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Abstract. In this paper we investigate properties of R-GARCH
processes with positive strictly stable innovations. We derive the un-
conditional distributions and analyze the dependence siructure. This
analysis is carried out by means of the measure of dependence — the
codifference — which extends the behavior of the covariance function
to situations where the covariance function is no longer defined. In the
case of R-GARCH (1, 1, 0) process we determine the exact asymptotic
behavior.

1. Introduction. Linear processes do not capture the structure of financial
data. Therefore, GARCH-type models have become popular in the past few
years as they provide a good description of financial time series.

The class of Generalized Autoregressive Conditionally Heteroskedastic
processes of order (p, q) (GARCH (p, q)) was introduced to allow the condi-
tional variance of a time series process to depend on past information. GARCH
processes are non-linear stochastic processes, their distributions are heavy-
tailed with time-dependent conditional variance and they model clustering of
volatility. The details about the pmpr:rtnes and applications of GARCH models
can be found in [1] and [2].

However, the way that GARCH models are built imposes limits on the
heaviness of the tails of their unconditional distribution. Given that a wide
range of financial data exhibit remarkably fat tails, this assumption represents
a major shortcoming of GARCH models in financial time series analysis. Some
attempts were made to develop GARCH-type models, which can describe time
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series with remarkably fat tails (see, for example, [7], [5]). The class of Ran-
domized Generalized Autoregressive Conditionally Heteroskedastic (R-GARCH)
processes was proposed in [4] and applied in [8]. Such processes, with con-
ditional variance dependent on the past, can have very heavy tails.

We start Section 2 with the definition of R-GARCH processes, discuss
their conditional distributions and we note that this class of processes is very
flexible as it includes ARCH and GARCH processes, de Vries processes and
discrete versions of subordinated processes as special cases. Results concerning
the R-GARCH (r, p, 0) process with positive strictly stable innovations are
presented in Section 3. For example, we derive the unconditional distribution
of the process, and then we show that this process is stationary symmetric
a-stable. As the covariance function does not exist for such processes, in Sec-
tion 4 we investigate the dependence structure using another measure of depen-
dence — the codifference. We show that the codifference tends to zero at least
exponentially, and in a special case — the R-GARCH(1, 1, 0) process — we
determine the exact asymptotic behavior of the codifference.

2. R-GARCH processes

Dermation 2.1. The Randomized Generalized Autoregressive Conditionally
Heteroskedastic process of order (r, p, 4) (R-GARCH (r, p, q)), where r, p, geN,
is defined by the equations

Xﬂz'ﬁ;gu, ﬂzﬂgil, iz,”.,

I ] g
(21} hn= z 9}’7!1“3’"}‘ Z d’jkw*j+ Z WJX§~_?$
i=1 j=1 =1
where
r=1,0,>0, 0,20, j=1,..,r—1,
p>0,¢,>0, ¢;=0, j=1,...,p—1,
g=20,y,>0, y¥;=20,j=1,..4-1,
id.d.

the innovations e, are ii.d. standard normal random variables (g, =~ N (0, 1)),
the innovations #, are positive iid. random variables and {e,} and {»,} are
independent.
The equation (2.1) can be written symbolically in the more compact form
hy, = @(Lyn,+@(L)h,+P(L)XZ, n=0,=+1, +2,...,
where @, @ and ¥ are the r®, p™ and g% degree polynomials
@(z)=0,z+6,2% +...+6,2,

O@2) = drz+ G2 +...+ 2", Pl =diz+y22+...+if 2%
and L is the backward shift operator defined by

EX,=X,.;, Hhy=h,y, En=m,; Jj=0,%1,+2,..
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Basic properties of R-GARCH processes are discussed in [4]. Let us recall
that the conditional on %,_, =0{g, 0 s<n-—1,5€Z}, n=0, +1,+2,..,,
distribution of X, is Gaussian:

X 1 -1 ~ N0, h).
This means that the conditional expectation E(X,|%,-,) is constant and it is
equal to zero. The conditional variance is, in turn, not constant but it depends
on the past:

Var(X, | #,-1) = E(X?% Eg;wn) = hy.

