THE MAXIMAL \mathscr{J}-REGULAR PART OF A q-VARIATE WEAKLY STATIONARY PROCESS

By

LUTZ KLOTZ (LEIPZIG)

Abstract

Let x be a q-variate (weakly) stationary process over a locally compact Abelian group \boldsymbol{G}, and \mathscr{J} a family of subsets of \boldsymbol{G} invariant under translation. We show that the set of all regular non-negative Hermitian matrix-valued measures M not exceeding the (non-stochastic) spectral measure of x and such that the Hilbert space $L^{2}(M)$ is \mathscr{J}-regular contains a unique maximal element. Moreover, this maximal element coincides with the spectral measure of the \mathscr{J}-regular part of the Wold decomposition of x.

1991 Mathematics Subject Classification: Primary 60G25; Secondary 15A57.

1. INTRODUCTION

Let N be the set of positive integers and $q \in N$. By M_{q} we denote the algebra of $q \times q$-matrices with entries from the field of complex numbers C and by M_{q}^{\geqslant}the subset of non-negative Hermitian matrices. The symbol I stands for the unit matrix of M_{q}.

Let \boldsymbol{G} be a locally compact Abelian group, Γ its dual, and $\langle g, \gamma\rangle$ the value of a character $\gamma \in \boldsymbol{\Gamma}$ on $g \in \boldsymbol{G}$. If J is a subset of \boldsymbol{G}, then a (finite) $\boldsymbol{M}_{\boldsymbol{q}}$-linear combination of functions $\langle g, \cdot\rangle I, g \in J$, is called a trigonometric polynomial with frequencies from J.

Let x be a q-variate (weakly) stationary process over \boldsymbol{G}, and \boldsymbol{H}_{x} its time domain, i.e. the left Hilbert- $\boldsymbol{M}_{\boldsymbol{q}}$-module spanned by the values of x. If \mathscr{J} is a family of subsets of \boldsymbol{G} invariant under translation, then there exists a unique Wold decomposition of x into an orthogonal sum of q-variate stationary processes y and z such that y is \mathscr{J}-regular and z is \mathscr{J}-singular (cf. [12], Theorem 2.13). It could be expected that, in a certain sense, the process y is the "maximal \mathscr{J}-regular part of x ". The aim of this note is to specify this statement. To do this it is more convenient to work with the spectral domain instead of the time domain of x.

Let $\mathscr{B}(\Gamma)$ be the σ-algebra of Borel sets of Γ. The (non-stochastic) spectral measure M_{x} of x (cf. [12], Definition 3.5) is a regular M_{q}^{\geqslant}-valued measure on
$\mathscr{B}(\Gamma)$. Loewner's partial ordering of M_{q}^{\geqslant}induces a partial ordering on the set of all regular M_{q}^{\geqslant}-valued measures on $\mathscr{B}(\Gamma)$. We will show (see Theorem 3.3) that among all regular M_{q}^{\geqslant}-valued measures M on $\mathscr{B}(\Gamma)$, which do not exceed M_{x} and for which the space $L^{2}(M)$ is \mathscr{J}-regular, there exists a maximal measure. Moreover, in Section 4 it will be shown that this maximal measure coincides with the spectral measure of the \mathscr{J}-regular part y of the Wold decomposition of x. Section 5 deals with an application of our results to the case where \mathscr{J} is the family \mathscr{J}_{0} of complements of all singletons of G. Using Makagon and Weron's characterization of \mathscr{J}_{0}-regular processes (see [7], Theorem 5.3), we compute the spectral measures of the \mathscr{J}_{0}-regular and \mathscr{F}_{0}-singular parts of the Wold decomposition of x.

2. PRELIMINARIES

For any matrix B with complex entries, denote by B^{*} its adjoint and by $\mathscr{R}(B)$ its range. For $A \in M_{q}$, let $\operatorname{ker} A, \operatorname{tr} A$, and A^{+}be the kernel, trace, and Moore-Penrose inverse of A, respectively. Let P_{A} be the orthoprojector in the left Hilbert- \boldsymbol{M}_{q}-module \boldsymbol{C}^{q} of column vectors of length q onto $\mathscr{R}(A)$. If $A \in \boldsymbol{M}_{q}^{\geqslant}$, we denote by $A^{1 / 2}$ the unique non-negative Hermitian square root of A. We equip M_{q}^{\geqslant}with Loewner's partial ordering, i.e. we write $A \leqslant B$ if and only if $B-A$ is a non-negative Hermitian, $A, B \in M_{q}^{\geqslant}$.

We give some more or less known results on M_{q}^{\geqslant}and the measurability of M_{q}-valued functions, which for ease of reference will be stated as lemmas.

