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Abstract. We investigate here one-dimensional Feynman-Kac
semigroups based on symmetric w-stable processes. We begin with es-
tablishing the properties of Green operators of intervals and halflines on
functions from the Kato c¢lass. Then we provide a sufficient condition for
gaugeability of the halfling (— oo, b} and evaluate the critical value f.
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1. INTRODUCTION

In the present paper we continue studying, initiated in Section 7 of [4], the
one-dimensional Feynman-Kac semigroups based on symmetric o-stable sto-
chastic Lévy processes. In connection with this topic and the conditional gauge
theorem we also mention [3], [5] and [6].

Let us note that if @ 2 1 = d, we deal with recurrent processes; thus many
previously known objects take on different meanings or have different properties.
Therefore, in Section 3, we check that the well-known characterization of func-
tions in Kato. class #* (see [10]) remains valid also for the recurrent case.
Although the transient case (¢ < d) is well known, we include it here for the sake
of completeness. In Section 4 we then establish properties of Green potentials
of intervals and halflines. In Section 5 we consider the gauge function
u(x, y) = E*e,(1- w,y) and investigate conditions assuring that u(x, b) < co for
x < b (gaugeability of the sets (— o0, b)). The procedure provides us with some
estimates of the critical value f, i.e. the maximal value y, for which u(x, y) < oo,
for x < y < yy. In the end of the paper we estimate f§ for g = - q.
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Let us mention that regarding potential kernels we rely on [2]; for general
facts about Markov processes the reader is referred to [1]. We also apply some
(unpublished) results from [9].

2. PRELIMINARIES

We adopt here the notation and terminology from [4].

We begin with some elementary facts concerning the density function of
the symmetric a-stable process. Let p, be the density function of the symmetric
a-stable process X, in RY starting from 0. The (strict) a-stability of X, yields
that the distribution of s~/ X, is the same as that of X,. We refer to this as to
the scaling property of X,. As a direct consequence we obtain
@ P () = s pys (1% x).

Putting s = ¢~ * in (1), we get
pe(x) < £ % sup py (x) = Ct™9,
xeltd
Using the inverse Fourier transform we obtain C = I' (d)w,/(2n).
Moreover, it is well known that
p1(x) < Calx| ™07
Thus, we have
py(X) é Cdtlx‘_aMd.
Applying these estimates we obtain
LemMa. For all t > O the following holds:

t ‘ thftxi“ ‘ cd ZZ o
() fps(ds = [xI"~7 [ pu(e/lxl) du < — 5 b ‘.
0 0 :
For d =1 < o we obtain
: % -y
(3) gps(x)dsséﬂm__nt' .
We now put for 0 <a<2 and d # «
‘ o od, )
if d=1 we get
g1
K,(x)= il

2T () cos (moy/2)




One-dimensional Feynman-Kac semigroups 383

For ¢ =1=d we put

1.1
Let us mention that if « = d = 1, then the a-stable process is no longer
transient, so its (free) Green function on the whole real line is no longer proper-
ly defined; in that case we refer to [2] for an appropriate interpretation of (4)
and (5).

3. KATO CLASS #°

DeriNITION. We say that a Borel function g on R? belongs to the Kato
class #* if

(6) limsup | |[K,(x—=»)q()dy=0;

710 yega x—¥<y
we write ge #4. if for every bounded Borel set B we have Igge #°

PROPERTIES OF THE CLASS #°.
(i) We have L*(R) < #° If fel®(RY) and ge #° then fge §°.
(u) If qe.}m then Supxs‘ﬂdf‘x -ylg1 i‘?(y)l d},’ < 6o, Hen.::e Effilﬁflm then
ge Ly (R).
(iii) If ge #° then supmﬂﬂ_ftxﬂial x—y"* g (M dy < 0.
Proof. Condition (i) follows directly by the definition.
We verify (ii). For 0 <a<d and 0 <y <1 we obiain

[ IKax=naOldy =K. | laWidy.
fx—yl<y [x—yl€y
There exists N = N(d, y) such that for every xeR? we can find x,, ..., xyeR*

such that B(x, 1) = {Ji_, B(x;, 7). Thus, we obtain
N

§f laOldy < IK. 'Y | IK.(xi—»a()idy

jx—~yl&1 i=1 e~y <y
Ford=1<a<2wechoose N=N {W'4) such that for every xeR? there
exist x;,..., xyeR' such that B(x, 1) U .- BOx;, p/4). Put z;= x;+7y/2.
For y satmsfymg [y—x4 < 7/4 we obtain 1 y zj| 2 y/2—1v/4 = y/4. Thus, we get
1 < @ly—zi/y)*~* over the set {y;ly—x; = y/4}. Hence, we have

§ laOldy < 2(4/?}“” [ lz—=ytaW)dy

lx—yj=1 -yl <4

@Rt = e )l dy.

