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Abstract. We consider three new schemes of random splitting of 
a unit interval. These schemes am related to settings considered earlier 
in literature. Essentially we are concerned with asymptotic behavior of 
sequences of subdivisions. In all three cases almost sure or weak limits 
are obtained for a sequence of points of divisions. The two of the 
schemes considered are dual to each other in the sense of the contraG 
don principle of Chamayou and Letac [2]. 
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1. INTRODUCTION 

A variety of interval subdivision random schemes has been studied in 
probabilistic literature for many years. The most prominent examples include: 

(1) Kakutani's scheme in which subsequent points appear at random on 
the longest of the current coIIection of subintervals - see Kakutani [7], van 
Zwet [I51 and Pyke [llj; 

(2) random choice of a left or right subinterval - see Chen et al. [4], 
Kennedy [8], Diaconis and Freedman [6] or Stoyanov and Pirinsky [IZ]; 

(3) random choice of a longer or shorter of two subintervals - see Chen 
et al. [3], and Devroye et al. 151. 

Similar problems were studied also in higher dimensions - see for in- 
stance: Mannion [lo] or Letac and Scarsini [9]. 

In the present paper we are concerned with three new schemes. 
A starting point of our interest in the problem was a trial to invent a split- 

ting scheme which will be dual in the sense of Chamayou and Letac [2] 
contraction principle to the scheme (3). In Section 2 we consider the scheme 
designed to be such a dual to (3). The scheme (3) starts with the interval 
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[Lo, R,] = [0 ,  11. If the interval [L,- R,- ,] is defined, then a random point 
X, is dropped on it with the uniform distribution. Then the interval [L,, R,] 
is defined to be: with probability p the longer of two subintervals of 
[Ln-1, Rz-11, i.e- 

CLn,Rnl=[Ln-~,Xnl ifXn>(Ln-l+Rn-1)/2 
and 

CL,, R,J = CX,, R, - if X, d (L, - + R, - 1)/2, 
- 

and with probability 1 - p  the shorter is chosen, i.e. 

and 

The sequence of intervals degenerates to a random point almost surely. The 
scheme we are interested in is somewhat similar to (31, except of the fact that in 
each step the whole interval [ O ,  11 is considered. To be more precise: with 
probability p the longer of two subintervals of [0, l ]  is chosen, i.e. 
[L,, R,] = [0, X,] if X, > 1/2 and [L,, R,] = [X,, 11 if X, < 1/2, and with 
probability l-p the shorter of the two subintervals of [0, 11 is chosen, i.e. 
[L,, R,] = EX,, 11 if X, > 1/2 and [L,, R,] = [0, X,] if X, d 1/2. Then, of 
course, the intervals do not shrink, but it appears that the sequence (X,) con- 
verges weakly to a limit with a distribution being a symmetrized beta. Unfor- 
tunately, this is not the same limiting distribution as in the scheme (3) except of 
the case p = 1/2. Further, our scheme is not dual to (3) according to the 
contraction principle. So finding a splitting pattern dual in the sense of Chama- 
you and Letac [2] to (3) still remains a challenge. 

Section 3 is devoted to study a scheme related to (2). Let us recall that the 
scheme (2) starts with the interval [Lo, R,] = [0, 11. If the interval 
[L, - , , R, - ,] is defined, then a random point X, is dropped at it, consequently 
with probability p the left subinterval is chosen, i.e. [L,, R,] = [I,,- , X,], and 
with probability 1 - p  the right subinterval is chosen, i.e. [L,, RJ = [X,, R,- ,I. 
Then the sequence of intervals shrinks with probability one to a random 
variable with a beta distribution. A dual scheme is defined by considering the 
whole interval [0, 11 in every step, i.e. that with probability p one takes 
[L,, R,] = LO, Xn] and with probability 1 - p  one takes [L,, R,] = [X,, 11. 
Then the sequence (X,)  converges weakly to a random variable with the same 
beta distribution as in the scheme with a.s. convergence. Our intuitive and naive - 

guess was that if we choose once the left interval, once the second, then at least 
the limit behavior of such a new scheme should be the same as for (2) with 
p = 1/2. More precisely, with probability p we always choose the left subinter- 
val in odd steps, i.e. [L,,, ,, R,, + ,] = [L2,, X,,, and the right in even 
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steps, i.e. ELZn, R,,] = [X,,, R,,-,I, and with probability 1 - p  we always 
choose the right subinterval in odd steps, i.e. [L2,+1, Ra+l] = [X2,+1, R,,,] and 
the left in even steps, i.e. [L,,, R,,] = [LZn-*, XZnJ. Then the sequence of 
intervals converges a.s. to a random point, but its distribution is, in general, not 
beta as in (2). 

