJ Bm). 
m b n  

(iiii) WOW WE are ready to define the flltsatioxn @* For aU t z O we set 
gg = E; [EJ and l?! = B, 5 ns, so that l? - (l!ft);X,, is a (st)-~rowniaa mobon 
on a. We set 

Then 8 = ($dta0 is rn atension of fj if .pa c D(.,-@), where # denobs the null 
~ $ 8  of the P - ~ ~ r n ~ d e ~ o n  of gm. This will be later a consequence of the asserted 
integral representation, 

(3) For the proof of the intepal representation we first discuss some essw- 
tial properties of' the filtration 8. 

(i) g 2 - n = S 2  t t I + t i ~ f ~ - v g f ~ f i ) ~  W ~ P Y  ~ 2 0 .  

Pra af. By the definiG-ion sf 8 we have to show that 

Now, for any YE So (a, CP (@,)) the random variables Y + Yo dl, + , and 
r, (P- l" s $ m ,  are ,-measwuble by definition and g i s  g2 ,-me;tsuf;dbr1e. 
Since 
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( i4 )  Denote by  B" --- (&)t3z-cncrl the Brownian mtion dej"i~acl by 
B: --. 4 - B2 - tm c X )  3Phen g2 - c, .+ r 1 anid F are independent for every 12 3 0. 

Psoaf. Every gn can be wrjtten in the form 

and it foBaws that ~(g,). is $,-invariant. An easy induction argument - using 
that c(Boj is $,-invariant for a91 n and that $, o $, - $, o lfr, for all n, ~ I E  1\J - 
implies that CT [BIJ is even $,-hsiant for every n% E N. By this observa.tion i t  
follows now easily that 

w "# 

F2-~n+r)(=~(Bn+i)~Z'z-m+~, for evesy n20, 

and hence it is sficient to grove that .rs(Bn2 md Bn are hdegendent. We wiU 
even prove by kducticm that a(@B) and Z" = x$'(Q are independent for all 
n 3 0. This is dear for n = 0. So suppose that we h o w  the independence: for n. 
We introdurn the notation 

for all YE 2" (LI. (9~). Now we fake d rmdom variables & , . . . , & E 2" (B (S$,S)r 
a measurable bounded n%ap F:  R"L ItBlt, and a 2-measurable bounded mag 
6: R. For a shorter notation we set 

Then we obbin 

The last but ooc quality iis valid since 

FCPQ$,*,% f 7 q b  ,, = -:F(f-, Po*,,,), 

which implies that ~ [ b ,  Po$,+s) and ~ ( f o $ , + , ,  P) have the fiarne dis- 
tgbution. Since the equation we have just proved is valid for all  EN, a,ld 



YIP . . .% & E 9" (s  {B!,)), and all functions F and G of the above type, vve have 
proved that cr(gR) and fl we independent for aW n 3 63, Espcially, CF(@,+ and 
L1" are independent for all n 2 0. rar 

(4) i t  follows from (3) that, (r%l).I:,, i s  an f&),,,-~roufnian motion for r =. 0. 
The second p u t  of Z R m a  2.1 now implies that for every squztre integrable 
g-martinae and every r r > there exists aa g-i-progressiveiy measurabIe lianc- 
tion fg,rr [r,  oo[ x d -+ iW such that 

t 

gr - &, = ($1 dB5 a,s. for every t > r* 
r 

Moreover, it is easy to see that for Lebesgue measure A 

f@,,[~,,m~xfi=fg*u (JOFI-a.6. for E r r -  

Hence these exists a pro~essivefy measurable function 32: tlf), a[ x fi + R 
such that 

I 

at-dp=jfM"(#)$&sas, for O - c r ~ t .  
I 

(5)  By (4) it r e m ~ n s  to grove that fat every quare integgrable @-mrrrtingde 
= ( @ J ~ ~ ~  the h i t  lirn,+,a,, 7Nhi~h exists by the convergence theorem for 

backward martingales, is newssarlly equd to a comtant F-a,s. Of colanes hiis 
sunstant can only be E@@. 