i=1 lzi—-yisy

Mz lE
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Remark Ford=1<ua<2 we have for 0<y< 1

sup [ ly—x""llgOldy<y*tsup [ lg()ldy.

xeRY |y—x| <y xeBY [x—pl=1
Thus, ge #* for d =1 <o < 2 if and only if
Q] sup | lgO)ldy < co.
xeftd jx—-yis1

We now prove (iti). As in [9] we put
S,=sup [ Ix—y"*"lg()idy.
xeRd jx—pl =y

There exists a constant C(d, 7) such that {y; yn <|x—y| < (n+1)y} can be
covered by at most C(d, y) n"' 1 balls with radius y, for every n. Thus, we have

s,<swp[Y [ b=yl tlg0ldy]

xeRe p=1inySix—yp|St+i)y
<C(d, 'y)(z nTi et Ysup [ lg)ldy < .
n=1 xeRE [x—y| €y
Now we obtain
Tueorem 1. We have

1§
(8) ge #* if and only if limsup [ Plg|(x)ds =0
10 x=R4 o

Proof. We first show that the condition on the right-hand side of (8)
implies that ge #* With the exception of the case 1 =d =« we have

H

[ P,lgl (x)ds = iﬂ(gpﬁ{x——w ds)lg(v)| dy

0

1|z —yi®
=g (d, )" Elfia(%-;v)l f pu(gw% dulg (y)dy

>t [ K- {n(E

[x—y| €11sa Ix

=Cd{d, o) [ [Kulx=y)gO)ldy,
eyl

FD dulg(y) dy

since

jp"(l wyl)du —e=0

by the rotational invariance of p,.
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When 1 =4d =a, by Fubini’s theorem we obtain

P.lal(9)ds = | (i‘ Py (— ) ds)lgl () dy

[ -

£+ x—y

p 1
gg +<x Tra IOy =5, [In—smla Ol dy

1 i
1 P ] d ,
0

because

whenever |[x—y| < t?

We now prove that the condition on the right-hand side of {8) holds
whenever ge #°.

By the previous case we have

t {1z~ y|®
[ Pslgl(x)ds = § lx—y*~ a f pu( y)duﬁq‘of)fdy
0 Rt lx "“’}’!

= 5 R 5 .‘..211"{1‘[2.

fx—-yl=y le=yi=y

We first consider the case o <d. We then obtain

Lsgd, ' | IKi(x— y)q(y)jpu( ii)d dy

Ix—yl€y

€ 5 fKa(x—y)QU)fd}’s
[-pisy

T o(x=Y _ xX=y\_
I p“(tx y)d“"‘K“(zx—nya) e

When | =d =0, we get

because

, 1 24 (x—y)? ‘
Iy = n— 2 lq()d
1 2492 1
£ — n : dy < - m_m_, d
2ﬂix~£;sy Gy la0Ndy mxm;ﬂ 5Oy

whenever 12+7% < 1.
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When o> 1 =d, we apply the estimate (3) to obtain

o -
L= Ip.a(x Vdudy € ———t'7H | lq)ldy.
Jx-yl<y 0 (e~1) Ix=y1%y
The Remark below the proof of the properties of the Kato class shows that this
estimate is sufficient for our purposes.
What remains now is to estimate I,. We have

Hx -yl
In= | |x—y*1 I pu( )dulq(y)ldy
fex—wf>y % - I
Ct? _ Ct?
<] ey g0 dy < oS,
2 jr-yl=y 2

The above estimate completes the proof of the theorem.

4. GREEN OPERATORS

We now examine properties of the Green operator G, when D is either an
interval or halfline. We always assume that ae(0, 2). We begin with the case of
intervals. For this purpose, following [4], we state some useful estimates for the
Green function of the interval. We put

1 ga2-1
L= ({Wdu, t=0,
and
1—-x3)(1—y?
wie, = T0Y) i<

(x—yy

Let us recall {2] that the Green function G(x, y) of the interval (-1, 1) can be
represented as

Glx,y) =B |x—yF " L{wlx, ). Ix, <1,
where &, =2"TI"(a/2)"2.

The behavior of the function G is determined by the asymptotic properties
of the integral I,(¢), which are summarized in the following lemma:

LemMMA 2. There are constants C; = Ci(a), i = 1, 2, such that for all t > 0

@) C, < LN A1]l<C, ifax<l,
(i) C, LGOI A2 C,  if a>1,
(i) C <L <C,y ift<1, xe0,2),
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and for o =1
(iv) C, <1 ([O)/In(t?+1) < C,.

A calculation allows for the choice of C, = 2/(x—1) in (ii) and C; = 2'/?/y,
C; = 2/u in (iii).

Using Lemma 2 we describe the behavior of the function G.