Lemma 2.1. Let \mathscr{D} be a directed subset of $\mathbb{M}_{q}^{\geqslant}$, which has an upper bound. Then there exists a least upper bound C of \mathscr{D} and we have

$$
u^{*} C u=\sup \left\{u^{*} D u: D \in \mathscr{D}\right\}, \quad u \in C^{q}
$$

Proof. For $u \in C^{q}$, set $t(u):=\sup \left\{u^{*} D u: D \in \mathscr{D}\right\}$. Obviously, if $\lambda \in C$, we have

$$
\begin{equation*}
t(\lambda u)=|\lambda|^{2} t(u) \tag{2.1}
\end{equation*}
$$

and if $u, v \in C^{q}$, we obtain

$$
\begin{equation*}
\sup \left\{u^{*} D u+v^{*} D v: D \in \mathscr{D}\right\} \leqslant t(u)+t(v) \tag{2.2}
\end{equation*}
$$

Since \mathscr{D} is directed, for $D_{1}, D_{2} \in \mathscr{D}$ there exists $D_{3} \in \mathscr{D}$ such that

$$
u^{*} D_{1} u+v^{*} D_{2} v \leqslant u^{*} D_{3} u+v^{*} D_{3} v .
$$

This yields

$$
\begin{equation*}
t(u)+t(v) \leqslant \sup \left\{u^{*} D u+v^{*} D v: D \in \mathscr{D}\right\} . \tag{2.3}
\end{equation*}
$$

The parallelogram identity implies that

$$
\begin{align*}
\sup \left\{(u+v)^{*} D(u+v)+(u-v)^{*} D(u-v)\right. & : D \in \mathscr{D}\} \tag{2.4}\\
& =2 \sup \left\{u^{*} D u+v^{*} D v: D \in \mathscr{D}\right\} .
\end{align*}
$$

Combining (2.4), (2.2), and (2.3), we get

$$
\begin{equation*}
t(u+v)+t(u-v)=2 t(u)+2 t(v) \tag{2.5}
\end{equation*}
$$

From (2.1) and (2.5) it follows that there exists $C \in M_{q}^{\geqslant}$such that $t(u)=u^{*} C u$, $u \in \boldsymbol{C}^{q}$. From the definition of t it is clear that C is the least upper bound of \mathscr{D}.

Lemma 2.2 (cf. [1], Theorem 1). Let $p, q \in N$. A block matrix

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{12}^{*} & X_{22}
\end{array}\right) \in M_{p+q}
$$

belongs to M_{p+q}^{\geqslant}if and only if
(i) $\mathscr{R}\left(X_{12}^{*}\right) \subseteq \mathscr{R}\left(X_{22}\right)$,
(ii) $X_{22} \in M_{q}^{\geq}$,
(iii) $X_{11}-X_{12} X_{22}^{+} X_{12}^{*}=:\left(X / X_{22}\right)$ is a non-negative Hermitian.

Lemma 2.3 (cf. [3], p. 391). If F is a (Borel) measurable M_{q}-valued function on Γ, then P_{F} is measurable. If W is a measurable M_{q}^{\geqslant}-valued function on Γ, then $W^{1 / 2}$ and W^{+}are measurable.

Let M be a regular M_{q}^{\geq}-valued measure on $\mathscr{B}(\Gamma)$ and τ a regular non--negative σ-finite measure on $\mathscr{B}(\Gamma)$ such that M is absolutely continuous with respect to τ. For example, one can take $\tau=\operatorname{tr} M$. Let $W:=d M / d \tau$ be the Radon-Nikodym derivative of M with respect to (abbreviated to "w.r.t.") τ. By definition, the left Hilbert- M_{q}-module $L^{2}(M)$ consists of (equivalence classes of) measurable M_{q}-valued functions F on Γ such that

$$
\operatorname{tr} \int_{\boldsymbol{\Gamma}} F(\gamma) W(\gamma) F(\gamma)^{*} \tau(d \gamma)<\infty
$$

The corresponding scalar product of $L^{2}(M)$ is defined by

$$
\operatorname{tr} \int_{\boldsymbol{F}} F(\gamma) W(\gamma) G(\gamma)^{*} \tau(d \gamma), \quad F, G \in L^{2}(M) .
$$

The definition does not depend on the choice of τ (cf. [10]).
Lemma 2.4. Let $F \in L^{2}(M)$. Then $F=0$ in $L^{2}(M)$ if and only if $\mathscr{R}(W) \subseteq \operatorname{ker} F \quad \tau$-a.e.

Proof. Since $F W F^{*}=F W^{1 / 2}\left(F W^{1 / 2}\right)^{*}$, we have $F=0$ in $L^{2}(M)$ if and only if $\mathscr{R}\left(W^{1 / 2}\right) \subseteq \operatorname{ker} F \tau$-a.e. Since $\mathscr{R}\left(W^{1 / 2}\right)=\mathscr{R}(W)$, the result follows.

If M_{x} is the spectral measure of a q-variate stationary process x over G, the corresponding space $L^{2}\left(M_{x}\right)$ is called the spectral domain of x. There exists an isometric and isomorphic map V_{x} of H_{x} onto $L^{2}\left(M_{x}\right)$ such that $V_{x} x_{g}=\langle g, \cdot\rangle I$,
$g \in \boldsymbol{G}$. The map V_{x} is called Kolmogorov's isomorphism. It enables us to formulate \mathscr{J}-regularity and $\mathscr{\mathscr { L }}$-singularity of x in terms of $L^{2}\left(M_{x}\right)$. According to this we call a space $L^{2}(M) \mathscr{J}$-regular or \mathscr{J}-singular if and only if

$$
\bigcap_{J \in g} \bigvee_{M}\{\langle g, \cdot\rangle I: g \in J\}=\{0\} \quad \text { or } \quad \bigvee_{M}\{\langle g, \cdot\rangle I: g \in J\}=L^{2}(M)
$$

for all $J \in \mathscr{J}$, respectively. The symbol \bigvee_{M} stands for the closed M_{q}-linear hull in $L^{2}(M)$. We simply write \bigvee if $M=M_{x}$ is the spectral measure of the process x.

