
A h s t r ~ r .  We investigate here one-dimensional Fcymm-Kac 
semipaups based on syrnrr~etris E-stable processes. We begin with a- 
Qblishing the properties of Green operators af intervals and bdflines on 
functions F m  the Kato dass. Then we provide a $usf;eient condition Tor 
g;;angeabilig of the halfline (-m, b) and evdnate the critical vdue j?. 
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In b e  present paper we continue studying, initiated in Section 7 sf the 
one-dimendona1 Fewman--Kse semigoups based on sylnmetric a-stable sto- 
cltiastic Lbvy process=. In canneetion with this topic and the conditionlrl gauge 
theorem we dso m~ntion [33, [ S ]  and [ti]. 

Let :t note that if a 2 1 = d, we deal with reeurrwt proEsses; thus many 
previously known objwts take on ditrerer~t nleaninrgs or have daema properties. 
Therefbre, in Section 3, we ckteck that elhe we21-known cbaraicterjzaei~n of fmo 
itions in Kate elms $" (see [ZO]) remains valid also for the recurrent mse. 
M&ougIn the transient rzw (a s! d) is weU known, we include; it here for the sake 
of completeness, In Section 4 we then esbaMish properties of Green potentlsls 
of int.Frwals a d  Irdfllnes. In Section 5 we consicEgr the gauge fmchion 
a(xl J41 =Eye  {r , !-,,) and investigate conditions assuring thnt u(x, b) c m for 
x < b (gaugeabhty of the sets ( - GO, b)), The produre  provides us with some 
@timates d the eritieal value a, i.e. the maximal value yo h r  which u (n, y) < m, 
for x <: y < yo. In the and sf the paper we cstimate f l  for q = 

@ Jn~li  ture of Ma themafics, VF7rociaw University of Tecbnulogy, Research psrlially sup- 
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kt: us mnrion that regarding potential kernels we rely on 123; far getlleral 
faces about Markov processes the reader is r~ferret-ed to [I]. We also apply same 
(mpuMiished) results from [!?I, 

We adopt here the notation and teminology from 141, 
We begin wit11 some elementmy &cts canwmhg the density function af 

the symmetric: cr-shble process. ?Let p, be the density function of the s y m e t ~ c :  
a-stable process X, in stafling from 0. The ( s t & )  a-stability of X, yields 
that the distributian of s - ~ @ X , ,  is the same as that d X,. We refer to this as to 
the scali~g property of X,. As a direct consquence we ohtarin 

(11 pg (x) - sdl" pES (sl/lr x). 

Using the inverse Fourier transfom we obtairz C = r[d]')srrJ(21C)d. 
Moreover, lit is well known that 

Thus, we have 

Applying these estimates tvr: obtain 

LEMMA* For all t 3 O the ,following holds: 

Far d = 1 a: wa obtain 

We now put for 0 4 a a ? 2  2nd ddaa :  



Far ol r= 1 = d we put 

IS) 
I 1  

K l ( ~ )  = --he 
x ixl' 

Let us mendon that if a 3 d = 1, then 'she a-stable process is no longer 
transient, so its (free) Gree~x fun~tioa an the whale real lint: is uo Ilonger proper- 
Iy defined; in that case we refer to E2] for an appropriaite intefpretation of (4) 
a~ld  Is), 

3. KATO CLA%S 6" 

DEPINITI~. We say that a Borel function q on gd be10~gs to the K a t ~  
class if 

Iim sup J* rllt=, Cx - YS 4 ( Y S ~  4) = 0; 
Y J O  X E B ~  IX-YIGY 

we write ge$12,, if for every bounded Bore1 set B we have l a ~ e F ,  

PROPERTIES OF m CLASS F, 
(i) We katle Lm (Rd) s r. If  f E L* (P) and q E y, them {q E p, 
(4 If q E gb7 iA% 8 u ~ s . a  ( @)I d y  -.: ao Hence, if q E $kc, then 

4 E Lto, CR") 
J f q g F 3  then su~,arf,~-~,,~ jx-yl-'^'lqQldy a. 

Pr oaf. Caa&tian (i) follows directly by the definition. 
We verify (ii). For O =z m < d and O <, y d X we obtain 