CoroLLARY 3. For all x, ye(—1, 1) {x # y) we have

Cy S G0, Y Bolx—yI  wlx, WP A1) <C, ifa<ld,
Ci < G(x, Y@ In(w(x, )" *+1)) < C, ifa=1,
Ci < Glx, Y Balx~yI*H[wle, P aw(x, YY" PN C,  if a> 1.

We then obtain
THEOREM 4. Let a, be R, a < b and D = (a, b). Assume that ge % o > 1.
Then
GpgeCo(D).
Proof. We assume that D = (—1, 1). First consider the case « > 1. Then,
by Lemma 2 and the remark regarding the choice of the constants, we have

2((1—x*)(1— yla}fﬂ"" 12
(e—1) 2% I" (/27

Since D is bounded, we obtain ge ! (D), so Gpq(x) is a continuous and
bounded function of x, continuously vanishing at aD.
When o = 1, we obtain

lnl-—xyh/(l—;cz){l*yz)gim 3

x— vl T [x—yl
The proof of the theorem in this case (x = 1) is similar to the one for the
(standard) case « < 1; it is included here for the sake of completeness. We put
G (x, y) = Gp(x, y)an. Then for fixed y <1 and |x—y| >y we obtain
Gp(x, y) < (1/m)In (3/y). Therefore, if ny > (1/7)In(3/y), then for n = ny we have
|Gp(x, y)—GP (x, y)| > 0 only on the set |x— y| < y. Thus, we obtain for n > n,

Gplx, y) <

: 1
Golr, ) =~

IGpg(x)—GPq(x)I< | |Gp(x, y)—GH(x, y)lig(y)dy

[E LS

1 3
< su —In——|g(y)|dy.
JDE!EZ l;r-ii&y“ fx_‘yl QU’”

Since ge #7, the above inequality yields that G ¢ — Gp q uniformly. Obvious-
ly, G’ ge Cy(D), which completes the proof.
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Next, we consider the case of the halflines. As in the case of intervals, we
establish first some elementary properties of the Green function of the set
D = (—o0, b) = R*.

We put
um/?. 1
‘ T =0,
JL () = !(u+1)1 —zdu, t20
and
(b—x)A(b—y)

»(x, y) = ————"" x<b, y<b.
(X, ¥) =yl y

Let us recall [8] that the Green function Gp(x, y) of (—o0, b) can be repre-
sented as

x—y!
I (o/2)?

As before, we first summarize the asymptotic properties of the integral J,,
which determine the behavior of the function Gp.

Gﬂ(x y) J (ﬂb(x: y’): x< b, y< b.

LeMMA 5. There are constants C; = C;(a), i = 1, 2, such that for all t > 0

it C < LOMPALIISC, ifa<ld,
(i) Ci < T WP A1 <C,  ifa>1,
(i) C, < L <€y ift<l, ae(0,2).
For a>1and t=1

(iv) Ci < L0/ < Cy,

and for o= 1

(v) C, <J(t)/In(t?+1) < C,.

The proof of Lemma 5 is omitted.

We note that the upper estimates in (iii) and (iv) hold for all ¢ > 0; in the
latter case with the restriction a > 1. Follmmng calculations, we can take
C, = 242y and C, = 2/u in (iii), and C; = (2*"*—1)/(@—1) and C, = 1/(a—1)
in (iv).

The following corollary describes the asymptoting behavior of the func-
tion Gp for D = (—o0, b).

COROLLARY 6. For all x, ye(—o0, b) (x # y) we have
Cy ST(@/2P Gplx, PW(x—yP [ (x, W2 A1} C, i<,
Ci EGD(X, y}/ln (Ub(xs )1/2'{“ 1) = CZ Qf o= I,

Cy < T(0/2 Gp(x, pe—yI*~  [o(x, 2 A0 (6, ' <Cy i a> 1.
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Whenever o > 1 we easily obtain from Lemma 5, the remark below and
Corollary 6

<D G )
=9 nb-y)F

where the estimate from below holds true if (b—x)A(b—y)/Ix—y| = 1.
Note that X, is transient for o < 1, so we obtain in this case, as usual,

® 2t

(10) Gp(x, y) < Kalx—y).

For o =1 we obtain from Corollary 6

(b‘“"‘”‘(?“ym).
=yl
We now state and prove a version of Theorem 4 for a halfline.