3. THE MAXIMAL \mathscr{J}-REGULAR PART

Let M_{x} be the spectral measure of a q-variate stationary process over \boldsymbol{G}, $\tau_{x}:=\operatorname{tr} M_{x}$, and $W_{x}:=d M_{x} / d \tau_{x}$. In the sequel, all relations between measurable functions on Γ are to be understood as relations which hold true τ_{x}-a.e.

Let \mathscr{W}_{x} be the set of all measurable M_{q}^{\geqslant}-valued functions W on Γ such that $W \leqslant W_{x}$ and let $\widetilde{\mathscr{W}}_{x}$ be the set of all M_{q}^{\geqslant}-valued measures of the form $W d \tau_{x}$, $W \in \mathscr{W}_{x}$. The partial ordering on \mathscr{W}_{x} induces a partial ordering on \tilde{W}_{x} : define $W_{1} d \tau_{x} \leqslant W_{2} d \tau_{x}$ if and only if $W_{1} \leqslant W_{2}, W_{1}, W_{2} \in \mathscr{W}_{x}$. Note that for $M_{1}, M_{2} \in \tilde{W}_{x}$ we have $M_{1} \leqslant M_{2}$ if and only if $M_{1}(\Delta) \leqslant M_{2}(\Delta), \Delta \in \mathscr{B}(\Gamma)$.

Lemma 3.1. For any directed subset \mathscr{D} of \mathscr{W}_{x}, there exists a least upper bound.

Proof. According to the remarks preceding the lemma it is enough to show that the subset $\tilde{\mathscr{D}}:=\left\{W d \tau_{x}: W \in \mathscr{D}\right\}$ of $\tilde{\mathscr{W}}_{x}$ has the least upper bound. For $\Delta \in \mathscr{B}(\Gamma)$, let \mathscr{D}_{Δ} be the set of matrices of the form

$$
\begin{equation*}
\sum_{j=1}^{n} M_{j}\left(\Delta_{j}\right) \tag{3.1}
\end{equation*}
$$

where $M_{1}, \ldots, M_{n} \in \tilde{\mathscr{D}}$, and $\left\{\Delta_{1}, \ldots, \Delta_{n}\right\}$ is a partition of $\Delta, n \in N$. The matrix $M_{x}(\Delta)$ is an upper bound of \mathscr{D}_{Δ}. Moreover, \mathscr{D}_{Δ} is a directed set. In fact, if (3.1) and

$$
\begin{equation*}
\sum_{k=1}^{m} M_{k}^{\prime}\left(\Delta_{k}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

are two elements of \mathscr{D}_{Δ}, consider $M_{j k} \in \tilde{\mathscr{D}}$ such that $M_{j} \leqslant M_{j k}, M_{k}^{\prime} \leqslant M_{j k}$, $j=1, \ldots, n, k=1, \ldots, m$. Then $\sum_{j=1}^{n} \sum_{k=1}^{m} M_{j k}\left(\Delta_{j} \cap \Delta_{k}^{\prime}\right)$ belongs to \mathscr{D}_{Δ} and exceeds both matrices (3.1) and (3.2). From Lemma 2.1 it follows that \mathscr{D}_{Δ} has the least upper bound $N(\Delta)$ and that

$$
\begin{equation*}
u^{*} N(\Delta) u=\sup \left\{u^{*} D u: D \in \mathscr{D}_{\Delta}\right\}, \quad u \in C^{q} . \tag{3.3}
\end{equation*}
$$

Standard measure-theoretic arguments (cf. the proof of Theorem 5 of Section III. 7 of [2]) show that, for $u \in C^{q}, u^{*} N u$ is an additive function on $\mathscr{B}(\Gamma)$. Hence
N is additive. Since $N \leqslant M_{x}$, it even belongs to $\tilde{\mathscr{W}}_{x}$. Finally, from (3.3) it follows easily that N is the least upper bound of $\mathscr{\mathscr { D }}$.

If $W \in \mathscr{W}_{x}$, set $L^{2}(W):=L^{2}\left(W d \tau_{x}\right)$. Moreover, we define

$$
\mathscr{W}_{x}^{(r)}:=\left\{W \in \mathscr{W}_{x}: L^{2}(W) \text { is } \mathscr{J} \text {-regular }\right\}
$$

Lemma 3.2. The set $\mathscr{W}_{x}^{(r)}$ is directed.
Proof. Let $W_{1}, W_{2} \in \mathscr{W}_{x}^{(r)}$ and let $Q(\gamma)$ be the orthogonal projection in C^{q} onto the algebraic sum $\mathscr{R}\left(W_{1}(\gamma)\right)+\mathscr{R}\left(W_{2}(\gamma)\right), \gamma \in \Gamma$. From von Neumann's alternating projections theorem (cf. [4], Problem 96) we can conclude the measurability of the function Q. Let

$$
W_{x}=\left(\begin{array}{ll}
W_{x, 11} & W_{x, 12} \\
W_{x, 12}^{*} & W_{x, 22}
\end{array}\right)
$$

be the block partition of W_{x} w.r.t. the orthogonal decomposition

$$
C^{q}=Q C^{q} \oplus(I-Q) C^{q}
$$

Let us set

$$
W_{3}:=\left(\begin{array}{cc}
W_{x, 11}-W_{x, 12} W_{x, 22}^{+} W_{x, 12}^{*} & 0 \\
0 & 0
\end{array}\right)
$$