In the R-GARCH process the conditional variance h, depends on the past as it
is specified as a linear function of past innovations #,—y, ..., #a—,, lagged con-
ditional variances h,_,, ..., h,— ,, and squared past observations of the process
X2 .., X2,

The class of R-GARCH processes is a relatively large class which includes
ARCH and GARCH processes, discrete versions of subordinated processes and
de Vries processes as special cases. However, not every process with condi-
tional variance dependent on the past belongs to the class of R-GARCH pro-
cesses. For example, the HARCH(k) (Heterogeneous interval, Autoregressive,
Conditionally Heteroskedastic} process with k > 1, proposed in [3], differs
from all R-GARCH processes.

3. R-GARCH processes with stable innovations. If the #,’s are stable, then,
on the one hand, methods usually used when the second-order moments exist
cannot be applied but, on the other hand, it is possible to obtain some in-
teresting results about unconditional distributions of R-GARCH processes.

All relevant properties of stable random variables and processes can be
found in [6]. Let us recall only a few facts that are important for the rest of the
paper:

e The characteristic function of a stable random variable Z ~ S.(a, B,
is given by

exp {- o* |E (I —ifi(sign &) g %.E) + i,u&j} if a1,
Ecxp{i£Z} = |
2 . ‘ , .
exp{mﬁifl(l+iﬁ;t—(slgll &)in 55{)+iﬂf} if a=1,

where «e(0, 2] denotes index of stability, ¢ >0 — scale parameter,
fe[—1,1] — skewness parameter, and ueR — shift parameter.

e Z~ S, (o, B, p) is symmetric if and only if § =0 and p=0.

e If Z, and Z, are independent random variables, Z; ~ S, (o;, 1, 0),
i=1,2,0<a<1, and ay, a; 20, then

ay Zyva,Z, ~ 8, ({{ﬂl o) +(a; Gz)“)ug: 1, 0)-
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o The Laplace transform Ee *2,y>0, of the random variable
Z ~ 8:(0,1,0), 0 <a <1, equals

| o”
E “vZ S —
¢ cxp { cos (me/2) Y }

In this section we consider the R-GARCH (r, p, 0) process with #,’s strictly
stable random variables totally skewed to the right, i.e. we assume that

N 2
(3.1) Hi ™~ -dfg (2(@‘}5%) s 1,.. O)

with 0 < a < 2. This means that the index of stability of #, is smaller than one,
and thus the first moment of #, does not exist. The choice of the scale parame-
ter provides resulis in a compact form.

Moreover, we assume that the polynomials & (z) and 1 —®(z) do not have
common roots and the polynomial 1 —@(z) has no roots in the closed unit disk
{z: |z} < 1}. In Proposition 3.1 we show that it is possible to represent the
R-GARCH(r, p, 0) process as the R-GARCH (w0, 0, 0) process with positive
coefficients ;. Then we derive the unconditional distribution of X, and of sums
of X,’s (Proposition 3.2). It turns out that all finite-dimensional distributions of
{X,} are symmetric a-stable (S«S) and they are invariant under a shift of the
time index. Thus the process {X,} is stationary symmetric a-stable, 0 <« < 2
(Corollary 3.1).

Prorosition 3.1. If the polynomials & (z} and 1 — & (z) do not have common

roots, then the conditional variance h, for R-GARCH ((r, p, Q) with the innova-
tions given by (3.1) can be represented in the form

w
(3.2) hy=3 0if,-; as.
j=1
with positive(') 8;'s satisfying &; < Q™7 eventually(®), Q > 1, if and only if the
polynomial 1— @ (z) has no roots in the closed unit disk {z: |z| < 1}. The sequence
{h,} is then stationary, strictly stable with index of stability o2, and
oL\

o 2)x
(3.3) By ~ Suz (2(2 32 (ms 4) .1, 0),

i=1
The &;'s are the coefficients in the series expansion of © (z)/(1—®(2)), |z] < 1.