ProoS: (i) For every rs 3 O let (g';E),,,-, be the standard mtration of the 
Brownian motion (BE - B2 -,,I$ a - ,, . %en we set 

@M=Bov . . . vSa ,  and @n=(n,x . . . x  ;.iam-l)i-"fl~@==-@eFz--a)m 

Therefore we have = VB,, (EB. v Y). 
(ii) Now we prove that far every p12 3. md every X E . P ' ( ~ ,  vVII?, the 

conditional expeetation E (X 1 &f2 - ,) is .gn v n (cG, . . . , +em - ,I-meaurable. Et is 
suficieul to prove "Ibis far .every X E S' (@, v OF the: f8m 

where 1" 6s d,-meaurabie and the Zk are gk-measurable, We prove thh by 
hdu~tisn.  f i r  n = O the assar~on i s  true since 

i s  BH-measurable. Suppse that we have almady proved that 



is a,, v I P ( E ~ ,  . . ., ~,-~bme;i t~mble.  Then we ider that 

is O, v crbe,, . . ,, gm- l)-measurable. It follows that 2.t") is of the form 

where every & fk Bn-rneaurabie and the fk are fundions on (0, I)", It is not 
dficult ts derive the exact formala for x@), but for our aim the above structure 
is sacieat. 

(iii] The proof belaw is based on the following observatioa. Xf I" is gn- 
-measurable, then 

For the X'"' abave we therefore get 

where Xt1 :== & md :== &6$incl  is indepenolent of MOW generauy, 
one t-an prove by induction the followuving structure for 

For every iF; - I , .  . ., 2"" there exi.sis an hdependent sequenm (Uk,,;)j,l with 
Yk, such that 

By the: strong law of large numbers we obtain 

aad thw 
Z" 

E { x ~ & ~ )  = C ~(%)E(h(c:,, ..,, ~ , -~ r )=cons t  = E X  h . s .  
k = O  



for every X E 2' ( @ ~  v gnIgn). Since grn = VrtSQ (@# v qnjJ it follows now by a stan- 
dard argument that 

H {X I go) = EX .&a.s, for ewry X E 2' 

Egpedaslly, we: have prdvd that, for every square jntegrable g-matingale - ~ g d r a o ~  

and the thmsem is proved, r 

W emark 2.3. An inspection of the proof shows that the fiftra~on 8 aaly 
depends on the given Ntration and the B r a e a n  motion B and not an the 
spe~a l  probability measure P. This will be essen.tid in the followhg. 

Suppose that 9 and JP are two sub-@-algebras of $5 Let us maIf tkd  
n regular earaditiovral probabiirity of .&? gia/.e~s 9 ig defisled as a map 

s w h  that 
(i) K (a, . ) is a probabiiljlty measure on A? for every wl -E dl, 

(il) K (. , IE) i s  9-neasurabIe for every BE 8, md 
(ifi) P ( A  n B) = j l,(o)Ki(w, E1)P(dm) for A E B  aad BE%, 
B 1" is a Palish space with Bot-el field @ ( T )  and if E :  -, T is a map srrck 

that ~ - ~ ( a [ n )  = then a regular conditional probability of &? given 
exists. 

2.4. FOP the given pobabilitiy space (a, F, P)  I L " ~  (Q 91 be the 
mellsurablc space deJiplted by 

with (Qk, .Fk) = (a, S) j for  wery  k 3 0. As begbre, we will rde~~ote the caaonkcal 
grojectiamfiaun onto by n,. Let 9 be sapxed sub-s-algebra of$? TIER athere 
exists a unique probability mensure F on $2 with t h e f ~ l l a w i q  property: For ewerjp 
swb-u-al~gebra 8 of Ps f i r  which there csxists a regulav conda'risaal prsbahflisy 
M, of given $$ one lzas 

.%"( n Ah) = $ rI[ ExCa3 Ak) PfhI) 
kao k a o  

for every sequence (AKlka0 in X, 
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P r s a  f. Let @ denote the family of all cauntabIe aubsets of af0(F) direct- 
ed by inclusion, For &, = { X u  ]  EN) E @* @ (4) = ( X I $  XZ, . , .)-' (@((RN)), and 
hence there exists IP regu1&r ~~ndifional probability K& of a(& under 8. Fur- 
thermore 

9- - V @C#3 = U 4). 
,Ps* 

If Ej"E c @, then K @ ( - ,  l.3) = K ,  ( & ,  B) P ,-a.s. for every B E  ~ ( 4 ) .  It follows that 
the function 