The measurability of Q and Lemmas 2.3 and 2.2 imply that $W_{3} \in \mathscr{W}_{x}$. Moreover, from Lemma 2.2 it follows that $W_{1} \leqslant W_{3}$ and $W_{2} \leqslant W_{3}$. To complete the proof it is enough to show that $L^{2}\left(W_{3}\right)$ is $\mathscr{\mathscr { I }}$-regular. Let $F \in L^{2}\left(W_{3}\right)$ be such that for each $J \in \mathscr{J}$ it can be approximated by trigonometric polynomials with frequencies from J in $L^{2}\left(W_{3}\right)$. Since $W_{1} \leqslant W_{3}$, an analogous approximation exists in $L^{2}\left(W_{1}\right)$. The \mathscr{J}-regularity of $L^{2}\left(W_{1}\right)$ yields $F=0$ in $L^{2}\left(W_{1}\right)$. Similarly, $F=0$ in $L^{2}\left(W_{2}\right)$. Using Lemma 2.4 , we can conclude that $\mathscr{R}\left(W_{1}\right)+\mathscr{R}\left(W_{2}\right) \subseteq \operatorname{ker} F$. Since $\mathscr{R}\left(W_{3}\right) \subseteq \mathscr{R}\left(W_{1}\right)+\mathscr{R}\left(W_{2}\right)$, it follows that $F=0$ in $L^{2}\left(W_{3}\right)$.

Theorem 3.3. The set $\mathscr{W}_{x}^{(r)}$ has a unique maximal element.
Proof. By Lemmas 3.1 and 3.2, the set $\mathscr{W}_{x}^{(r)}$ has the least upper bound $W^{(r)} \in \mathscr{W}_{x}$. Assume that $L^{2}\left(W^{(r)}\right)$ is not \mathscr{J}-regular. Then there exists $F \in L^{2}\left(W^{(r)}\right)$, $F \neq 0$, such that, for each $J \in \mathscr{J}, F$ can be approximated by trigonometric polynomials with frequencies from J. Let $W \in \mathscr{W}_{x}^{(r)}$. Then, in particular, $W \leqslant W^{(r)}$, and similar arguments to those in the proof of Lemma 3.2 show that

$$
\begin{equation*}
\mathscr{R}(W) \subseteq \operatorname{ker} F \tag{3.4}
\end{equation*}
$$

Let

$$
W^{(r)}=\left(\begin{array}{ll}
W_{11}^{(r)} & W_{12}^{(r)} \\
W_{12}^{(r) *} & W_{22}^{(r)}
\end{array}\right)
$$

be the block partition of $W^{(r)}$ w.r.t. the orthogonal decomposition $C^{q}=$ $=\mathscr{R}\left(F^{*}\right) \oplus \operatorname{ker} F$. Let us set

$$
W^{(\varrho)}:=\left(\begin{array}{cc}
W_{11}^{(r)}-W_{12}^{(r)} W_{22}^{(r)+} W_{12}^{(r) *} & 0 \\
0 & 0
\end{array}\right)
$$

It is not hard to see (cf. the proof of Lemma 3.2) that

$$
\begin{equation*}
W^{(\varrho)} \in \mathscr{W}_{x}, \quad W^{(0)} \leqslant W^{(r)}, \quad \text { and } \quad W \leqslant W^{(\varrho)} \tag{3.5}
\end{equation*}
$$

On the other hand, since $F \neq 0$ in $L^{2}\left(W^{(r)}\right)$, Lemma 2.4 implies that there exists $\Delta \in \mathscr{B}(\Gamma)$ such that $\tau_{x}(\Delta)>0$ and $\mathscr{R}\left(W^{(r)}\right)$ is not a subspace of $\operatorname{ker} F$ on Δ. It follows that $W_{22}^{(r)} \neq 0$ on Δ, and hence $W^{(r)}-W^{(e)} \neq 0$ on Δ. Combining this with (3.5), we obtain a contradiction to the definition of a least upper bound. Thus, $L^{2}\left(W^{(r)}\right)$ is \mathscr{J}-regular and $W^{(r)}$ is a maximal element of $\mathscr{W}_{x}^{(r)}$. Its uniqueness follows from Lemma 3.2.

4. CONCORDANCE OF THE MAXIMAL REGULAR PART and the regular part of the wold decomposition

Let x be a q-variate stationary process over \boldsymbol{G} and \mathscr{J} a family of subsets of \boldsymbol{G} invariant under translation. Let $x_{g}=y_{g}+z_{g}, g \in \boldsymbol{G}$, be the Wold decomposition of x, where y is \mathscr{J}-regular and z is \mathscr{J}-singular. If we set $\widetilde{\mathscr{W}}_{y}:=d M_{y} / d \tau_{x}$ and $\tilde{W}_{z}:=d M_{z} / d \tau_{x}$, we have (cf. [9], Lemmas 4.3 and 4.4)

$$
\begin{equation*}
\tilde{W}_{y}+\tilde{W}_{z}=W_{x}, \quad \mathscr{R}\left(\tilde{W}_{y}\right) \cap \mathscr{R}\left(\tilde{W}_{z}\right)=\{0\} . \tag{4.1}
\end{equation*}
$$