THEOREM 7. Let D = (—o0, b) and let ge #° Then Gplg|(x) < oo when-
ever (1+y)* " *q(y)e} (D) for « < 1, or if ge I (D) for « > 1. If, additionally,

(11) Gp(x, ) < Cln (

(@) gel(RY) ifa<l,
(i1) In(y'?+1)qg)e ' RY) fa=1,
(iii) A+ tegel (R ifa>1,

then Gpq(x) is a continuous function of x and

lim sup G- o, gl {x) = 0.

bor—m yxp

Proof We prove the first part of the theorem for « < 1. For a fixed ,
0<y<1, we have

b

Gpq(x) = | Gplx, y)q(y)dy
= [ Gplx,¥ady+ |  Gplx, yaB)dy.
yeblx—ylsy yEbJx—y>y )

Since o < 1, we have Gp(x, y) < K, (x—y). This and the assumption ge #*
yield that for a given & > 0 the supremum over x&R? of the first term on the
right-hand side of the above equality is less than ¢ whenever y is small enough.
On the other hand, if [x—y| =y, then

L =yl 4l

=yl = =y |x—yl

< 1+y (x| +1).
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Therefore, the integrand in the second term is continuous in x, vanishes at b,
and is bounded by

lg )l

AV gl
TENT

K (x=ylg < CLL+y~ ' (x[+ 1]~

If we assume that ge ! (R'), then we obtain

b
SUP G- ooy g1 (%) &+ (L, )y~ | la(widy,

x%b

where ¢ and y are as above. This completes the proof of the case x < 1.
When « = 1, we apply the inequality (11). Under the assumption ge L' (D)
we obtain, for O <y <1,

; Gp(x, NlgONdy < C | m( = ”)+1)m<y)|dy

B — x)1/2 4112
<c | m%lqmm

y<bjx—yl Sy I

+C [ In{/=x/y+1)lg(ldy

yEbjx=yl>y

<C | I— a0y + Cln(/ B+ )l on

Ix—yl<y |

Taking into account ge #*n I} (D) we obtain the first conclusion in the case
o = 1. The continuity follows from similar arguments as in the first part of the
proof.

When additionally In(jy|*/?+1)q{y)e I} (R*), then, arguing as before, we
obtain

b
Geonll®<C | In——lgOldy+C | (/B3 +Dla0)dy.

sy X=H

Since for b < 0 we have b—y < —y = |y|, the proof of this part of the theorem
is complete.

Finally, if 2 > 1 =4, we apply the inequality (9). Assume first that
gel} (D). We then obtain

(b—xy*

IGpg(x)] < @1 @7 gl oy
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When (1+p)* "' q(y)e I} (R'), then we obtain
1
G- mb)lfl'!(x)x‘“—*—m“” _f (b—yr~tla () dy.

For b < 0 we obtain, as before, (b—yf* * < [y* ! < (1+|y|)* " and this com-
pletes the proof of the last part of the theorem.

5. FUNDAMENTAL EXPECTATION

Let ge #° We recall that
u(x, ¥) = E¥e,(t;), where 1, =1 .

Obviously, u{x, y)=1 for x > y. In [4] it is shown (see Section 7) that if
u(x, y) < co for a single x < y, then u(-, y) is a continuous regular g-harmonic
function on (—oo, y). In particular, u(w, y) < oo for every w < y.
We put
B =sup{yeR'; u(x, y) < o for all x <y},
with the usual convention that sup@ = —eo.
We now establish a condition under which f > —c0.

TueorREM 8. Under the assumptions (i), (ii) or (iii), respectively, from Theo-
rem 7, we have

f= sup»{b eRY; SUp G- 0.5 191 (%) < 1} > —oo.

x%b

Proof Let g # 0. Define
| S S ,
M, (x, b) = ;ﬂ;E"U lg(X)\dt)" and M, (b) = sup M,(x, b).
: 0 x€b

Obviously,
M (b) = sup G- w1 lg| (x)-

x%h

By the proof of the Khasminski lemma (see [7]) we obtain
M., (b) < M, (b)".

Observe that if by < b,, then M, (x, by} < M (x, b,) for all x < b;. Conse-
quently,

M (b;) = sup M (x, by) < sup M (x, by) < sup M (x, by) = M, (by).

x<hs x%hy x%hs
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Moreover, M,(b) is a continuous function of b. To prove this we show
that G- 1 gl (+) is continuous, with respect to the supremum norm, as a func-
tion of b. For this purpose, assume that b; < b,. Then for b; < x < b, we
have

G= 0.0 |01 () = G~ 0,60 191 (%) = G~ 0,55 1] (x).
We thus estimate first G 1, 1ql(x) for by < x < b;.
Assume that « > 1. Using the estimate (9) we obtain
k (by—byy*
G- o pplal{x) < ﬁm gl sy
If now « = 1, then for a given & > 0 there exists a 3, 0 < y < 1, such that

L uoldy<e,

C
sup — In
.teig 2 ]=x~w{]£y fx“]"l

where C is the constant from the estimate (11). We then obtain

b2
Giewpn Gl (X) = [ G- pn (X, Mg ()l dy

bz bg—x ,
<C |1 1 d
<c_jm n( —_ )lqi(v) y

<Ch(y/by—by+1) [ lgWldy

yEbafx—p| €y

C .
lg()idy

1
2 IxW{iiﬁy fx— ¥l

+Cln(/(b2—by)fy+1) FI la (vl dy
y&Eba,]x ]

< Cln(

(bz“‘*bﬂ/? + 1) llgllz: mey + -

We now consider the case o <<1. As in the previous case, for a given ¢ > 0
we choose y, 0 <y < 1, such that

sup | K.(x, »gWldy <e.

xel! jx~y|<y
For |x—y| >y we estimate G- 4, by 2071 I (0/2)7 2 (by—x)"2 |x — y|#2~ 1,
Thus, we obtain
2(by—by)**

G-wpnldl(x) < e +W Hall L1 gy
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For x < by we proceed as follows:

rb.!