E (J ~ c r ( + ) @ ~ *  -+ [a, $1, 
rPE@ 

given by 
Plfsr(1B82+:=K&(~,"@Z+P(d0>) for. &E@, 

is well defined, and it b clear that P is finitely additive on the algebra 
d = UdEa o (+)@x+ which generates c"~-. TO prove that P can be (uniquely) 
extended to a probability measure on FBZ+ we show that P is a-additive on 
_&. WOW, if (B,) is a decreasing sequence in d with Ister~ctiarr a, then we may 
suppose that B,E ltr f4JmZ+, where: i~ an increasing sequence in @. But 
$ : =: U$,, is 8g;ain in @% a d  hence B, E o (rJI)"- for all pa Since pis a probabilli- 
ty measure on a ($j@"+, we have lim gf(B,) = 0. This groves that pis a-zdditive 
on d. 

Naw let &! be a sub- algebra of F far which there exists a ~ g u l a r  
cors&tional probabiliiy K g  of X andzs Q, H Y' d~aotes the family of aU 
countable subsets af Ya(X), then Y c @ &nd, for every $ E 'P, 

and hencc i? j ,a, , = K,  (ia, jaja* deo (dm] follows by the definition of P, isa 

Remark, On the probability space [a, $?* kernel Ksf.l .jess+ is 
just a regular conditional prabbility of X@'" under 9 if 9 is identified with 
na' f9). 

' T F ~ R E M  2-5. Suppose that Ffl, arc: two ~ub-c~-aly.ebrus of F such that 
Ya c Fl. Thera for the jlfralioua 8 L= (Eh,InFIE there gxB&s 

- an extension (a, ,$, FPI) of 52, 
- an extension 8 = (.g),3, of 8 sa 4 and 
- aa @-~rawniaztn matim I? = /l?r)t 

such ~hatfrJr every sqeknre i~ztegrczble @-rnurtir~~u~c~ a = there exists aR 

$-pog~essively m%~asurcrbl~ bfufunctilo~z f#: [6, m [: x 6 -+ R S S U C ~  that 
I 

8, = B, c j # @  (sj dB3 kcd,s. f i r  euery t B 0. 
5 



Proof. (1) As in Lemma 2.1 let (8,  2, Q) be a probabiiiry space En which 
tlt%re exists a Brownian motion B = (B,),,o. We denote by {EI:)E30 the standard 
filtxatiorr. generated by B. As ia Lemma 2.4 we set 

arrd denote by P the unique measure on (a, $q) of the structure 

for every sub-Q-algebra r 9 for which tlzere exist5 a regular ~onditiond 
probability of X under *Foe Then we define 

(LZ)  Lee I? =r (Bt)f be the aaonical extension of B la a7 i.e. = Br 0 x5, 
and denote by (gJ, 2, a the hecanonical extension of {ZJ,. , to 6. f i r  the dcfi~li-tion 
of the filtration ( $ J ~ ~ ~  bdow let us refornulate the ~onlstraction in the poof 
of Tbeowm 2.2. For a given F-algebra 9 cz fl on L! we first defined by indue 
tion a squence (3n($))rrb0 aE families d random variables on d Then we 
defined a sequeuce (X,(9)!)),l,, of sub-cr-dgabsas of ,@ by 

$& (31 = ( tcJ Bifnl (gl)* 
mbr? 

Fiually, we dcfi~ed the fdtration (&r(8))tB0 - denoted 'Ery (%),,o in Tho-  
rem 2.2 - by 

$"t(9):=xo(%)vzt f o r t a l >  

: v  for t ~ [ 2 - ' " " ~ " 2 - " 6 C n 2 Q ) ) ) ,  

and 

Then i t  was proved in Theorer~~ 2-2 that (b,[Q)).,,, is an extension of the 
filts;ttioa (9JrHon wllese go = (a3 lJ) and QI = 9, 

For the present theorem we now define the filltratim &(9) -- (8tv",CB)S,a by 
$(@I - .Fa Q 8, ($1 fox t 3 0, and, finally, 8 - c(@l)s 

43) Now we can prove &at B is an @-Brownirtxt motion and that every 
square: integrable $-martingale has the asserted integral representzt.tioai, 