Let V_{x} be Kolmogorov's isomorphism of \boldsymbol{H}_{x} onto $L^{2}\left(W_{x}\right)$ and set

$$
V_{x} y_{0}=: F_{y} \quad \text { and } \quad V_{x} z_{0}=: F_{z}
$$

where 0 is the neutral element of \boldsymbol{G}. It is not hard to see that

$$
\begin{equation*}
F_{y} W_{x} F_{y}^{*}=\tilde{W}_{y} \quad \text { and } \quad F_{z} W_{x} F_{z}^{*}=\tilde{W}_{z} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
V_{x} \boldsymbol{H}_{y}=\bigvee\left\{\langle g, \cdot\rangle F_{y}: g \in \boldsymbol{G}\right\} \quad \text { and } \quad V_{x} \boldsymbol{H}_{z}=\bigvee\left\{\langle g, \cdot\rangle F_{z}: g \in \boldsymbol{G}\right\}, \tag{4.3}
\end{equation*}
$$ and hence

$$
\begin{equation*}
\bigvee\left\{\langle g, \cdot\rangle F_{y}: g \in \boldsymbol{G}\right\} \oplus \bigvee\left\{\langle g, \cdot\rangle F_{z}: g \in \boldsymbol{G}\right\}=L^{2}\left(W_{x}\right) . \tag{4.4}
\end{equation*}
$$

From the relation (4.4) it follows that

$$
\int_{\boldsymbol{\Gamma}}\langle g, \gamma\rangle F_{y}(\gamma) W_{x}(\gamma) F_{z}(\gamma)^{*} \tau_{x}(d \gamma)=0, \quad g \in \boldsymbol{G},
$$

which yields

$$
\begin{equation*}
F_{y} W_{x} F_{z}^{*}=0 \tag{4.5}
\end{equation*}
$$

We can assume and we will do so in the sequel that

$$
\begin{equation*}
\operatorname{ker} W_{x} \subseteq\left(\operatorname{ker} F_{y} \cap \operatorname{ker} F_{z}\right) \tag{4.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
P_{W_{x}}=F_{y}+F_{z} \tag{4.7}
\end{equation*}
$$

as well as
(4.8) $\mathscr{R}\left(F_{y} W_{x}\right)=\mathscr{R}\left(F_{y} W_{x}^{1 / 2}\right)=\mathscr{R}\left(F_{y}\right)$ and $\mathscr{R}\left(F_{z} W_{x}\right)=\mathscr{R}\left(F_{z} W_{x}^{1 / 2}\right)=\mathscr{R}\left(F_{z}\right)$.

Moreover, from (4.2) it follows that $\mathscr{R}\left(\tilde{W}_{y}^{1 / 2}\right)=\mathscr{R}\left(F_{y} W_{x}^{1 / 2}\right)$ and $\mathscr{R}\left(\tilde{W}_{z}^{1 / 2}\right)=$ $=\mathscr{R}\left(F_{z} W_{x}^{1 / 2}\right)$. Combining this with (4.8), we obtain

$$
\begin{equation*}
\mathscr{R}\left(\tilde{W}_{y}\right)=\mathscr{R}\left(F_{y}\right) \quad \text { and } \quad \mathscr{R}\left(\tilde{W}_{z}\right)=\mathscr{R}\left(F_{z}\right) \tag{4.9}
\end{equation*}
$$

Let $W^{(r)}$ be the maximal element of $\mathscr{W}_{x}^{(r)}$. We wish to show that $W^{(r)}$ coincides with \tilde{W}_{y}. In order to prove this we first derive some properties of F_{z}, which eventually lead to the conclusion that $P_{F_{z}^{*}}=0$ in $L^{2}\left(W^{(r)}\right)$. Then we will see that the assumption $W^{(r)} \neq \tilde{W}_{y}$ would imply that $P_{F_{z}^{*}} \neq 0$ in $L^{2}\left(W^{(r)}\right)$.

Lemma 4.1. The values of F_{z} are diagonalizable matrices.
Proof. From (4.5) and (4.7) it follows that

$$
\begin{equation*}
F_{z} W_{x} F_{z}^{*}=W_{x} F_{z}^{*} \tag{4.10}
\end{equation*}
$$

Since $\mathscr{R}\left(F_{z} W_{x} F_{z}^{*}\right)=\mathscr{R}\left(F_{z} W_{x}^{1 / 2}\right)$, from (4.8) and (4.10) we obtain

$$
\begin{equation*}
\mathscr{R}\left(F_{z}\right)=\mathscr{R}\left(W_{x} F_{z}^{*}\right) \subseteq \mathscr{R}\left(W_{x}\right) . \tag{4.11}
\end{equation*}
$$

On the other hand, (4.6) gives

$$
\begin{equation*}
\mathscr{R}\left(F_{z}^{*}\right) \subseteq \mathscr{R}\left(W_{x}\right) \tag{4.12}
\end{equation*}
$$

The relations (4.11) and (4.12) show that it is enough to prove that the restrictions \bar{F}_{z} of F_{z} to $\mathscr{R}\left(W_{x}\right)$ are diagonalizable. Denoting by \bar{W}_{x} the restrictions of W_{x} to $\mathscr{R}\left(W_{x}\right)$, from (4.10)-(4.12) we get $\bar{F}_{z} \bar{W}_{x} \bar{F}_{z}^{*}=\bar{W}_{x} \bar{F}_{z}^{*}$, which yields

$$
\bar{W}_{x}^{-1 / 2} \bar{F}_{z} \bar{W}_{x} \bar{F}_{z}^{*} \bar{W}_{x}^{-1 / 2}=\bar{W}_{x}^{1 / 2} \bar{F}_{z}^{*} \bar{W}_{x}^{-1 / 2}
$$

This shows that the values of \bar{F}_{z}^{*}, and hence of \bar{F}_{z}, are similar to self-adjoint matrices, which implies that they are diagonalizable.