G~ i 81 () = G = o by 12l () = E¥ [y, < 13,5 | lg(X ) dt]

= E* [Tf:‘; < tbz; (j !q (XI)E dt) O 0‘.‘51] = E¥ [Tbl =< Ibz‘:: G(“‘“ oo, bz} I‘%ﬂ (beg)]
0

= E*[G- iy lgl(X;,)] < sUp G- opp gl ().

by ExEhs
The result follows by application of the first part.
Define
(12) bo =sup{beR'; M;(b) < 1}.

By continuity of M; and Theorem 7 we have by > —co and M, (by) =1 if
by < o0. Also, for b < by we obtain M (b) < 1. Therefore, for b < b, and all
x < b we have

ux,by=1+ 3 M,(x,b) <1+ Y M,(b)
n=1 n=1

<14 MY = —— < oo

MO = <

This proves that § > by > —o0. The proof is now complete.

We now establish additional properties of the function u(x, y), under the
assumptions of Theorem 7, unless stated otherwise. First, observe that by the
final part of the above proof we get

M, ()

sup ju(x, b)—1] € ————.
Iﬁ'( )—1] =, )

Since we have shown in Theorem 7 that lim,_, _, M, (b) = 0, it follows that

lim suplu(x, b)—1] =0,

b —w cxp

We also note that if o<1, then lim,., M, (b) < oo. Indeed, since
qge #*n [ (R"), we obtain

sup | Ku(x, WlaO)ldy < C.
xR Jx—y|€1
Thus, by the estimate G, ; < K,, we obtain
Glwnld®< | Kux plgOldy+/(1,0) [ lgOldy

jr—-yls1 fx—=yl=1

< Ci+ (1, a)llgWilLimy-
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On the other hand, for 2 = 1 we obtain

lim M, (b) =

b=

We show this first for « > 1. Observe that for b > 0 and —b/2 <y < b/d
we have (b—y)/{(y-+b/2) > 1. Hence using the lower estimate (9) we obtain
M, (b) = M(—b/2, b)

b4 G=ME+b12) a1 g

> Folp -{,‘10’%/‘2 T relaoy

el q bj4 ‘ _ (b-—.y

> @ D@y, Y

> -1 K bh—yp1 d
ey L

a—1_ 1 b}4

=D TR 1,10

For =1 we argue as follows:

G-anlglx)= C I In(\/b—x+./x—y)lg)dy— CI in |x—ylg () dy

77b /2). lg(dy

> (3/4bp1

=C ! ln(\/b*x-i-»l)iq(y)ﬂd’y—ﬂ I In|x—yllg ()i dy
Now, in the last term, for fixed x we have
0< f Injx—yllg()ldy < C; < w0,

while the previous term tends to co as b — oo, whenever ||gll (- w.x-1y # 0.
We now show that for fixed b we have lim,., ., G-, 5g(x) = 0. Note
that this property has no Brownian motion counterpart.
Let o> 1. By the upper estimate (9) we have

— i
G AON € o2 qle B @Y,
{oo— DI (/2)

by the assumption. At the same time, when x — —co, then b—x > b—y for
fixed y, whenever |x| is big enough., Therefore,

b—x)a(b—y) b—y ~0
x—y  y—x

a8 X = =00,
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Using the same estimate we thus obtain, again when |x| is sufficiently big:
2(0=x "t b—yF? 2 (b—yf”?

o F(Ot/z)z U,___x)a/z - ‘x(y___x}iwm'z
The application of the Lebesgue Dominated Convergence Theorem gives now

the claim.
If & = 1, then we show first that given & > 0 we can choose 4 < b such that

-0 as x— —o.

Gi-wpX, ¥) <

A
sup | Gi-wpy (X, MIg)dy <s.

x€h —w

For this purpose, assume that 0 < y < 1 and estimate the above expression as
follows:

A
| Gewomx: Mg dy

4 b—y )
<c{ ﬂ( eyt laay

<C | InG/b—y+DlgOidy

yEA|x-y[ =y

+C | I toaOldy+C [ (/B i+ )laoldy

lx=y|<y } y' yEAx—y>y

1 4 : L
< Cj ‘[; Ini—lablldy+C [ ln(/®=yyr+1)ig ()l dy.
fx—pl sy -
The assumption ge #* and In(ly|'?+1)g(y)e} (R') yield now the above
claim.
The conclusion now follows from the fact that G- o 5 (x, ¥)|g ()| is domi-
nated by the expression

which converges to 0 as x - — oo and is uniformly with respect to x integrable
over the interval (A, b) for fixed but otherwise arbitrary 4 <b.