Tksrr: exists N = N ( d ,  y )  ~uch  that for every x E lZd we can find XI, , . ,, xN E R! 
such that B ( x ,  1) E Uy-, &(xi, y). Thus, we obtain 

M 

J lqb)3d~GI.tiz(17)1-~C 5 1KeCxc-~)qQ)id~. 
Ex-y[ < 1 i - 1  { X I - Y ( & Y  

Fs-t: d - d < m; < 2 we ~ h i ~ o s a  N i;. N [y/4LE) sue11 that for cvery x ER' there - - N exist xi, . . , , XH E R1 SIIGII that B (x, 1) G ui=, B (.xi, Put zi = xi + ?/2. 
FOP y satislFying ]y - xi/ 4 714 we obtah {y-a,( 2 y/2-y/4 = ~14. Thus, we get 
l 6 (4 jj~-s~j/yp" h v e r  thc set { J ;  /y -x,t 3 7/41. Hence, we have 

N 
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Remark. Far d =  I. < s c  .=2 we batve far 0 < y G 1 

Thus, q ~ r  for d = I < a -=c 2 if and only if 

(7) sup j- Iq(31$1dy < m* 
xE*Rd 1 ~ - y l * 1  

We now prove (iii), As in 193 we pot: 

S, = SUP j ~ ~ - - - Y I - ~ - ~ I Y  C~ll d ~ .  
3 a d  l x - v ! & y  

There: exists a wnstant C (I, y )  such that ( y  ; yn G fx - yl G (pa 4- I)  y) c m  be 
covered by at mass C ( d ,  y) n"'-l balls with radius y, fos every n. Thus, we have 

Now we obtain 

THEOREM 1, We have 

Proof. We first show that the condition an the ~ght-hand side oF (8) 
implies that g ~ p ,  Wifi the exception of the case 1 = d -- cx we; have 

by the rotational invariance nf pet. 



When 1 .=1 d = lx, by Fubini"s tl~eorem we obtain 

- I ' sds - - 1 k23-(x-y)" n i l  dsz+(x-y)' 14 ( Y I I ~ Y  = ~ ; r  iLin(x-yp- 14 01 d~ 

whenever Jx - y[ 6 t 2 .  
We now p v e  that the canditian 0x1 the right-hand Gde of (8) holds 

whenever q E p. 
By the previous ease we have 

We fist conFtider the case a .ct d. We then obtain 

When l = d = tx, w get 



When rx > 1 =: d, we apply the estimate (3) to obtain 

The Rmark below the proof of clze prowtim af the Kato dass shows that this 
estimat-e L suacient for our purposes. 

What remains now is to estimale 12, We have 

The above m~mate  mmpletes the proof of the theorem. 

We now exmine properties of the Green operator Gg when D is either an 
interval or b;tlfIine. We always assume that Q ECO, 2). We begin with the c a ~  of 
intervals. For this purpose, following [4_j, we state some useful es~mateh; for the 
Green fuction of the interval. W put 

Let us recall [2] that the Green furaction G ( x ,  y) of the hnte~d (- I ,  I) can be 
repres~nttf;d, as 

G f x , y 3 . = @ g l ~ - y l a - i I g f ~ f ~ % ~ ) ) 7  b l % l ~ ) i G ~ 3  

where $8, - 2 - - " T ( ~ / 2 ) - ~ ,  

The behavior of d ~ e  function G is determhed by the asymptotic propflies 
sf the hteg;rd X,(t)I which are summarizd in the idowing lemma: 

L B ~ A  2. Tkre are cunSt@nbS Ci =. G,[ax], f = 1, 2, such thatfor all s P 01 

GI C ~ G I , ( ~ ) / [ ~ " " A I ] ~ C ~  ~ E - = C I ,  

{ii) C1 $ I , [ t ) / [ t " " ~  ttF""'"q 1 Cc, if cr > 1, 
(ii3 C 1 ~ ~ , ( f ) / 1 " " 2 C e 2  f t ~ l ,  ae [Q?2)3  



and for ct - 1 

A calculation dlews for the choice of C2 = ~/(Ix-- 13 in (ii) and Cl = 2'"/a, 
C ,  = 2/a in [iii), 

Using Lemma 2 we describe the beha~iar ~f ofhe function G. 