Lemma 4.2. We have $\operatorname{ker} P_{F_{z}^{*}} \cap \mathscr{R}\left(F_{z}\right)=\{0\}$.
Proof. Let $\gamma \in \Gamma$ and $u \in\left(\operatorname{ker} P_{F_{z}(\gamma)^{*}}\right) \cap \mathscr{R}\left(F_{z}(\gamma)\right)$. Then $u \in \operatorname{ker} F_{z}(\gamma)$, $u=F_{z}(\gamma) v$ for some $v \in C^{q}$, and hence $F_{z}(\gamma)^{2} v=0$. If $u \neq 0$ were true, this would contradict Lemma 4.1.

Lemma 4.3. We have $P_{F_{z}^{*}}=0$ in $L^{2}\left(W^{(r)}\right)$.

Proof. From (4.5) we get $F_{y} W_{x} P_{F_{z}^{*}}=0$. This implies that the function $P_{F_{z}^{*}}$ is orthogonal (in $L^{2}\left(W_{x}\right)$) to $\bigvee\left\{\langle g, \cdot\rangle F_{y}: g \in \boldsymbol{G}\right\}$. Examining the proof of the Wold decomposition (cf. the proof of Theorem 2.13 of [12]) and taking into account Kolmogorov's isomorphism, we obtain

$$
\bigvee\left\{\langle g, \cdot\rangle F_{z}: g \in \boldsymbol{G}\right\}=\bigcap_{J \in \mathscr{g}} \bigvee\{\langle g, \cdot\rangle I: g \in J\}
$$

It follows that, for $J \in \mathscr{J}, P_{F_{z}^{*}}$ can be approximated by trigonometric polynomials with frequencies from J in $L^{2}\left(W_{x}\right)$. Since $W^{(r)} \leqslant W_{x}$, an analogous result is true for $L^{2}\left(W^{(r)}\right)$. But since $L^{2}\left(W^{(r)}\right)$ is \mathscr{J}-regular, we conclude that $P_{F_{z}^{*}}=0$ in $L^{2}\left(W^{(r)}\right)$.

Theorem 4.4. The functions $W^{(r)}$ and \tilde{W}_{y} coincide.
Proof. Since $\tilde{W}_{y} \in \mathscr{W}_{x}^{(r)}$, it follows that $\tilde{W}_{y} \leqslant W^{(r)}$. Assume that $\tilde{W}_{y} \neq W^{(r)}$ on a set $\Delta \in \mathscr{B}(\Gamma)$ such that $\tau_{x}(\Delta)>0$. First note that $\mathscr{R}\left(\tilde{W}_{y}\right) \neq \mathscr{R}\left(W^{(r)}\right)$ on Δ. For if $\mathscr{R}\left(\tilde{W}_{y}\right)=\mathscr{R}\left(W^{(r)}\right)$ and $\tilde{W}_{y} \neq W^{(r)}$ were true on a set of positive measure τ_{x}, we would get $\mathscr{R}\left(W^{(r)}-\tilde{W}_{y}\right) \cap \mathscr{R}\left(\tilde{W}_{y}\right) \neq\{0\}$, and because of $\mathscr{R}\left(\widetilde{W}_{z}\right)=$ $=\mathscr{R}\left(W_{x}-\tilde{W}_{y}\right) \supseteq \mathscr{R}\left(W^{(r)}-\tilde{W}_{y}\right)$ also $\mathscr{R}\left(\tilde{W}_{z}\right) \cap \mathscr{R}\left(\tilde{W}_{y}\right) \neq\{0\}$, which contradicts (4.1). Thus, $\mathscr{R}\left(\tilde{W}_{y}\right)$ is a proper subspace of $\mathscr{R}\left(W^{(r)}\right)$ on Δ. Then from (4.1) and (4.9) it follows that $\mathscr{R}\left(W^{(r)}\right) \cap \mathscr{R}\left(F_{z}\right) \neq\{0\}$ on Δ. Combining this with Lemma 4.2, we infer that $\mathscr{R}\left(W^{(r)}\right)$ is not a subspace of $\operatorname{ker} P_{F_{z}^{*}}$ on Δ. Applying Lemma 2.4, we conclude that $P_{F_{z}^{*}} \neq 0$ in $L^{2}\left(W^{(r)}\right)$, which is a contradiction to Lemma 4.3.

Let us mention the following consequence of Theorem 4.4.
Corollary 4.5. If $L^{2}\left(W_{x}\right)$ is \mathscr{J}-singular, then for $W \in \mathscr{W}_{x}$ so is $L^{2}(W)$.
Proof. The \mathscr{J}-singularity of $L^{2}\left(W_{x}\right)$ and Theorem 4.4 imply that $\mathscr{W}_{x}^{(r)}=\{0\}$. For $W \in W_{x}$, consider the Wold decomposition of the corresponding stationary process over \boldsymbol{G}. Since the spectral measure of its \mathscr{J}-regular part belongs to $\mathscr{W}_{x}^{(r)}$, it is zero measure. Thus, $L^{2}(W)$ is \mathscr{J}-singular.

