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STOPPING AND STOCHASTIC INTEGRALS
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Abstract. We show that for a von Neumann algebra in standard
form with cyclic and separating tracial vector, and some classes of
noncommutative processes on it, stopping and integrals of these pro- |
cesses can be treated as closable operators whose closures are affiliated
to the algebra.

1. INTRODUCTION

Stopping of noncommutative processes was studied in [17, [2], [4], [6]
under various circumstances; however, a common feature of all these approa-
ches was the following: for a process (X (t)) and a random time 7, stopping
(X (7)) by 1, X, is an element of some Hilbert space on which the von Neumann
algebra under consideration acts. In this paper we present another point of
view on stopping as well as on stochastic integrals — namely, we shall show
that they can be treated as closable operators whose closures are affiliated to
the algebra. For stochastic integrals in quasi-free representations of the CAR
and CCR algebras this approach was considered in [3], with the integrator
being the ‘canonical’ CAR or CCR martingale. It turns out that in general both
stopping and integration can be looked upon in this way if we restrict our
attention to the class % (2) of predictable processes and the von Neumann
algebra in standard form with cyclic and separating tracial vector.

1. PRELIMINARIES AND NOTATION

A noncommutative stochastic base which we shall be working in consists
of the following elements: a von Neumann algebra o acting on a Hilbert space
#, a normal faithful trace ¢ on o, a filtration (&,), t€[0, + oo], which is an
increasing (s < t implies & < ;) family of von Neumann subalgebras of .=/
such that o = o, =(J,,, ) and &, = (), o (right-continuity). Then
for each t > 0 there exists a normal conditional expectation M, from &/ onto
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o/, such that ¢ o M, = ¢. We shall assume that there is a cyclic and separating
unit vector @€ such that ¢(a) = (aQ, Q), acA.

For each te[0, 4+ o] we write I? («#,) for the noncommutative Lebesgue
space associated with .o/, and ¢. The theory of these spaces is described e.g. in
[91; for our purposes we recall only that I? (&) (accordingly I? («#,)) consists of
densely defined operators on #, affiliated to .o/, and that I? (/) is the com-
pletion of .« with respect to the norm

X112 = Lo (X112

moreover, for ae o/ and X e I? (), the operators aX and Xa belong to I? (o).
For each ¢ the conditional expectation M, extends to the projection from I? (o¢)
onto IZ(of,). .

By an of-valued (respectively, I?-valued) process we mean a map from
[0, + o] into o (respectively, I?(«)). A process (X (t)) is called adapted if
X (e o, (X ()e? (,), respectively).

Let us introduce the notion of a random time.

DEerFINITION 1.1. A random time is a map t: [0, + c0] — Proj & such that
17(0) =0, 7(+ 00) = 1, 7(¥) is a projection in o/,, and 7(s) < 7(t) whenever s < t.

This definition is adopted from [2], [4], [5]. Random times will often be
denoted by t = (E,), which means that 7 (¢) = E,. A random time is called simple
if it assumes only finitely many values.

For random times there is a partial ordering, namely, we mean that ¢ < 1,
o= (F,), t=(E), if E,<F, for each te[0, + o0].

2. STOPPING AS A CLOSABLE OPERATOR

Let us recall the following definitions from [6].

DermNITION 2.1. (i) Let ¢ = (F,) and 7 = (E,) be random times with ¢ < 7.
The stochastic interval (o, 7] is a process defined as

(65 T] (t) = Ft_Ets tE[O, + (D]

(ii) For a projection P in </, we define ‘interval [0}] as

010~ {g

DerINITION 2.2, (i) Let 4;fori =0, 1, ..., n be complex numbers, P a pro-
jection in &/, and o4, ..., 6,, 71, ..., T, random times with ¢; <17, < 0, <
€£1,<...<0,<71, Any process f of the form

f=120[0p1+ ‘anl Ai(0, 7]

for t =0,
otherwise.

is called an elementary predictable process.
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(i) A process which is a finite linear combination of finite products of
elementary predictable processes is called a simple predictable process.

Note that since elementary predictable processes are clearly adapted,
a simple predictable process is also adapted. In fact, the restriction that
T €03 <...<T,—; < 0,1s inessential in our further considerations (as well as
in the results of [6]), so as an elementary predictable process we can take any
linear combination of stochastic intervals and the process [0p]. In the same
manner we can extend the definition of a simple predictable process admitting
elementary predictable processes in the above sense. -

We introduce another important class of processes.

DEerINITION 2.3. We define % (%) to be the class of those processes which
are the uniform limits of sequences of simple predictable processes each of
which is a finite linear combination of elementary predictable processes (note
that we exclude products of elementary predictable processes).