(i) If? is an @-&rownian motion. 
For the proof fat every s 3 0 we set 

So tva have: to prove that 4 and VI are indepndent for every .r 2 0. kt us 
denote by $4? (F0) the family of afl sub-cr-algebra .Z c .fi for which there 
exists a regular conditional probability K ,  of .iP dven So. Thm 



Hence i t  is su%denf to prove that R8(X) and W?, are hdepcnd~nt fbr every. 
s 3 5.. Since #$:,IH) = Po v gS(X), it 511ff"las to prove 

for dl A E +Fa, f4. E 8, (2) a d  C E EP,. Let us denote by zs (m, - ) the probability 
measure on (0, @), whi~h is the extension of KJla fa, ), i.e. 

K@(o, -)  = X@(W, - ) B z + @ ~  far every o~d2, 

Now Theorem 2.2 implies that 

and fmm the def~tlion of* P we obtain 

whicfi provw that & i s  an g-kownian motion. 

(5) We will prove that far every 2 ~ 2 ' ( @ ~ )  t h ~ r e  exists an $-progres- 
sively measur~ble: h c t i o n  fz: [O, cot x b -+ R such that 

By tarpmermts as In the proof of Tb.leorem 2.2 it is suIficient cu prove tfiis 
for random vadablrcs 2 which are of the spaid form ff  .= YZ, whem F 
is a boui~ded ( 7 ~ ~  x . . . x ~ ~ n - ~ ) - '  [FF2nJ-mea~~rable random variable and 
Z is ii bounded %s-measlwpable random trralriable fix some s 6, Since we 
will work with wnrlitiond ewp.ectatinns relative to diffe~nt probab&ty 
mmsuws on (a, $1, in the ffillluming we will write more prmisdy ER (.I-) 
for the conditional expectatisla symbol if W is &e relevant probabaity measure 
on a- 

Sinm & = cr(#t(X); :fl~#(*F~)). it iS slflcient lizr the prod of equalior~ 
(*) ta show thak for every E a [FOX every B a 8, (8) and A E .FO, 

for a mrt-gsrira: prlcrgsessivaly measumble function Jf. By the specid choia  sf 
2 we see that at Yis X $ z + - m ~ u r a b l e  for some E (Fo). So Iet X E @ (FD) 



with S 3 SO be given, aud suppose that A E Fo and BE gt (q. Then 

= 5 E K ~ o ~  {x I gt (x1) d g ~  fm) P (dCr)S- 
d B  

Now Thearern 2.2 (with the same measwe Ex(&) on @ yields 

where $2 is ~ l ( ~ ) - ~ r a ~ r e s _ s i w e I ~  mensurable. h impect-ion of the prod af 
Theora  2.2 shows also that for every X one gets the s m e  fz. Since 

Et*(.) IZ) =" &{g j $0) p-as., 

we have provd (a+), and heme (a) for our special 2 = YZ, and stmdard ar- 
@men& yield (*) for all X E Sf2  (gW). This colmpletes the proof of the theorem. m 

3 The t;~elagam im &e gemertll =sea In this sectian we will prove that every 
filtration has a prediaabla extmsion. The special .case stated in Theorem 2.5 
will be w d  as 3n hpartant building block for the gegenerd construlrtion. 

For elx?~.y t E (aaI = * ", urn) we deptr7te ftltrther by F:"i...rkm the cr-sigebra Ft ia 
ak~ ..., km . Suppse that we have atSwady EZ&ned the probditify mamure F('a9m=''Um-L3 
(la G<molleol...r~m- 1" ,Hnd ' ~ k t ~ . . . , b -  qiS fdgntijed with ~ A t , . . . ~ k * " -  ?*a Denate by 

@I @ p;;;;;km- 1,O) 

{k~ , * , . ,k , -  tIeZ":&" 

she family of all .mb-a-algebrcrs S? of Q tk ,..., km - $ k l ~ . . = * k ~ - ~ ~ o  ,jfor which tlzere 
exists a ~ e g ~ l a r  cundiEiona1 probability K, of JP gs'wen @ Pf;:$m-lsOs Then 
pt~ituo,....u,f 1s - deBrzed as Ishe unique p~obabitiry m a w e  on Q r U o = s ~ - z U m F  snrela that 

jR8for. ..s!4m) I Hag, -- K~ (*-j, .3i@Z+ F ~ o ~ . . . ~ u m - f f  (d&) 