The proof of the case @ < 1 is even easier and is omitted.

We now show that if b < by = sup {beR*; M,(b) < 1}, then

lim u (x, b)=1.

P ]

We claim that

Ty

lim E*([lg(X)dt)' =0, n=1,2,..
E 2] O
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Observe that since
j.q(X,}ldI G- w.ny gl (X),

this has just been shown for n = 1. Next, if we define
i = .
710 = 5 B (] la 1)

then f,+1 = G- o (gl f) for n > 1. However, sup.<;|/a(x)| < M, (b), so g,
satisfy all the assumptions imposed on ¢ and this justifies the clalm Now, since
b < by, we have M, (b) < 1, so for a given & > 0 we can find ny such that

Y, M (b) < /2.
n=no
If we now choose x, < b such that for x < xg

np=—1

T M s, B <62,

n=0

then for x < x, we obtain |u(x, b)—1] < ¢, and the conclusion follows.
We conclude our considerations by providing a condition opposite to
those described in Theorem 8.

ProrosiTION 9. Suppose that ge #* and g = 0. If
]

q(y)
§

————dy = 00,
S (L) T

then f= —oo. If a>1 and

b
[ tady =

then either = —o0 or lim,.._,u(x, b)= o
Proof. By virtue of Jensen’s inequality

u(x, b) = exp (G- w.n 4 (x);
it is enough to analyse G- .4 q(x). Assume that the first condition holds true
and suppose that y < 2x—b = x— {(b—x) < x. Then we have (b—x}/(x—y) < L.
Thus, we obtain
O—xx—=y)  agz-1 g
w1 du
A2 § e
G(“m,b)Q(x} /r( /2)2 I ( y) é; (u+1)1~¢g,‘EQ(P) dy

2&]2 2x b

> FaR . G =Xy a)dy.
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Since obviously x—y < b—y, the last expression is not less than

2::;‘2 2x—b
e | Gy

2uf2 (b_ﬁx]u,'z 2x=b )
;"af(oz/z)z 7 3 )t dy

if only b > 0 and y < 0. Indeed, we then have b—y < b—by. This proves the
first part of the proposition, since the last integral is infinite.

Let now « > 1. Observe that for 2y > b+x we obtain b—y < y—x, so
(b—y)/(y—x) < 1. Thus, we have

1 B (b-y)jly—x) w21 gy

G- - SR Sk —_—

et rem, L, 07T ] a0
2&12 b

2 ——
al (of. Z)Zu; +j;)/z
2&{2 b wz 0

2 G-y lqgWdyz——0sz | WTle()dy
~al (W/Z)Z{M'Ec)/z y 1 - ol (o /2)2417 kj;;/z
because for y < 0 and b > 0 we obtain b—y > —y = |y|. When x —» — o0, the
conclusion follows, completing the proof of the proposition.

We now indicate how to compute by, given by the formula (12) for g = 1,_
with ¢ > 0. We start with transforming the Green operator G- .4 into a form
which is more suitable for computation. We always assume that ge #*~ I} (RY).
Then Theorem 7 applies, so for every x < b we obtain G, 4 |g] (x) < oo, and
this justifies changing the order of integration in the following calculations:

b 1 h—x) Alb—y) o2 1d
Gieama®)= f‘fm“{ | W}W’
S

o- (2] a1y

b (b—y
F(Oclﬁ zi{i u(u—l—y x))l ”'Z}Q(y

F(a/Z)E j.m i(ﬂ X)(u-—» ‘ Ha,'z}q(y)dy

b (b
T (ﬁfz)gf{i ((w— x)(u 3.!})1‘Z a"z}q

q(y)dy
(afz)l { (w—x)@—y) “’Z}du

10 — PAMS 212
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{j q(y)dy } i

x((u—x)(u— y))l 2|

5 du j q(y)dy
- Fe s UL e
We also define for 0gu<1

t Pl de v de

F(a/ﬁ 2I

x

(13) Pi(w)= 5—~m and Pi(u) = I T
o o ) a )

We are now able to examine the above-mentioned example. As usual, we
assume here that «e(0, 2).