Thus fe% (&) if there exists a sequence (f™) of simple predictable pro-
cesses such that f™ is a finite linear combination of elementary processes and

lim sup||f® ()—f Ol =0

n>wom t

In [6] the analysis of stopping of processes from % () is performed. The
present work is devoted to the same subject but in a different setting, which
leads to the notions of stopping and integral as densely defined operators. Let
us recall the notion of stopping. For an /-valued process (f (¢)), a random time
7= (E,) and a partition § = {0 =t, <, <...<t, = +0o0} of [0, +c0] we
put

feoy = z f(&)(E,—E,_).

If there exists limg f;q) as @ refines, it is denoted by f, and called stopping the
process (f () by the random time t (see [1], [2], [5], [6] for motivations and
comments). The above limit is almost exclusively considered in the I?-norm,
and accordingly f, is an element of I? (&f). Our approach will be different.
Namely, f is an operator in &/, and we may ask about the existence of
limg f,6) 2. If this limit does exists,

(2.1) liz:n L@ =2E,

then, taking into account the relation

f;{e) a’ = a’ f:(g), al € ud’ 3
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we may define f, by the formula
(2.2) f@Q=d& ded.

It follows that f; is a densely defined linear operator on #. Moreover, we have
fl@Q)= a’(ligm f0 Q) = li;n a fun QR = lign fuoy (@ Q).
Analogously, considering sums
wf = % EmE )0
and assuming the existence of the limit
litl;ntw)fﬂ =1,

we obtain a densely defined linear operator .f on #:
J@Q=dn, daded.

We shall call f, and . f the right and left stopping of (f (1)), respectively. In what
follows we formulate our results for right stopping, their ‘left’ counterparts
being obvious. The basic properties of stopping are given by the following
theorem.

THEOREM 2.4. Let ( f(¢)) be an of-valued process and let © = (E,) be a ran-
dom time. Assume that the limit (2.1) exists, and let f, be defined by (2.2). Then
f. is closable and its closure is affiliated to sf. Moreover, there exists left stopping
of the adjoint process (f (£)*), {f*), and we have

fo=L(fMI1*.
Proof. For any partitions &, 8” we have
||fzw')Q —fr(s”) Q= ||ﬂf9')9—fr?§") |,

which means that the net {f:% @} is Cauchy, since such is the net { fue 2}. Thus
there exists

lim £, Q = 1.
0
Since
S = (™),

where the symbol .4(f*) means that we are dealing with left stopping of the
process (f(t)*), we may define an operator .(f*) by

@ =dn, daecA.
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It is a densely defined linear operator; moreover, for @', b'e o/’ we have

{f(@D), b'Q) = lim {fy0)(@'Q), b'2) =lim {a'Q, 1 (b'2))

= lim {a'Q, (/) (E'D) = a2, ([F)(B'Q)),

which yields the inclusion
Je = L]

So f, is closable and

fo e LA™

Since
b f)a@Q)=Vb (li;n Juoy (@)
= li;n fioy(0'aQ) = (fb)(dQ), a, bes,

affiliation of f,, and thus that of f; follows. Similarly, ,(f*), and hence [(f*)]* is
affiliated to .«/. Now & is a finite von Neumann algebra, and f; and [(f*)]*
are closed linear operators affiliated to ./ such that f, = [(f*)]* Thus the
equality f; = [(f*)]* follows from Theorem 9.8 of [8]. =

In what follows, to avoid repeating the phrase ¥, is closable with its clo-
sure affiliated to =/° we shall say that there exists an operator stopping f..

COROLLARY 2.5. If f.Qe o/ Q, then f.e .
Indeed, if £,Q = aQ for some aec., then for each a'e .o/’ we have

f(@Q)=df.Q=adaQ = a(adQ),
which means that f, = a on the dense subspace /', so f, =a.

Our aim in this section is to show that this form of stopping can be
applied to predictable processes from % (#). First we show that we can stop
any random time.

PROPOSITION 2.6. Let 6 = (F,) and t = (E,) be random times. Then there
exists an operator Stopping o,.

Proof. According to Theorem 2.4 all we need to show is the convergence
of the net {0, 2}, which on the other hand is essentially the result of Theorem
4.10 in [6]. Indeed, in that theorem it is shown that the net {o,4 Q} converges
in I?-norm, which by virtue of the equality

[xI3 = ¢ (x* x) = {x*xQ2, Q) = IxQIP°, xes,

shows the convergence of {0, Q}. &
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As immediate corollaries we obtain

COROLLARY 2.7. Let f be an elementary predictable process, and let T be
a random time. Then there exists an operator stopping f..