Remark 4.6. It would be of interest to have generalizations of Theorem 4.4 to the infinite-variate case. Treil' ([13], Theorem 3.1) gave such a result if \boldsymbol{G} is the group of integers and \mathscr{J} is the family of translates of the set of non-negative integers.

5. THE MAXIMAL \mathscr{J}_{0}-REGULAR PART

Let \boldsymbol{G} be a discrete Abelian group, \mathscr{J}_{0} the family of complements of all singletons of \boldsymbol{G}, and σ the normalized Haar measure of Γ. Let M_{x} be the spectral measure of a q-variate stationary process over \boldsymbol{G}.

Theorem 5.1 ([7], Theorem 5.3). The space $L^{2}\left(M_{x}\right)$ is \mathscr{J}_{0}-regular if and only if
(i) M_{x} is absolutely continuous w.r.t. σ,
(ii) $\mathscr{R}\left(d M_{x} / d \sigma\right)=$ const σ-a.e.,
(iii) $\left(d M_{x} / d \sigma\right)^{+}$is integrable w.r.t. σ.

It follows that the maximal \mathscr{F}_{0}-regular parts of M_{x} and of the absolutely continuous part of M_{x} coincide. Thus we can assume that M_{x} is absolutely continuous w.r.t. σ and replace the measure τ_{x} of the preceding sections by σ. For simplicity, now denote by W_{x} the function $W_{x}=d M_{x} / d \sigma$ and according to this notation define the corresponding objects \mathscr{W}_{x} etc. of Sections 3 and 4.

Let us set

$$
\begin{aligned}
L_{1} & :=\left\{u \in C^{q}: u^{*} W_{x}^{+} u \text { is integrable w.r.t. } \sigma\right\} \\
L_{2} & :=\left\{u \in C^{q}: u \in \mathscr{R}\left(W_{x}\right) \sigma \text {-a.e. }\right\} \\
L & :=L_{1} \cap L_{2}
\end{aligned}
$$

Remark 5.2. Note that the space L coincides with the space \mathscr{M} which appeared in Theorem 4.5 of [6] and was identified there as the range of the Grammian interpolation error matrix. Note further that L is the orthogonal complement of the space H of Lemma 9 of [5].

Let

$$
W_{x}=\left(\begin{array}{ll}
W_{x, 11} & W_{x, 12} \\
W_{x, 12}^{*} & W_{x, 22}
\end{array}\right)
$$

be the block representation of W_{x} w.r.t. the orthogonal decomposition $C^{q}=L \oplus L^{\perp}$. Set

$$
W^{(r)}:=\left(\begin{array}{cc}
\left(W_{x} / W_{x, 22}\right) & 0 \\
0 & 0
\end{array}\right), \quad W^{(s)}:=\left(\begin{array}{cc}
W_{x, 12} W_{x, 22}^{+} W_{x, 12}^{*} & W_{x, 12} \\
W_{x, 12}^{*} & W_{x, 22}
\end{array}\right) .
$$

Using Theorem 4.4 we will show that $W^{(r)} d \sigma$ is the spectral measure of the \mathscr{J}_{0}-regular part of the Wold decomposition of x, and hence $W^{(s)}=W_{x}-W^{(r)}$ is the spectral measure of the \mathscr{F}_{0}-singular part.

Lemma 5.3. The spaces $\mathscr{R}\left(W^{(r)}\right)$ are equal to $L \sigma$-a.e.
Proof. Clearly, $\mathscr{R}\left(W^{(r)}\right) \subseteq L$. On the other hand, $L \subseteq \mathscr{R}\left(W_{x}\right)=$ $\mathscr{R}\left(W^{(r)}\right)+\mathscr{R}\left(W^{(s)}\right)$. Thus, if L were not a subspace of $\mathscr{R}\left(W^{(r)}\right)$, we would have $\mathscr{R}\left(W^{(s)}\right) \cap L \neq\{0\}$. However, using (i) of Lemma 2.2 we easily get $\mathscr{R}\left(W^{(s)}\right) \cap L=\{0\}$. It follows that $\mathscr{R}\left(W^{(r)}\right)=L \sigma$-a.e.

Lemma 5.4. The function $W^{(r)+}$ is integrable w.r.t. σ.
Proof. Since $L \subseteq \mathscr{R}\left(W_{x}\right)$, we have ker $W_{x} \subseteq L^{\perp}$, and taking into account (i) of Lemma 2.2 we easily obtain $\operatorname{ker} W_{x}=\operatorname{ker} W_{22}$. Thus the generalized Banachiewicz inversion formula (cf. [8], formula (3.32)) is applicable, which implies that the left upper corner of W_{x}^{+}is equal to $\left(W_{x} / W_{x, 22}\right)^{-1}$. From the definition of L it follows that $\left(W_{x} / W_{x, 22}\right)^{-1}$ is integrable w.r.t. σ and so is $W^{(r)+}$.