(cf. Lmma, 2.4). Finally, we set 
 fit^^ .,... u , ~ ]  $!{RQ.. . ..& ~ { S B U  .,... UM)) : = (@~o....~~rn) $4@0.- . .  ,urn) jfShr~(~~,. . ..lint)) 

r I I 9 ~ ( $ 3  E, Ql* 
Then there exists a filpakicm 

@two p . . . *  ua,,)= @#D wml i#?., It30 



O P ~  ~("u~-* ,umb)l  which is an extet~sion of 8, such that for euesy square itacegmble 
~~"ox~~-~"vn-"-mav~i~gr;l~e .@ = (-R;ir)t30 tkme exists a progressiaely measwabls ftme- 
tion 

bj~ch that, for euery e E [uO, u,j, 

where .-e = -Q$hIO G t 4 w,, 
is an ,ygfwc ..., urn '),,6,6Um-Bm~nian motion (0s a process, 

B" is jw.sr the canovaicd extelasi~pz of (BJuoGr6rr, $0 a[i'("8,‘~..umf). F ~ ~ t h e s m ~ r e ,  
kit -* for t 6 a60 a d  Kit = &It,,, for t 3 uu,,. 

Proof  The assertions lare proved by induction is PPI 2 1. For r?z = 1 the 
assertions are essentially proved in Thearm 2.5. The minor modifications will 
become dear by the prosf that. the assertions are true for m if they are true for 
m- 1, So s;uppose that the l e m a  is true far m - I (ma 2). 

{i) Let w first show that the probability space a4'iot.n.v"m" is in f a ~ t  aa 
extension of (52, F, gD)i. As a pajectierra map we take the canonicial pjectiaion 

X :  f i ~ w ~ ~ . = - , r r ~ ~  -+ 52a = Go~o~-b .~o  (0, 0, . . ., 0 Em+ l times)). 

Then n: is surdy measurable and it rem&s ta prove that . n ( ~ f g o ~ * ~ - . " ~ ~ ) )  = P. 
Let % E -9' (#--) be given. There is a regubr csditiouaf probability Mx ( =, . ) 

O"O,,..,O X given Fsm - = gBm-, and KX(7t (-1, - ) is  also a regular coindi~onal 
probability of a {X B. lr) given @ ~ i ; ; : ; ~ ~ ~ -  "' By the definition of Pf"".---"m, 

we get 

= j X ~ K ~  (ir) P Ida,) [by induction hypothesis) 

Sinw X was al;bitrary? we haye proved E(P~'Q,...-"~" )= P. 
(6) Next we define t$jrca,..-'m) for f G if @noE...,urn- if On ~ I t l ~~~ . . "~  - I I  iS 

&iiven, We denote by 

Ehc pmjectian map defined by 

Then we set 

8 - PAMS 2t.2 



(iii) Now, using Theorem 2.5 we define #ps-**l"m) for t > %, , , U7e apply 
Theorem 2.5 with 

. $3 , $F(wo~...~u,~ - 11 p) -. j3@o..-~.rc~- rl 
7 Si 7 

instead of (0, FIX Po, Fj, Moreover, instead of tbe Brownian moltion 
(BJOQIGa. which we used in the proof of that theorem for the csnstrvcdon 
sf (.g), ,, , , and the Bxromim motion g3 ;,we now use the Brownian motion 
B' = I&), 1 defined by 

& = B ~ ~ ~ - ~ + ~ t i ~ - t t ~ - ~ ~  for Og t G 1. 

Then Theorem 2-5 gives an extenslorx (a, @: P) of (a', 8: P'), an extended 
filtration (&)OStg , and an f@:)-~rownian motion (a, such that the sto- 
chastic integral representation holds for sgum integrable marthgales as stat~d 
In that theorm, By definition, the grabability space ~ ~ u 5 ~ . m . , " m " ~  the same a8 a. 
Hence, if we define 

o " t ~ ~ . . * . , ~ m  for urn-, 6 t t M ~ , ,  then ( ~ l l u m - l ~ t c w , ,  is an (2, "),,m-, s , _ c , m - B r ~ ~ i a n  mo- 
tion and for every sware integable rnartingde (#g)w,- glcu, we Rave 