Indeed, f is of the form

£ = 10051+ Y, Aa(ow @i,
k=1

where o) = (F®) and g, = (Q%) are random times, so
1O =000+ 3 L [FP—0]
and, consequently,
fr(o) = kg A lo %) - Qg(%)]

showing, by virtue of Proposition 2.6, the existence of lim, f;q Q.

COROLLARY 2.8. Let f be a simple predictable process which is a linear
combination of elementary predictable processes, and let © be a random time.
Then there exists an operator stopping f,.

This follows from the preceding corollary and the additivity of limit.

Before proving the main result of this section we need a version of ‘con-
traction lemma’ relating the Hilbert space norm of simple stopping with the
operator norm of the stopped process.

LeMMA 2.9. Let (f(t)) be an of-valued process, let © = (E,) be a random
time, and let 6 ={0 =1t, <t; <...<t,= +0o} be a partition of [0, + c0].
Then

Ilfe) 2l < sup |lf @l
t

Proof We have

o @I = <5 £ () E—Ei )@, 3 F(6)(E,—E,,_ )2

= ¥ By Ey ) f6)* S ) Eu—F, )@, O

ij=1

= Y () ) (EumEa )(Ey—E,, )@, 2

Li=1
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since € is tracial. Furthermore, the orthogonality of projections E, —E,,_, and

E,—E,,_, for i#j yields the formula

ti-1

o @I = 3 (0 S0 (EumEs )2, 2

< i 1 (*F o <(Bey—E,_) @, @

<supllf O 3 (Ea—Esp_ )2, @5 = sup|lf Q)%
t =1 t

which gives the claim.

Now we are in a position to show the possibility of operator stopping of
predictable processes in % (#). Namely, we have

THEOREM 2.10. Let f e (#P) and let © be a random time. Then there exists
an operator stopping f..

Proof. Let (f") be an approximating sequence for f of simple predictable
processes which are finite linear combinations of elementary predictable pro-
cesses, i.e.

lim sup I (0)—f @llo = 0.
For given ¢ > 0 choose n, such that

sup||f ()—f @ () < &/4.

Since, by Corollary 2.8,
lim 5@ = £°0,
we can find a partition 6, such that for each partition 0 > 6,
23) If$8 @10 Ql < e/4.
For any partitions &', 8" > 8, we then have
24 Nfewor Q— fuon Q< Nifeoy 2~ 2l
+I 5 2—f G QU+ R —f 5 LUl
< ILf=f 0o QU+ GS) Q=S QU+ Q—£ G QA +ILF ™ —f 1oy 2.
Now by Lemma 29 we get
L —f ey QI < sup|lf (& —f ) ()l < &/4,

LA = Ty @l < sup I B —f Ol < &/4,
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while the second and third terms on the right-hand side of the inequality (2.4)
are, by (2.3), less than &/4. This yields the inequality

“ft(er)g—‘ (8'") Q“ <é& for 01, 0" = 00,
which means that the net {f,4 Q} is Cauchy, so it converges, proving in ac-
cordance with Theorem 2.4 the existence of operator stopping f,. =

We finish this section showing that f, can also be obtained as a limit
of f®, namely we have

THEOREM 2.11. Let fe% () and let (f™) be an approximating sequence
for f of simple predictable processes which are finite linear combinations of ele-
mentary predictable processes. Then

lim f®(@Q) = f,(@Q), des

n—ow

Proof. First we shall show that lim,_ ., f™Q = f,Q. Let us assume the
contrary, i.e. that there exists a subsequence {n;} of positive integers such that

IfP Q£ Qll = &
for some g, > 0. Choose k, large enough such that

sup I/ o) (£) —f ()] < eo/3.

Having chosen k, let us find a partition 6 such that
If 5oy @=F7Ql <eof3  and IS, 2~f,,Qll < 20/3.
Then we have
g0 < ILf Q£ SN C—f G QllHIS 5 @=L Al + i 2~ 2
< 30/3+31:P F™ &) —f @)l +20/3 < &0,

a contradiction. Consequently,

lim f"Q = f£,Q,

and since for each a .o’ v
If® @) —f (@l = lla [f® e—f20ll < lllIIf -1l

the result follows. m
3. STOCHASTIC INTEGRAL AS A CLOSABLE OPERATOR
In this section we shall perform a construction of a stochastic integral as

a closable operator analogous to that of stopping in the previous section. Let
(f (®) and (g(t)) be o#-valued processes. The definition of stochastic integral
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involves sums

Sh@:) = 3. L= (-0 ),

5@ ) =3 ¢t ) [f 0)—F te)]
i=1

for a partition 0 ={0 =1ty <t; <...<tp= +} of [0, +00]. If a limit of
S4(g; f) as 0 refines exists, it is called the left stochastic integral of (g(z)) with
respect to (f(2)); and it is denoted by [df (t)g(t), while a limit of Sh(g; f) is
called the right stochastic integral of (g(t)) with respect to (f(¢)), and it is
denoted by | g(t) df (t) (see [7] for more details). As for stopping we are interest-
ed in the existence of this limit on o/'Q. It turns out that the following countet-
part of Theorem 2.4 holds.