COROLWY 9. For all x, y E ( -  1 ,  1) (x JC: y) we hmv 

" S M ~ I E E M  4- Let a, gir E Ri, a -=z b and D = (a, bj. Assurne tkac q E y, a 3 I.. 
a"lzerz 

~ D ~ E C O C ~ ) ,  
Proof, We assme that D = ( - I ,  1). First mnsider ttbre case m 3 1. Then, 

by hma, 2 aad the remask regarding the chczice of the constants, we have 

Since D is bounded, we obtain q E C (Dl, so GD q 1x1 is a cantinuow and 
bipundd fmaien of x, eon~nuously vanishing at $D, 

Wben a = 1, we obtain 

The proof of the theorem in this case ((E = 1) is similar ta the one fur the 
(stmdard) case a K 1; it is includd here far the sake d csmpkteness. WE put 
Gfbhl fx, jj) ---- G ,  (as, y) n ra. Then far fixed y < 1 axld [x  - p( > y we obtain 
6;, (x, y) f ( l fn) Tn (3/y), nerefore, if n, > ( l / ~ )  h (3/7), then for pi >, ra, we have 
fG,(x, y) - G1;"" (x, y)P > O only on the set Ix - yf si 7- Thus, we obtain for n 3 ti, 

Since q E J@@~ the abave inequaljty yields that Ggl q -z C, g ullifomly. Obvious- 
ly, ~ $ 1  ge C, (D), which completes the fasoof. 
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Next, we comider the case of the halflines. As h the ease of interv;iIs, we 
estslbgsb first same elementary properties of the Gre-en fune~on of the set 
D = (--w, ~ ) c R ' .  

We put 

ket us recall [8] that the Greea b c t i o n  GB(x,  y) of (- w, b) can be rpre- 
sent& as 

As kfore, ~ l e  first s ize the asymptotic prop-erties of the irntegal 4, 
wEGXI determine the behavior d the hnctionr dl;,, 

5. There are constmts C; = Ci{ot), i = 1,2, such that-fm all e > 0 

(0 c l ,<J , ( t ) / [ t" '"R1]&cCz  gcl<k, 

f ii) C1 f J ,  (~)/[t/~ n t.- " G Cez ot > 1,  

(%I C1,<~ , ( t ) / ta t22CCz i f t s i l ,  a ~ ( O , 2 ] .  

61 ;-< 4, (om It""" $.I G c2. 

The paoaf of a 5 i s  omittd. 
We note that the upper e~:stjmates in (iii) and (iv) bold far all t > 0; in the 

latter cme with the restpjc60n M ;5. 1. F ~ n ~ ~ n g  calcafa~am, we eafl take 
C1 =: 2@'/ct and C2 = 2/az in (iii), and C1 = (2'"L - 1)/(a- 1) and &la: -- X/(E--1) 
isr Qv). 

The following corallasy describes the aspgtoting behavior af the futac- 
tisa GD for D = (--m, 6). 



Whenever ar > 1 we easily olstairr from L e m a  5, the remark bdow md 
Corollary 6 

where the estimate, from belaw holds true if ((b - x) n [b - y))/Ix - y 1 3 1. 
Note that X, is tramient for ac: < 1, so we obtain in this case, as usual, 

We now state and prove a version of Theorern 4 for a kiaIflinc 

7 - l ~  7. Lw k) - (-m, 5) and let g ~ p -  Then GDlql(x) -= oc, w h -  
ever (1 + Iy[)"L- 4 (y) E L9 (D) _Sar a < 1, or i$ q E C (D) for a: 3 1, a additis~zaliy, 
(9 ~ E E  (R" )a rx 1, 

(ii) h(lylU"2 1 1 ) g w ~ L 3 ( ~ ~ )  if a! = 1, 

(iii) (l+]y~)"-~q(y)~S?(R~) i f a c : > b ,  

then I;, g  (x) is a eantinuotcs fmaetiala of x and 

lim sup Gt- ,,,, Iql (XI = 0. 
& ' x 6 b  

Proof. We prove the k s t  part of the eheorern fm a < I. POP a 8x.d y, 
Q < y < 1, we have- 