1 

&c = #,m-, -c- 1 fg (s) Pfffh-~"m)-a.s. 
tcm - 1 

for some progressively meamable Eunction fg. Toge:ethcr with rhe induction 
hypothesis ssre have thus proved the assertion of the Iefafna. pa 

TFhe next step i~ esgential for the t"sna1 result, 
LEMW 3-2, '1~"k p ~ ~ $ & i l i t y  s p a e  d ~ l x a = - - - ~ u m )  is a~ exreptsion cf dEY"'*.'""{ i.e- 

there exists a metasw~aB6e map 
4, : 6'"llr - ..."rn> + f$u~,.--."m) 

ftl 

1 

@ t ~ 4 b ~ ~ ~ ~ ~ ~ 4 ~ + j d ~ t ~ ~ ~ 4 ~ ~ ~ ~ ~  f o r t ~ I ~ i r % l *  
u1 

P r 0 o E (i) We: icfcntgy 3 wi tb the measuraltlEe space 
fl ( ~ B , k 2 , .  ..k,, '$-otkzt~".*km 1 2  

k230, hbtkPW2 0 

and define $,,I @ u @ v * * * s u ~ ~  -+ @tlir-.r,UmJ as the ~ a a a ~ ~ a l  projection. Hence 4, i s  
mneasurable md it rema& to show that 

4 (pt~~,-...%trl) , ~ f 4 i i . - . - . ~ m S ,  
In 
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for all. bounded  measurable random variables of the special form 
X = YZs Y i s  @kza @,.. .,k, 3 0 P @ ~ . ~ ~ ~ ~ * ~ ~ ~ - m e a s u r a b 1 e  aad Z is 3;'-measu- 
rable, Th is  ,ems that we only have to prove 

Now we may supwse that there i s  a sub-&algebra 8 c 9 for which there 
exists a regular codition4 probability K* of A@ given StrBn-, rdative ta Ps 
and such that Y is O,,,,,k, a ~ ~ o ~ k 2 ~ . - ~ ~ k m ~ - m e a ~ ~ r a b i e e  Then by the defini- 
tion of P@o-.~-p"m) we have 

E P w p . . ~ , ~ )  (Po 4, 1 8 t 2 y ; 3 u m ) )  ( ( a k l * - ' t k m -  1,' I,, L~o,..,,,,,o) 
= 9' y04,d @ ~ ~ ( ( ~ l e i ~ . . . ~ R ~ - ~ , ~ ) )  ( p s o  .... ,urn)_ a.s.) 

, 1 y-d @ K ,  ((wa.k2' .... h- 1.0 3$ 
= EBf,,, ,,,,,, { n;. I FeI:;.tuml) ((mk2*--+km - "0)) (~~ulLw--"m)-a,s,),  

An easy inducti~n shows that for every j = I ,  . . ., m- 1 these exists a measwa- 
ble function 

JlJaw suppose that 9 c Fwl is sr @-algebra for wkcb there exists a regular 
canditioad probabiiity K ,  of D @;iuen .Fun S U G ~  that PI i~ $-rnea~~~.able~ Then 
fram thc definition of the measures F~'a~---~"m".~ get 

(il) Far the proof af the asserted stochastic htapgral representa~an we 
promed a8 iia (i), lt is sraff~cient to consider martingales [ML);,, ,,,, $m.=..'rr,~ 

which are of the farm 



with l' and Z as in (iS, If 
t 

Mt = Mum, .- 3. fM(s) dB8 Fur *..-,umkav~. 
% - a  

for . t ~ [ u , - , ,  u,], then it follows as in (i) that also 
f 

Ml o 4, = Mil,, - , o 4- fM (s) o dBs ~ ~ U a s - * . v U m ' -  a.8, 
Urn - I 

(cf. part (41, (5)  of the proof of meorem 2.2 and past (3) of the proof of %boo- 
rem 2.51. FinaUyl the proof for the case t . ~  EE+~, b ~ ~ ]  (I < j < m) fallows i~ the 
same way, md the lemma is proved. E 

TWEOAI~M 3.3. Let jJ = (&I, a be a given right-continuaus filtratian o?a the 
probability space (a, 9, P).  Thela thesere exists 