Proof. This proposition may be proved in the analogous way as Theo-
rem 7.12.2 in [6] but here the coefficients §; are determined by the following

{!) More precisely, the 6,5 are non-negative and at least one of them is positive.
(*) “a; < b; eventually” means that there is a j, such that a; < b; for all j > j,.
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system of equations:

‘r 0y =04,
‘ 52 "51 ¢I = Hg,
(3‘4) < 53‘“52 (251"‘51 ¢'2 = 93:
8y —0p—y ¢'1m§r~—2 (p?m 0y d’r*—i =0,
. 55_55“.1(;51;5‘;‘2 (f)s“’..."“ﬁi ¢sm1 :0, §>7,

with the understanding that ¢; = 0 if i > p. It follows from (3.4) and Defini-
tion 2.1 that the J;’s are real, non-negative and at least one of them is positive.
In order to get §; > 0 we assume that 6, > 0.

The distribution of h, follows immediately from (3.2) and (3.1). =

PRrOPOSITION 3.2. The unconditional distribution of the sum E&, o Xn-is
m 2 1, in the R-GARCH (r, p, 0) model with innovations n, given by ﬁ:armu!a (3.1)
is symmetric stable with index of stability o:

m~—1

69 T X~ SOT (AT (T 4" 00),

i=1 i= j=m i=j—m+1
Proof. As {&,} and {#,} are independent, the characteristic function of

':;;‘ X,z can be expressed by the Laplace transform of z;";: h, 1. Indeed,

36 Elexp (it Y X,i) = Ep (i Y /hrrtn-s))
k=0 k=0
= E(E [exp {lfmi \/mﬂﬁﬁk} l Hu—1s Hu—2s - *])‘

k=0

g 2z
- E(gxp{ L‘i:z"_ﬁ__’i})

In erder to get the Laplace transform of Y7 ' h,_,, we write

the={)
m=1 m—1 m=1 o oo J
2 k=2 (Z Oitha—sr) = 2, (X 0yt 2 (X 0)Ma-s
k=0 k=0 j=1 i=1 i=1 j=m i=jem+1
and thus E;:_“ n—i 1S positive strictly stable with index of stability «/2:
m—1 . © j . 2o
T he~sa(20E (a5 (3 (o) 10)
=1 i=1 j=m i=j~m+1

ml

Applying the formula for the Laplace transform of ) '_  h,-; in (3.6), we

obtain

Blesp (it 3, Xpma)) = {—F [T (S 8"+ X ( 55"

j=1 i=1 j=m i=j




376 I Nowicka-Zagrajek and A. Weron

This means that ¥ _ 1X _ is SaS and

m=—1

i J
af2pifx
Z X~ Sal[ X (Z B+ Y (Y 6"17.0,0). 8
j=1 i=1 J=m i=j—m+1
- Remark 3.1. If the process {X,} is used for modeling the behavior of
logarithmic returns, then Proposition 3.2 is of great importance. It gives infor-
mation about unconditional distributions of the returns, ie.

3.7) X,~8, ((Z 597", 0, 0),
=1
and also about unconditional distribution of aggregated returns.

For example, if the R-GARCH{(r, p, 0) model with n,’s given by (3.1)
describes daily returns, then formula (3.5) determines the unconditional dis-
tributions of weekly, monthly, etc. returns, where m denotes the number of
trading days within the given interval. Note that in this model all kinds of
returns are symmetric stable with the same characteristic exponent o but with
different scale parameters. Moreover, by choosing the index of stability of the
., s appropriately, any unconditionally stable distributed X, except the normal
ones can be constructed. This implies, in turn, that the unconditional dis-
tribution of X, is heavy-tailed.

COROLLARY 3.1. The R-GARCH (r, p, 0) process with innovations v, given
by (3.1) is stationary symmetric a-stable, 0 < o < 2.