EXAMPLE. Let g = 1., ¢ > 0. For b > —c we obtain

SUP G-y (%) = MAX Gcoy g ().

x%h

For —c¢ <b<c the greatest value of G- q(x) is attained at the point
Xo determined by the unmique solution u, of the equation

(14) a(l—uf P =u?", O<u<l,

with u = (b—x)/(b+c). The corresponding maximal value G _ 3 q(xo) is giv-
en as

b4y 21
(15) it;{;G(-m,mq(x) AT

For b= c the corresponding value uy is the unigue solution of the equation

2f2 =1 1 fZ+1
(16) (lﬁu}“"‘lP‘i(uH-(u-d)“"lPi(d/“)*um (lmuﬁwdu—*d)’

0 <u < 1, where d = (b—c)/(b+c) and the maximal value of the Green operator
is given by

20 B g d
R e a1

We first note that since G(_, (%, y) =0 for y > b, we obtain
Gimopy Lymcy(X) = f Gew—mm)(xa Nl-co(dy =0

whenever b < —¢. We therefore assume throughout the remainder that
b> —c¢.
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By the form of the Green operator we obtain

1 ; du {E melﬂ(y)dy}
T(o/22 ) u—x 92 | 2 (u—y)*

(18)  Gwpnql)=

s | ]
= F{mf2)2 xvi[*a:) {u__x)l,—~a12 2. (umy)1~qf2

_e } du “"jti dy
T T2 ooy =X)L )R
where x’ = x/c and b = b/c.
Assume first that x < —e¢. By (18) we then obtain

1 - unl
(19) G-y Li—cy () = F{;:/z)g -:{1 (u——j?l - { _:[1 (u~$vl““!2}
2 B (w1 du
Tl @y =y
Since the above expression is a nondecreasing function of x, we obtain
Gr-wnli-ca () < Gr-apli-ca(—c), x< —c

Direct calculations provide the value of the last quantity for |b| <c as
2(b+cf /o’ T (%/2)* or

2 (b+a)‘°‘m # pa b—c
er(afZ)z[ L (b—hﬁ)]

whenever b > c. We now write (19) in a form which is more suitable for com-
putations. We introduce a new variable ¢t defined by the formula
u+1=(—1-x)/(t—1). We then obtain

u—x=t(—1—x)/(t—1) and du=(1+x)dt/(t—1)*
and, after substituting, we get

2(b+cy c}“ o 2ol
)2 j TyEt 1
ol (a2) /2 w (=1
where u = (b—x)/(b+c). Substituting once again v=1/t, t—1=(1-v),
dt = —dvfv* we finally obtain

24
(20 Goeam () = (1)

Assume now that ¢ < x < b. By (18) we obtain

¢ ¥ du ! dy
G(—m.b) j‘-.[_--.r:,,::} (JC) = I"(at/ﬁ)z .f! (u__xf)l —ef2 {“jl (M‘”‘y)i »—mfz}‘

G~ o,py 4 (x) = dt,

P3(1/u).
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Computing the inner integral and using integration by parts we further obtain

¢ F(ud 172 —(u— 142
T@2 s w=x)""

_4p-xP

T w? (/2

du

b+ ey —(b—c)*2]

2 b 1 1
e [ g e e YRI2
+o:I’ (G(/Z)z £ (u x)ﬂ [(ﬁ C)l —ajz {H+C‘)1 é:!ﬁ] du.
Since the above expression is a nonincreasing function of x, we obtain
G{*m.b} 1 (*f;ﬂ}(x) < G(*m,b) 1 (—c,c}(c): C “é X < b
Direct calculations s.gain provide the last value as
2 b-a‘
2 b2 — 2y (2 .

dt is easy to see that G-, ng(—¢) > G- wng(c).
We now consider the case —¢ < x < ¢. We may and do assume here that
¢=1. The expressiﬁn (18) takes then, up to constants, the form

u zb (+1)af3
§(u x)l ~ i 2 j (u~y)1 zzfz il;(uu x)i a2 du.

Integrating by parts the right-hand side, we obtain
2 e
(ﬁ) (b+ 12 (p—x)"* — j(“ X du

i
Taking the derivative of the above expression with respect to x we obtain
du
*(+ D @—x)' "

Observe that for o < 1 the integral above tends to oo when x| —1, so the
derivative also tends to oo. For « > 1 it follows that it converges to

B+ 17 (1fe—1)~1/2) > 0.

On the other hand, when x b, the integral above tends to 0 while the first
term converges to — 0. Consequently, the derivative tends to —oo. There-
fore, there exists xoe(—1, b) where the expression (21) attains the maximum.
Integrating by parts once again in (22) we see that x, is a solution of the equa-
tion

@y

(22) Hm{b-i-l)“’z(b x4 j

(u—xy?* 2(1+x)

(23) I I;

T T S
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Since the left-hand side of (23) is decreasing and the right-hand side is in-
creasing in x, the solution x, is umigue.

As before, we again transform the expression (21). We introduce a new
variable ¢ defined by the formula u+1 = (1 +x)/(1—¢). We then obtain

—x=t(1+x)/(1—1) and du=(1+x)dt/(1—-1).
Taking into account the appropriate constants we obtain from (21)

2(b+ey

(24) Gi-w,nd (x)= ol (@ /2)2

(1 —u)* P} (u),
where, as before, u - B—x)(b+c), O<u<l.