THEOREM 3.1. Let (f () and (g(t)) be s/-valued processes. Assume that
there exists

h';n Sig; NQ=¢,

and define the left stochastic integral by
[fdr®g@®](@R)=a¢é, aesd

Then {df (t)g(t) is a densely defined closable operator whose closure is affiliated
to of. Moreover,

fdf @g() =[] 9@y df ©*]",

where the integral jg(t)* df (t)* is defined as an operator on of'Q in an obvious
way.

The proof is essentially the same as that of Theorem 24. m

In what follows, when referring to the situation described above, we shall
use the phrase ‘there exists an operator stochastic integral | df () g (). We also
restrict attention to the left integral, the corresponding results for the right one
being obvious.

As is well known, there is a duality between stopping and integration. This
duality allows us to obtain operator stochastic integrals for a random time with
respect to a process which admits operator stopping. Namely, we have

THEOREM 3.2. Let (f (t) be an o/-valued process, and let © = (E,) be a ran-
dom time. If there exists an operator stopping f., then the operator stochastic
integral [df (t)t(t) exists. Moreover, the formula

faf @)t @) = f(0)—f;

holds.
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Proof LetO={0=ty<t; <...<t,= +00} be a partition of [0, +o0].
Using the Abel transformation (summation by parts), we get

S5 /) = 3 L@ ~f DI,

— F ) Bt (o) E— 3, () (Ey—Esy_) = £ (+0)~fiao
i=1

The existence of operator stopping for (f(t)) yields the existence of lim, f;4 €2,
thus the existence of limgSh(r; f) €, and the result follows. m

Since from Theorem 2.10 we know that all processes in % (%) admit opera-
tor stopping, we obtain )

COROLLARY 3.3. Let feU (%), and let © = (E,) be a random time. Then the
operator stochastic integral {df (t)t(t) exists, and

faf )t(®) = —f..
This follows from the fact that for fe# (%) we have f(+0)=0. =

Taking into account the linearity of operator stochastic integral we may
extend the set of integrands as follows:

THEOREM 3.4. Let f €U (P), and let g be a simple predictable process which
is a finite linear combination of elementary predictable processes. Then the opera-
tor stochastic integral [df (t)g(t) exists.

Proof. The process g is a linear combination of random times and pro-
cesses of the form [0p] with P being a projection in %, and
P fort=0,

0  otherwise.

[0:1(1) = {

Since the integral of a random time exists, we are concerned only with the
existence of the integral [ df (£) [0p] (t). The integral sums S ([0p]; f) are of the
form. . .

S6([021; /) = Lf ¢t)—f (O P,

so the existence of the operator integral | df (t) [0p] (f) amounts to showing the
existence of lim,_ ¢, f(f)PQ. Now for each elementary predictable process

r

g@®) = Ao [0g]+ Y, Aklox, &), Ok = (FP), g, = (QP),

k=1

the limit lim,.q. g(f) exists in the strong operator topology since

lim [0£]() = 0
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and
lim (0%, 0] = lim (F®)— lim Q®,
=0+ =0+ t—=0+

where the limits on the right-hand side clearly exist because (F®) and (Q%®) are
increasing families of projections. It follows that for each simple predictable
process g which is a finite linear combination of elementary predictable pro-
cesses the limit lim,.q 4+ g(f) exists.

Let now (f™) be an approximating sequence of processes as above for f.
Given ¢ > 0 we choose ny such that -

supllf ()=f* Ol < 5/3,

and J > 0 such that for 0 < s, t < Jd we have
LA (s)—f @ ()] PQI| < &/3.
Then
LS () —f T PQY < IILf (5)—f T (5)] PQII+IILf ™ (s)—f ™ (£)] P2l
' +IL ™ O —f O1 PRIl < ¢/3+¢/3+¢/3 =&,
showing that {f(t)PQ} is Cauchy at 0, which completes the proof. =

Taking into account Theorem 2.11 and the duality between stopping and
integration it is not difficult to show the following

THEOREM 3.5. Let f and g be as in Theorem 3.4, and let (f™) be an ap-
proximating sequence for f of simple predictable processes which are finite linear
combinations of elementary predictable processes. Then

lim [df™ (1) g (@) = [df g (@), de. m

So far we have obtained integrals with the integrator from the class % (%)
and the integrand being a simple predictable process which is a finite linear
combination of elementary predictable processes. In the last part of this section
we shall show that the classes of the integrators and the integrands can be
interchanged. To this end we start with

PROPOSITION 3.6. Let o = (F,) and © = (E,) be random times. Then the ope-
rator stochastic integral [do(t)t(t) exists.