Proof. A similar argument as in Proposition 3.2 shows that all finite
linear combinations of the X,’s are symmetric stable with the same index of
stability «. This, in turn, implies that {X,} is a symmetric z-stable stochastic
process and all its finite-dimensional distributions are symmetric a-stable. More-
over, the process {X,} is stationary. Indeed, as {s,} and {n,} are mdependem
the characteristic function of the random vector (X, 4z, ..., Xn.+5) can be
calculated in the following way:

E (exp {i 2 & Xnyenf) = Efexp {i Zi Ein/ g 8nen)
= E(E [exp {i g E}'\.,‘ hm+k‘£n;~‘rk} ]W’uw—la Hm—25 » ])

» d
=E (ezxp { —W}) '

where m = max(n, +k, n,+k, ..., ng+ k).
By the stationarity of {h,} (sée Proposition 3.1),

o B e E)



Dependence structure of stable R-GARCH processes 377

and then

"y

d
E(exp {i Zl &; X ;1)) = Bfexp {ij, L & X))
i= 1

il

Therefore, for any d 2 1 and ny, ..., n; keZ,
{Xm-kk: s Xna—Fk.) é (XM': seey Xua)s
and thus the process {X,} is stationary. =

4. Dependence structure. The covariance function is an extremely powerful
tool in the study of stationary Gaussian time series, but it is not defined for
stationary symmetric o-stuble, o < 2, time series. Therefore, let us consider
another measure of dependence — the codifference — which is defined for
stable time series and reduces to the covariance when o = 2.

DermnimioN 4.1, Let {X,} (n=0, +1, +2,...) be a symmetric a-stable
stationary time series with 0 < a < 2. The codifference, CD (n), is then defined
by the equation
4.1) CD(n) =CD(X,, X)=InEexp {i(X,—Xo)} —2InEexp {iX,}.
Properties of the codifference are described in [6].

As we have shown in Corollary 3.1, the R-GARCH (r, p, 0) process with
innovations #, given by (3.1) is stationary symmetric a-stable, 0 < a < 2. There-
fore, the dependence structure of this process cannot be characterized by the
covariance and we shall use the codifference. In Theorem 4.1 we show that this
measure of dependence is positive and bounded by an exponentially decaying
function. ; :

TEOREM 4.1. Let Q be as in Proposition 3.1. Then for the R-GARCH (r, p, 0)
model with the innovations n, given by (3.1) and for any 0 <o <2 there is
a constant K depending only on o and Q such that

42) 0 < limsup Q"2 CD(n) < K.
E v 4]

Proof. First we show that the codifference for the R-GARCH (r, p, 0)
model with innovations #, given by (3.1) can be described in terms of é;'s by the
formula

2y 652 for n=0,

j=1Yi

43  CDm={_%= |
21:1 [5?@3@?4&(53-‘!2ﬂ(ﬁjq_,,-{-«ﬁj}alz} for n < 0.

Let us note that, by Proposition 3.2,

Eexp {iXo} = exp {— Z 5?;2};
j=1

2
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and therefore, if n =0, then the formula for CD(0) reduces to

CD(0) = —2inEexp {iX,} =2 Z 892,

i=1

giving the first part of (4.3).
We now focus on the case n > 1. As the sequences {¢,} and {n,} are
independent, then conditioning on the n,’s we obtain

(44) E (exp {I (Xﬂ XD)}) (exp {f' {'\;’/hn Ey— V/E; Eﬂ)}}'
= E(B [exp {i(x[h;a'n “\/}?080)} | a-15 Mu-2, ---]) = E (EKP {“&fg—ﬁ})

Since h, is given by (3.2) for every n, we have

hn”l—h{) = Z 5 nn J+ z 5 '1 -j = Z 51'7}1“"3+ Z (5j+n+‘§}w - js

j=1 i=
and thus the distribution of h,+hy is pcnsn:we strlcﬂy stable with index of
stability «/2, ie.
2 o\ 2 «
hu"*‘hg Lt 2 2{2 5‘142 '+ E 5 ‘ﬁ'ﬁ _.szl] ! ( —ZL“) 2 1,0 .
J=1 i=1

Applying the formula for the Laplace transform of h,-+h, in (4.4) we obtain
(45) E(CX[J {I(X"*“Xg)}) = exp{«— [ Z é?fﬁ -+ Z (5j+(5j+“}ﬂ4‘2]} .