The maximal value of the expression (24) is determined now by the root of
its derivative:

y2—1
( }a +1?
and this equation is equivalent to (14). Taking this into account we obtain (15).
We now consider the case when b > ¢ and —¢ < x < ¢. Again, we assume
for time being that ¢ = 1. By the formula (18) we then obtain
du u dy b du 1 dy
I'(@/2 G- b4 (x) = j(u RN j (u—y) = I(u x)1 -2 j J(u—p)-o?

a(l—uwf ' Pi(u) = (1—u)

2” (u+1)72 2" (u—1)*?

g [y

We introduce a new variable in the first integral in the expression above by the
formula u+1 = (1+x)/(1—t). We then obtain
—x =t(l+x)/1—1), du=1+x)dt/(1—1)?

and
(u+1)“*‘1 2 — b«-x_“
j(u x)l*""'z =P T )
Analogously, substituting u—x = (1 —x)/(1 —t) in the second integral we obtain
u—1=t(l—x)/1—-0, du=(1—x)di/(1—1)

and

“I((u 142 du_—~(1~x)”‘P§(b i)

u 3«:)1““’2 b

Denoting (b—x)/(b+c) by u and (b—c)/(b+c) by d and taking into account
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constants, we transform the expression I'(¢/2)* G(_ o2 ¢ (%) into the following
form:

2 .
(25) SO+ [A—uf Py (W)~ (u—df 3 (d/u)].
On the other hand, by integration by parts we obtain
222
Pi(w)+P3u) = ( -

which allows us to transform (25) into the following:
‘ 2 .
(26) é(bﬂbc)" [(1 —u)* P{ (w)+(u—d)* P (d/u%;u“’ 2 d““]-

The derivative of (26) again leads to the equation

; . . w21 p iy 1 7]
7 (1 —uf ! P () —(u—dP P (dfu) = —— | d*? 4 .
@7 (1—uft P ——df P =~ { o M]
It is not difficult to observe that (27) is equivalent to (16). The justification of
the existence of the unique solution u, satisfying (27) is similar to that of (14)
and is omitted. Taking into account (26) and (27) we obtain (17).
Although we do not need the expressions for G- 4 q(x} for x < —¢ or
for ¢ < x < b, we provide them for the sake of completeness. We begin with the
case X < —¢:

@) Geonal) = o L1 P (L) ~(u—dr PRI,
where u = (b—x)/(b+¢) > 1. For ¢ < x < b we obtain, analogously,
) Gimnale) = g 1= P —(d—4 P @)

with u = (b—x)f(b+¢c) < d.
We now provide a more detailed analysis for the case o = 1. Note that in
this case we compute directly the integrals (13) as follows:

30 Pl -~ i:‘/fa
(31) P%(u)z;ﬁ : ;*V\/;

Substituting (30) into (14) we obtain the equation

oo tg)-
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or, equivalently,

1 _
(32) f VR geuel
1 \/—
Substituting exp 2t = (1 +.\/u)/(1v»,§_/z—z‘), 0 <t < co, we obtain ﬁ = tanht,
and so (32) takes the form
(33) ttanht=1, 0<t< w.
Let t, be the unique root of the equation (33). Then we obtain

SUp G- o 1y q(x) = 21~ (b+¢) to.
x=h

Assume that ¢ > n/4t,. We get by = /2ty —c.
Let now b>2¢ and —c <x < ¢ From (16) we have

pi Pl 1 1 ay
1)+ (/“)~T T—ta=a)

By (30) and (31) we then obtain equivalently

ol g

If we infroduce a new variable by the formula

L+ a2
NN

O<t< oo,

exp2t =
then we obtain

ﬂe*\/g
(35) tanht = —=—Y "
T =)

so the equation (34) is being transformed into

(36) Jut=1-/d.

The equations (35) and (36) provide then the following equivalent version of (16):

, 1
(37 ~ tanht = — -—~—‘[Lt
to(1— \/_ )2
Let t, be the unique root of (37) and u, the corresponding value of the original
variable. According to (17) we then obtain

: ' 2(b+c) 1
I e 1“*'\/‘/,: \/-—fl Jd)]
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If we put exp 2wy = (1 +\/rﬁ;)/(1l w\/@:),, then tanh wy = ﬁ; and (38) becomes
2b+0) .
(39) S0P G .8 () = 2O V(1 — dywy +diy].

x%h n

Remark. In the Brownian motion case the Green function equals
G-, (X, Y) = (b—=X)A(b—y), x, y < b, and the formula (18) is also valid. In
this case the greatest value of G . 4 g (x) is attained at x = —c, for g as before,
and is equal to (b+¢)?/2if —c < b < cand to 2bcif ¢ < b. Thus, by = .fi—«—c if
c> \/5/2 and by =1/2c) if c < \/5/2. However, even in that case by < f (see
the Example in Section 9 of [7]) and to determine f§ the more advanced methods
are required.
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