Proof. By Proposition 2.6 there exists an operator stopping o, and the
result follows from Theorem 3.2. =

Again, by linearity we can extend the above integral to the integrands
being elementary predictable processes, if we take into account that

fdo () [0£1(t) = 1i131+ (F,—Fo)P =Fo, P.

12 — PAMS 22.1
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By the same token we extend the integral to the integrands being finite linear
combinations of elementary predictable processes. To go further we again need
a version of the contraction lemma.

LemmA 3.7. Let (f () be an o -valued process, and let ¢ = (F,) be a random
time. Then for any partition 0 = {0 =ty <t; <...<t, = +00} we have

1S5 (f; @) QIl < sup |f Olle-

Proof. The calculation is essentially the same as that in Lemma 2.9.
Namely, -

1505 DI = || X, = Fo ) -0 2

S (F ) )* (Fyy—Fyy ) (FueFo ) f (t-1) @, @

Lji=1

= _i <(Fti_Fft—1)f(ti71)f(tiwl)* Qa ‘Q>

(f(t; DS @ )* (Fr,—Fy ) Q, Q)

IIMg

IIf(tl ) - ¥l {Fy,— F,,_ ) Q, 2

IIMg

< Sltlp”f(ti—l)f(ti—l)*”oo Z ((F.,—F,_ )2, Q) = Sl:pllf(t)llfo- B
i=1
In the next proposition we extend the stochastic integral to processes in

U (P).

ProposITION 3.8. Let f €% () and let o be a random time. Then the opera-
tor stochastic integral [do(t) f () exists.

~ Proof. It is similar to the proof of Theorem 2.10. For an approximating
sequence (f™) and given & >0 we choose n, such that

G- sup £ ())—f ") ()lw < &/4.

Since we know that

lim S (f™; 6) = [da (t) £ (),

we can find a partition 6, such that for each partition 6 > 6,

(3.2) IS5 (£@; 6) 2— [ do () £ (1) Q| < &/4.
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Then for any partitions &', 6” = 0, we have
ISt (f; 0} @— Sk (f; o) Q| < IS5 (f; ) 2 —Si (f™; 0) Q)
+1IS5 (£™); 6) Q—Sb. (f; 6) Q| +ISh- (f™; 6) Q— Sk (f; 0) Q|
< ISk (f—f; 0) Ql +||Sh (f; 6) @~ [ da (1) £ () 2 |
+||f do (&) £ (£} @— S (f™; 0) Q|| +1ISh- (f"O—f; 0) 2.

But the first and fourth terms on the right-hand side of the above inequality are
by virtue of Lemma 3.7 and (3.1) estimated from above by &/4, while the second
and third terms are by virtue of (3.2) estimated from above also by ¢/4, which
gives

ISe (f; 0) 2—S5 (f; 0)Qll <& for 6,67 > 0,.

Consequently, the limit lim, S} (f; 0) Q2 exists. Now Theorem 3.1 y1elds the
claim. &

In our final step we again extend by linearity the integral with respect to
a random time to the integral with respect to an elementary predictable process
and next to the integral with respect to a simple predictable process which is
a finite linear combination of elementary predictable processes, taking into
account that

[d[01() £ () = — Pf (0).
Thus we obtain

THEOREM 3.9. Let f e (), and let g be a simple predictable process which
is a finite linear combination of elementary predictable processes. Then the opera-
tor stochastic integral [dg(t) f () exists. m

Again it is not difficult to show that our integral may be obtained by
a limiting procedure Namely, we have

TueorReM 3.10. Let f and g be as in Theorem 3.9, and let (f ("’) be an ap-
proximating sequence for f- Then

lim [dg () f®(H)(@Q) = [dg()) f (1) (@Q), deof. m

Let us finally comment on an important missing fact which would nicely
complete the presented theory. We have obtained operator stochastic integrals
fdf (t)g (1) and [dg(t) f (t) for fe % (P) and g — simple predictable. It would be
desirable to obtain these integrals for both f and g in % (2). However, it still
remains a challenging open problem.
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