- apz ~xte~siora {a, @, ;")of (a, iF$ PI, 
- an extensdon = (#$t3a of 5 on a and 
- Q Y ~  $=&-~rawnian Pnota.on +@ -- (Bt),, ,, 

such that f i r  ewry square i n f e ~ d l e  $-martingale -f (&r)t there exists nw 
&r~~ressiue!j~ merasmable function f,g: LO, WE x a -+ R such that 

As a consequence, 8 has a predictable extensiom on fi 
Proof, It follows from Proposition 1.1 tkat we may suppose that 8 is 

8 discrete filtration, i.e. that 8 = with D =: ( t ,  1 n E Z, f, where (f,,) is 
a decreasing mqumce with limn,, t ,  = 0. We set Fo : - fl,, , @, 

With the net&ion of Lemma 3.1 we define 

for every ra 3 1. From Lemma 3.2 we know that for every ~ 1 5 s  f there ekrjts 
a measwaMe map 4,: @- " )d('" -+) such that 4, (PCR" = pt" " 

If WE use the sam notation 4, Pbr eke restrichon of ,P,, to 8@)7 then also 
r j ,  fPtn') = P-". Tbjs that ((ai'"', pin))Bb and ({at"",dL3 ,_are bath 
projective families of probability spaces. Now we define (a, F3 8 axid 
(a, @? F)? respe~~vdy,  as the prcljectiut: limits of  ST'"'),^^ and (%2cBJ],,,,, re- 
spect_ively, in the sense of probability spaces. Again, we will ws;f: the same 
notation Ifi,: fi -=+ fitn) and $,: -+ a("), respc~vely, for the canonical projec- 
tions. Then 



and Y md Ps rrespectivefy, arc the unique measures such &at $,(R = pFJif and $,(n = pj), r~pecti~e3y. Furthemore, it follows from L e m a  3.2 that 

Now the filtration ff oa & is. esisily deftned. For every I r 0 .we: set 
n , : = d f m  ) 2 2 t,) and define 

where @'("I - ($?f)tn6tG,, is the extension of ($),(rili=07~~sq,S ;ts dehed in Lem- 
ma 3.1. For e - O  we set 

If fi -, Q denores the projection of 52; to 9, then Po = $& (So), since by the 
definition of: the spaces the  algebras @ t h e n  be identzed with 

Now we d&ne = (fit),,, as the cmo-ical extension af the Brownian 
motion B defmed an S to a, "6laen we knew that fcrs any s > O and a 3 1 with 
s 2 t, the n-dgebras (#PI) and. %', : = (a (&- ga; t 'Ss s) %re indepmdcnt. 
Henm also @$ and %?, are independent by ttze definition of &. The indew- 
dencc of go and is imedktely clear. This shows that fi is an 8-i-$rowni;lul 
m o ~ o n .  

It rem&s to prove the asserted srochastie htegal representa~on. Since 

it i s  suficlient $0 prove that representbioa for every martiogde Mx = (M3 
of the farm 

where X i c j  bauaded and q, . (#~ l ) -m~asw~bl~ .  If X is $almsid ~lnd IJ,; ' (#f:k) 
-meatxmb1e, then we infer easily f r ~ m  La 3.2 that for X = lin" o $, 
(1'" .pj:l-mcasurable) 

Let f [tn, t,] x f"cwl -, R &note tlke propashely measurakrle fw~~satl such that 

NOW we set f;i := fno*, aa ItN, to] x a. ld" m > n, tl-ren Lemma 3.2 shokvs that 



and t bus we get a well-defined g-pragr:sessively measurable fuunctio~ 
Jrx: LO, m] x 0--9 R such that, for 0 < s < t G to, 

I 

Iw,X= ~f +j&ls)dis; dTi-a.8. 
S 

From the defin-ition of we get 

M ; T ~ , = E ~ ( x I $ ; ~ ( ~ $ ~ ~ ) ] - + . ~ F ~ u ( x I $ ~ ~ = M ~  as m-+c;o, 

and It folltlws that 
I 

M f  = Mg -c- 1 fx (s) dB, F-ass. for every t 3 0. 
Q 

Since this holds for every n 2 1 and every bounded X E 2' ($, (@$)), we get 
suck a representation far every bounded &,-measura~e random vanable, 2nd 
the assertion for the general square ;integrable @-mart.ingdes fafollows easiky. 
Thus the theorem is proved. ea 
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