Since m < 1, we have @,(x2 y) < K,.(x-y).  This rrnd the assumption q e y  
yield that for a given s 1 O the rsupmmum ovcr x ~ R l  .of the first: term an Ihe 
right-hand side of the above equdity is less than B whenever y is small enough. 
On the other haad, 3 Ix---yj 3 7, then 
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'$2lereft>re, the intepmd in the second tern is continuaas in x, vanishes at b, 
md i s  bounded by 

If we assume that  EL! (Rl),  then we obtdn 

where e and y are as above, This completes the proof of the case a < 1. 
When R .= I, we apply the inquziiity (1 I). Under the msssumption g ~ c  (a) 

we obtain, for Q < y <: 1 ,  

T a b g  in to account q e R (Dl we obtain the first canc~lasioe ia the: case 
ot = I. The wnrhrrity follows from simlEasrr arguments as in the f i r s t  part af the 
proof 

m e n  additionalIy Iln (1y[1/2 -i- I) q fy) E (R1), then, arguing as befon, we 
ribpain 

Since for E7 < Q WE have h - y < - y = \ySj the proof of this part af the &carem 
is complete. 

FinaIly, if # > 1 = d, we apply the ineq~~ality (31, Assume f is t  that 
q E b (Dl, We then obtain 



One-dimensia~lctl Feynmaa- Knc mmigrosrps 39 1. 

For: Ei .r O we abtdn, as before, (6- y)"lL g jyjE- < ((I +lyDR-' and this corn- 
plctes the proof of the lmt part of the beorem. 

Let q ~ y .  We recafl that 

u.(x, y )  = Ex eq(ay)) where 2, = .c( - m,p). 

Obviously, u (x, y)  = I. for x .& y. In L4-j it is shown (see Seetion 7) that If 
u (x, y): < ou dbr a single x < yy then u (., y) is a continuous regular g-harmonic 
function on (- a, y). En particular, u { w ,  y) < co for every w < y, 

w e  gut 

~ = : ~ U ~ ( ~ E W ' ;  tk (x ,y )<  F E ~  for  all n-cr y), 

with the usual convention tbact sup@ - - a. 
We now establish a condition under which 8 - oo . 
Tmmn~ 8. Under the mmmptions (i), (ii) or (iii), ~especfively, from Theo- 

rern 7, we have 

j3 2 sup{b~W\ S ~ G ~ - , ~ ~ , ~ ~ \ { X )  < 1) ) - ~ o -  
xS& 

PruoL Let q f 0. Define 

1 t b  

ME (x, b) = --F ( 5  Iq (XJ~ and M ,  ( B )  = sup M ,  (x, b). 
H! x 6 b  

By the proof of the Khasminski lemma (see 171) we obta,ia 

Obesve that if bi G b2, then Mi (x, bl) G M ,  [x, bz) for aU x < bl,  Conse- 
quently, 
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Moreover, M1(b)  is a coMbuous fm~tion of tP. To prove this we &ow 
that IG[ - ,Bbi fql(* ) is continuous, wi tb respe.et to the supremum norm, as a tunc- 
tian of b, For this purpose, assume that hi < b,, Then for 6, g x 4 b ,  we 
have 

Gc- oct,sl,, I4 (4 - Gt- m,,, 141 (-4 = Gf- a,b3r 141 14. 

We thus estimate firsf .Gt - 34i (x) for br G x G bz.  
Assume that a ,  1, Using the estitnate (9) we abta_in 

EE now ot -- 1, then for a given EZ 3 O there exists a y, O < y < 1, such that 

where C is the constant from the estiraate (If), We then obtain 
b2 

Gt - 4 ~ ~ h a l  Id ([X) = ,f r;(- O , B ~  ( ~ 1  Y )  lq (~11 $Y 
-m 

We now cl~rrsider the- case a < 1. AS in the previous case, for a given e , O 
we C ~ O C ) S ~  y,  O e Y < 1, such ahat 



For x 4 bl we prowed as folilows: 
' $ 2  

q- ,*,, 141 w- Gr-oci,bll 141 t-4 - Ex [.E.&, < .eb,; .f $q(41t111$tl 
Cb 2 

The result fallows by app5ication of the- first part. 
Defme 

By continuity of M I  and Theorem 4 we have b, > - m and N,(bll) - 1 if 
bo < ( ~ 3 .  Also, for b .= ba we obtain MCb) < 1. Therefore, ifsr b < 6, and all 
x g b we have 