Lemma 5.5. The space $L^{2}\left(W^{(r)}\right)$ is \mathscr{J}_{0}-regular.
Proof. The result follows immediately from Theorem 5.1 and Lemmas 5.3 and 5.4.

Lemma 5.6. Let $W \in \mathscr{W}_{x}^{(r)}$. Then $W \leqslant W^{(r)}$.
Proof. According to Theorem 5.1 there exists a subspace L_{0} of C^{q} such that $\mathscr{R}(W)=L_{0} \sigma$-a.e. Assume that $u \in L_{0} \cap L^{\perp}, u \neq 0$. Then u can be written as $u=u_{1}+u_{2}$ for some $u_{1} \in L_{1}^{\frac{1}{1}}, u_{2} \in L_{2}^{\frac{1}{2}}$. If $u_{1}=0$, there exists $\Delta \in \mathscr{B}(\Gamma)$ such that $\sigma(\Delta)>0$ and $u=u_{2} \notin \mathscr{R}\left(W_{x}(\gamma)\right)$ for σ-a.a. $\gamma \in \Delta$. This contradicts the inclusion $\mathscr{R}(W) \subseteq \mathscr{R}\left(W_{x}\right) \sigma$-a.e. It follows that $u_{1} \neq 0$, and hence $u \notin L_{1}$. From the definition of L_{1} we infer that $u^{*} W_{x}^{+} u$ is not integrable w.r.t. σ. Let W_{0} be the restriction of W to L_{0} and let

$$
W_{x}=\left(\begin{array}{ll}
W_{x, 11}^{(0)} & W_{x, 12}^{(0)} \\
W_{x, 12}^{(0) *} & W_{x, 22}^{(0)}
\end{array}\right)
$$

be the block representation of W_{x} w.r.t. the orthogonal decomposition $\boldsymbol{C}^{q}=L_{0} \oplus L_{0}^{\perp}$. From the definition of $\mathscr{W}_{x}^{(r)}$ and (iii) of Lemma 2.2 we obtain $W_{0} \leqslant\left(W_{x} / W_{x, 22}^{(0)}\right)$, and hence $\left(W_{x} / W_{x, 22}^{(0)}\right)^{-1} \leqslant W_{0}^{-1}$. By the generalized Banachiewicz inversion formula it follows that

$$
u^{*} W_{x}^{+} u \leqslant u^{*}\left(W_{x} / W_{x, 22}^{(0)}\right)^{-1} u \leqslant u^{*} W_{0}^{-1} u=u^{*} W^{+} u .
$$

Thus $u^{*} W^{+} u$ is not integrable w.r.t. σ, which contradicts Theorem 5.1. We conclude that $L_{0} \subseteq L$. Then again the definition of $\mathscr{W}_{x}^{(r)}$ and (iii) of Lemma 2.2 imply that the restriction of W to L does not exceed ($W_{x} / W_{x, 22}$), which yields $W \leqslant W^{(r)} \sigma$-a.e.

Combining Lemmas 5.5 and 5.6 with Theorem 4.4 we get the following result.

Theorem 5.7. The measures $W^{(r)} d \sigma$ and $W^{(s)} d \sigma$ are the spectral measures of the \mathscr{J}_{0}-regular and $\mathscr{\mathscr { O }}_{0}$-singular parts of the Wold decomposition of x, respectively.

REFERENCES

[1] A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969), pp. 434-440.
[2] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Pure Appl. Math., Vol. 7, Interscience Publishers, 2nd edition, New York 1964.
[3] W. Fieger, Die Anwendung einiger mass- und integrationstheoretischer Sätze auf matrizielle Riemann-Stieltjes-Integrale, Math. Ann. 150 (1963), pp. 387-410.
[4] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
[5] L. Klotz and F. Schmidt, Some remarks on J_{0}-regularity and J_{0}-singularity of q-variate stationary processes, Probab. Math. Statist. 18 (1998), pp. 351-357.
[6] A. Makagon and A. Weron, q-variate minimal stationary processes, Studia Math. 59 (1976), pp. 41-52.
[7] A. Makagon and A. Weron, Wold-Cramér concordance theorems for interpolation of q-variate stationary processes over locally compact abelian groups, J. Multivariate Anal. 6 (1976), pp. 123-137.
[8] R. M. Pringle and A. A. Rayner, Generalized Inverse Matrices with Applications to Statistics, Griffin, London 1971.
[9] J. B. Robertson, Orthogonal decomposition of multivariate weakly stationary stochastic processes, Canad. J. Math. 20 (1968), pp. 368-383.
[10] M. Rosenberg, The square-integrability of matrix-valued functions with respect to a non--negative Hermitian measure, Duke Math. J. 31 (1964), pp. 291-298.
[11] Yu. A. Rozanov, Stationary Random Processes (in Russian), Fizmatgiz, Moscow 1963.
[12] H. Salehi and J. K. Scheidt, Interpolation of q-variate weakly stationary stochastic processes over a locally compact abelian group, J. Multivariate Anal. 2 (1972), pp. 307-331.
[13] S. R. Treil', Geometric methods in spectral theory of operator-valued functions: Some recent results, Operator Theory Vol. 42, Toeplitz Operators and Spectral Function Theory, N. K. Nikolskiĭ (Ed.), Birkhäuser, Basel-Boston-Berlin 1989, pp. 209-280.

Fakultät für Mathematik und Informatik
Universität Leipzig
04109 Leipzig, Germany