= =
Therefore, if n > 1, then, by (4.5) and (4.1),

(4.6) CD (u) = e Z 53513 — Z (5;(‘!'5;4;")"’2*2 Z 5@,«3

j=1 i=1
=Y &§°— L (6;+06;:n)"+ Z 057 + ‘Z 8%+ Z 892
i=1 i=1 j=n+1

= 2, 0fnt Z &2 — Z (O4nt )"
=1 j=t

i=1

which implies the second part of (4.3).
As we have the formula for CD(n), let us recall two inequalities, which
hold for every 0 <y <1 and r, seR:

4.7 Ir+s” < el +1s]
and

(4.8) lir 4 sl7 = 17— Is] < 217",
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Suppose 1 = 1 is such that 0 < ;< ¢~/ for each j > n. Then, after applying
(4.8) to each term in (4.3) (with r = 6;4, and y = /2), we get

4.9 Q2 CD () 20002 i 842, < 20012 i Q- +mas2

i=1 J=1

=2 i Q2 = 2wg:ff_
~ 1—Q 2

4
Moreover, by (4.7), 63>+ 032, —(8;+0;.,)%* 2 0, and thus
(4.10) CD(n) = 0.
Formulae (4.9) and (4.10) imply (4.2). =
Theorem 4.1 shows that CD(n) tends to zero exponentially {or faster) for
R-GARCH(r, p, 0) processes with positive strictly stable innovations #,,.
Remark 4.1. If p=0, then

r e
hn = Z é}jnn-ﬁj = Z éj’?ﬂ"j!
i=1 i=1

where 8;=0; for 1 <j<rand 8; =0 for j >r, and X, and X, are independent
Jor any nz=r. ‘

In the case of the R-GARCH(1, 1, 0) process with stable innovations it is
possible to find an explicit formula for the codifference and to determine its
exact asymptotic behavior.

THEOREM 4.2. In the case of the R-GARCH (1, 1, 0) process with innova-
tions n, given by (3.1) and with 6; >0 and 0 < ¢; < 1

: {~na)fZ v 9?2
}f_fl‘i ¢y CD () = m‘ifi,
i.e. the codifference is asymptotically proportional to ¢$?*, and thus it tends to
zero exponentially.

Proof. In the case of the R-GARCH(1, 1, 0) process with innovations
1, given by (3.1) with #; > 0 and 0 < ¢y < 1, the conditional variance h, de-
pends on #,-, and h,_,, ie.

hy, = 91 Hp—11 fﬁl hn- 1 =6 (L) M +¢'(LJ hn!

where @ (z) = 0, z and & (z) = ¢ z. As U < ¢4 < 1, the polynomial 1 — & (z) has
no root in the closed unit disk {z: |z| < 1}. By Proposition 3.1, the §;’s are the
coefficients in the series expansion of 0, z/(1—¢;z), |z| < 1. Since

o I © o

LI 0,2y ¢l =Y 0617,

1—¢;z j=0 i=1

the 4;’s are given by

b=0.07Y j=1,2,...
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By Corollary 3.1, {X,} is a stationary SaS process. As by (4.3), CD(n) is
expressed in terms of the 4;’s, we get for n> 1

CD() = 3, [0 61 ¥ +0, 1 F2 =0, o140, 61 7%7]
j=1
=07 Y, [p47 (14940 — (§ + 17
or°
=

(1402 — (1 + 1))

Therefore,
may g g2 [ 1—(1+¢hy
ngl (!f’(l m)lZLB(n} = W,}Jﬂ [1+W~il)-~

and, in order to complete the proof, it is enough to notice that

lim———— = 0. m

e qﬁﬁ““”z
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