This prova that 3 &, r - m. The proof is now complete, 

We now estabfislh additional prop.erties d the functias en ( w ,  y), under the 
asstlnnptions aF Theorem. 7, unless stated otlzerwix. First, observe tbar by the 
final part of the above proof we get 

S~IICG we have shorn  ia Theorem 7 that limb,-, Mi (b) - 0, it foUows that 

Iim suplec;(xl cl)- 11 = 0, 
h - - m  rdb 

We also note that if a < I, then limb,, M j  (b) .: a. indeed, since 
g E $@ n L? (R'), we obtain 

n u s ,  hy the estimate G ,-,,, 4 M,, we s b t ~ n  



On tbr; other band, far a 3 I we obtain 

We show this first far a > 1, Observe t h ~ t  EQF B > 0 and -6/2 < y < b/4 
we have (b-y)/fy +b,/2) r 1. Helm using the lower estimate (9) we ob'taia 

For rx = f we argue as foEows: 

x - l  

r cX j1ln(--1- ~ ) I ~ ( Y I I ~ Y - C  I lnlx-yi ~ ~ [ Y I I ~ Y -  
- m  -m 

Now, in the la& term, for fixed x we have 
x - i  

0 6  $ hl~-~l lq(Y)ld~dc~ a, 
-00  

while the preasious tern tiends to co as b + m, whenever 11qllb.lc-- m , r -  rr + 0- 
We now show that for fixed b w~ have lim, , , 6, . web) q (x) .= 0. Note 

that thia property has no Brownian motion counterpart. 
Let Q > 1, By the uppcr csdmate (9) we have 

by the assumption, At frh s m e  time, when x -+ -m, then b-x % b-y  for 
fixed y, vvbenevar 1x1 is- big enough. Therefore, 



Using the same estimate we thus ebtah, again when 1x1 i s  suE~iendy big: 

The application af the Lebesgue Dominated Convergeam Theorem gives now 
the claim. 

ff a = I, then we show first that given E =. 0 we can choose A < b such &at 

For this purpose8 assume that O < y G 1 and estimate the above expression as 
m o w s :  

Tire assumption q E d h (W1" "+ I) g (VI EL+ Pi) yidd now the above 
cEaim, 

The mnclusion now fullaws from the fact that G,- w,bt (x, y) tg(y]/ i~ domi- 
nated by the expression 

which converges tol 0 as x -+ -m and is uniformly with mspct  to x integrable 
over the interval (A1 b) for fixed but atl1err;vise wbitrary A .< b. 

The proof of the caspl at .= 1 & even. easier and is omitted, 
We now &ow that if b 6: bp = sup ( ~ E R ' ;  MI (h) < I), then 

h u(x, B)  - 1. 
X" - a, 

We ~Iaiaaa that 
f& 

Jim E ; ~ ( $ I ~ ( x ; T , ) ] B # ) ~ = O ,  n - 1 , 2  ,... 
X - + - a  $j 
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Observe that since 
T b  

this has just been shown for n = 1, Next, if we define 

then = G,-m.,hCI~Ifn> for t-2 3 1. Howeve-r, S U P X ~ ~  ISn(3C)I G M i  (b)l", d 
satisfy all the assump~oas jmposed on q and this justifies the elzrim. Now, &nee 
b ..r: bO, we have Mi (b) < 1, so for a given E > O we can find all such that 

i f  we now choose xa < b such that for x G xo 

then firr x < xo we obtairs Itl(x, b)- l l<  6, and the coxsclusbn foUows. 
We candude; our considerations by providing a condition opposite to 

those describd in Theorem 8. 

P~s~sisnno~ 9. Sulclpsse thrsr g ~ y  and q 2 0. I f  

then either j3 -. -a or lim,,-, u ( x ,  b) = m, 

Pro  of By virtue of Jensen':~r"s inequality 

it i s  enough to analyse G ~ - a . b j q ( ~ s  Assume that the fimt cenditian holds true 
and suppost: khat y < 2x - b = x - ( B  - x) < x. Then we have f b - - y) c 1. 
n u s ,  we obtsitn 



Siaw obviously x- y G h-y, the: last expression is uat less than 

if only b > O and y < 0. hdeed, we, then have b - y < b - by. This proves the 
first part af the proposition, siuw the last htegrd is inf~exf, 

Let now or 3 .  QSbsene that for 2y 3y >b+x we obldn b - y  .= y-x, so 
(£I - y)/(y - x)  < 1. Thus, we have 

because for y < 0 and B > O  we obtain b - y  > -y= iy/. When x 4  -m, the 
cenelusiollrt follows, campfeting the proof of the proposition. 

Pde now indicate haw to compute b,, given by the fornula (12) for q - ]If -c,c) 

with c > 0. We start with r rwfo g &e Green operator Gr- m,bJ a 
which is mare suitable for computation. We aIwatys assume that q E n I;' (Rx) .  
Then Theorem 7 applies, so far every x g b we obtain G,- ,,) lqf (XI < o ~ ,  ;md 
this jusses cham@;ing tbe order of integriltion h the: followitzg eaIculdtions: 
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We aha define for 0 g u < 1 

We are now able to examirne; the above-mention& example. Gs usual, we 
assume bere that me ((3, 2). 

, Let q - -,, ), c > 0. For b > - c  we @brain 

For -e < b g c the greatest @ah@ of Gf- qjx )  is attained at the poiat: 
x, determimd by the unique soltftiota uo, of the eqzacrtion 

Far b 3 c the correspondi~g uaralue ui  is. tha unique solution of the equciltfliaa 

0 < u < 1, where d - (b -c)J(h -t- 6) a ~ ~ d  the rnzzxibnaf ualcre of the Gre~n opmalor 
is given by 

We first note that since S f - c o , b l ( ~ ,  y) = 0 for y 2 li, we obtain 

whenevcr b S - c. We therefore assume thoughout the remainder that 
b =" -6- 



By the form of the Green operator w o b t ~ n  

where x' = x/c and b" b/c, 
Assume first that x G --c. By (18) we then obtab 

Shee the above expression is a nondesreasing fun~tion of x, we obtajn 

Plitreet; calculations provide: the value of the last quandtg for fbl 6 c as 
2 (b  c c)"/oE' I' (81/2j2 01: 

whenever b & c, aade now write (19) in a, form which is more suitable for corn- 
yutaions, We introdurn a new vasiablle t defined by the formula 
u + 1 = (-- t - x)/(t- 1). We then obtain 

u-x=t(--I-x)/(r;-l) and d u = [ l + ~ ) d t / ( t - 1 ) ~  

and, alter substituting we get 

where 11 = (r) - x)/(b -+ c)1. Sub6fitUfing ~ n c t :  again v - l/t, t - l = [l - u)/)/u, 
db = --du/v2 we fiaally obtain 

Assurne now that c 6 x f h. By (18) we obtain 



Computing the imer integaI and using ilaeg-ratian by parts we fu.rtber ohttgia 

Since tbe above expression k a nonincreashg funct.jon of x, we obtain 

6 ( - i a . b E 1 ( - c i c ) ( x ) g G ( - ~ , b ) 1 ( - F . 6 ) ( C ) *  s : e x < 6 .  

Direct cdculafiorts ag;tia provide the last value as 

61: is easy to see that G[-  q (- c) G,- ,,b, q (c). 
We now consider the case --- c G 3~ C= C. We may and do assume bere that 

CE = 1, The expres&on (18) takes then, up to constants, the form 

Iategra~ng by parts the right-hand side, we obtain 

Taking the  dcrivarivt: af the a b o v ~  expression with rmpect to x we obtain 

Observe that Ear a ,< I the i n t e ~ d  above tcsds to when x 1 - 1, SO the 
derivative dso tends to m. Far o! > 1 it fdlovvs that it wnverges .to 

Om the sthcr han& when x 7 B, the isltegral above tends to O while the fir30 
term converge8 lo - a. Consequeaenfly, the derivative tends to - a. There- 
fore, th~r-re exists xo E ( -  1 ,  b) where the expression (21) attains the maxhum. 
Integr;zting by parts anee again in (22) we see that x, is a. solution of the cqua- 
tion 



Since the left-hand side af (23) is deereaing and the ight-band side is En- 
creasing in x, the solution xa is ujniqm. 

As btifor~, we again transfarm the exprasion (21), We introduce a mw 
variabk r defined by the fomuI;a zr + 1 - 1 + x)/(X - t). We then obtain 

Taking into amount the appropl-iare constan& we obtain f m  (21) 

where* as be fa^, rs - (b  - x)/@ +el, O -c u < 1 .  
The m;axinal vdue of tbe expression (24) is determined now by the root af 

its derivative: 

and this equanion is equivalent to (14). TE%king this into ac~ount we ~btstin ((15). 
We now con~der the case when f r  3 c and -s: < x < c. Agdn, we a ~ ~ n r n e  

for time being that c = 1, By the EorrmuSa (18) we then obtain 

We intraduce a new variable in .the first integral in lehc e;x~wssion above by the 
farmlala u 6 1 = (I + x ) / ( l -  E). Wle then obtain 

haIs;$ously9 substituting u - a =. (1 - x)/(1- e) in the slecond integal we obtain 

- - / I -  d u = i ( I - ~ ) i d t / ( l - t ) ~  

a d  

hnol ing  (A - x]/(b + c) by u. and (b -el/@ + c)  by d and t&hg into a ~ ~ o u a t  



constm ts, we transform the expre~sion 3" (01/2)"( - q (x) into the fellowing 
farm: 

+-# 

Qrr the: other ban& by fategration by parts we obtain 

which allows us to trmsfom (25) into the foEEowing: 

The derivative of (26) a-gain leads to the equation 

Bt is not W d t  tu observe that (27) is equivalent to (16). The J'ustGcatioa of 
the existence of rbs; uaiqne solution u, szttisfjrifzg (2'7) is similar to that of (14) 
a d  i s  omitted. Taking into account (26) apld (27) we obtaim (17). 

A-Pthough we do not need the expressions for GI- qlx) for x i --c or 
for c < x: < b, we provide them for the sake of completeness. We begin with the 
c a e  .x < --c: 

where a - [b - x)J(b + c] c) I. For c <, x c 6 we obtain, atza'togously, 

with ar = (b-x)/(b+c) < d ,  
We new provide a mare detailed analysis; for the case ct = 1. Note that in 

thig case we comprrte diaecdy ttle i~~tegrds 1333 as fallows: 

Stabstituthg (30) k t u  (14) we obbi~in the elguadsn 



or, equivdently, 

Substituting eap Zt  = (1 + &)/(I - $1, 0 < t m, we obtain & = tanh t ,  
and so (32) takes the form 

Let tO be the tmique root of the quation (33). Then we obtain 

Assume that c > n/4t0. We get ba = z/2t, - c, 
Let now b 2 F and -c c x < c, From (1Ej)l we have 

By (30) and (31) we then obtain equivalently 

If we hnatroduce .a new va~able by the formula 
- - - 

then we ~83tak 

w-J;i 
tanh t = -. -------- 

f i u  -%h' 
so the equation (34) is being bansfomed into 

4361 At = 1 - 4 .  
The equatiomzs (35) m d  (35) provide then the fo11owing quivdent version of (16): 

Let t ,  be the; unjque: rmr of (37) and the clanespozlBing value of the orig;.z1 
variarble;. According to (17) wwe then o$t;3ira 
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If we put exp Zw, = (1 c &)/(I - J;;), then tanh w, = +++/< and (38) becomes 

R e m a r k  fn the Brow~an  motion case the e e e n  fun~tion egbli&I$ 
G,- ,r, (x, y )  = (b-x) A fb - y), x, y 4 b, and the Eonnula (18) is also valid. In 
this case the greatest value ofG,-oonb)q(x) is attained at x = -c, for q a before, 
and is equal to (b+eI2/2 if -c c: b < c and to 2bc if c < b. Thus, b, = $-c if 
c > &/2 and bo = 1/(2c) if c G $/z. However, even in that case b, z @ (see 
the Exmple in Section 9 of [TI) and to determine @ the mere advanced mefiode 
w e  required, 

lakck~awldpem.Bs. A part a-f this work was done WKIE the second-named 
author was virjiting Purdue UUnersity in February-March, 2001. We is gralefd 
to Department ef Mathematics and to Professor HT, Banueles for their has- 
pltditp. The autlhow are &so gatefu1 to Dr. JK. Bagdan, for discussions con- 
cerning the Example in Sation 5. 
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