In Section 4 we consider an analogue of the scheme from Section 3, but 
this time we choose subintervals from the whole intervaI [0, I]. More precisely, 
with probability p we always choose the left of two subintervals of [O, 11 in odd 
steps, i.e. R ,,,, 1 = [O,  X,,,,], and the right in even steps, i.e. 
[LZn, R,J = [X,,, I], and with probability 1 - p  we always choose the right 
subinterval in odd steps, i.e. [L,, + ,, R2,+ ,I = [X,,, , , I] and the left in even 
steps, i.e. [L,,, R2J = [0, X,,]. Then the sequence of intervals, of course, does 
not shrink to a point, but the subsequences (X2,- ,) and (X23 converge. The first 
one to a random variable having the same distribution as the limit random 
variable from Section 3. The limit distribution of the second is the same as in 
Section 3, but with p  changed to I -p. In both situations the contraction prin- 
ciple of Chamayou and Eetac [2] is used to derive the limiting distributions. 

2. LONGER OR SHORTER OF S U B W m V A L S  OF [O, 11 

A point is put at random on a unit interval [0, 11. In consecutive iterations 
we choose with probability p Ip E (0, 11)  the longer of two subintervals of [0, I] 
and with probability q = l - p  the shorter one. Then a point is dropped at 
random on a chosen interval. Consequently, if X, denotes the point dropped in 
the n-th step, then it follows that 

where F,  is a random function defined on [0, 11 by 

n = 1, 2, . . ., where (K) is a sequence of i.i.d. Bernoulli b(1, p )  random varia- 
bles, (U,) is a sequence of i.i.d. random variables with the uniform U(0, 1) 
distribution, and the sequences (Y,) and (U,) are independent. 

Though the sequence (X,) does not converge with probability one, it ap- 
pears that it converges in distribution and its limiting law can be described 
explicitly by the formula for the density. 

THEOREM 1. In the scheme described above the limit in distribution of(X,) 
exists and its density f, has the form 

where c is a suitable positiue constant. 
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Proof.  Observe that (1) and (2) imply that for any XE(O, 1) 

P(Xn ,< x) = p ~ ( x , - , + U , ( I - x ~ - l )  ,< x ,  X.-1 < 1/2) 

+(I-p)P(UnX,-1 < x, X,-1 d 1/21 

+pP(U,X,-1 < x, x n - ,  > 1/21 

+(I-p)P(Xn-1+U,(1-Xn-l) d x, Xn-1 > 1/2). 

Consequently, if G, denotes the distribution function of Xn, then 

Hence for 0 < x < 1/2 the equation (4) can be rewritten as 

If 1/2 < x < 1, then (4) takes the form 

Consequently, by (5) and (6) it follows that (X,) is a Markov chain with the 
transition density given by 

. . 
if 0 < x < 1/2, and 

if 1/2 < x < 1. Thus (X,) is an indecomposable Markov chain, and hence the 
limit in distribution of Xn exists (see, for instance, Theorem 7.16 in Breiman 
[I]) and is the same as the stationary distribution of the chain, i.e. its density, 
say f,, is the only solution of the equation 

1 

fpb )  = Sf (Y Ix)fp(x)dx. 
0 
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Therefore for any y ~ ( 0 ,  1/21 we get 

Taking the derivative with respect to y we obtain 

Hence for y E (0, 1/2) 

for some positive constant cl.  , 

Similarly, if y ~ ( 1 / 2 ,  I), then it follows that 

112 1 ' f p ( x ) d x .  

f,O=p J f . ( x ) d ~ + ~ l ~ d x + ~  - 
l - x  P 112 1 -X 

Again taking the derivative we get 

Hence for any y ~(1 /2 ,  1) we get 

for some positive constant c2. 
Observe now that 1 -X, = fl, (1 - X,- I), where 

F,,(x) = I ( X  2 1 / 2 ) { ~ ( l - ~ n ) ~ + ( l - K ) I ~ + ( ~ - ~ n ) ( l - ~ ) I )  

+ I ( x  < l /2 ) (y , [x+( l -U~(1-x l l+(1-K)(1-~3x) .  

Consequently, two sequences (X,) and (1 -X,) have the same distribution 
since obvidusly U, 1 - Un.  Hence the distribution of X, is symmetric about 
l/2. Then also the limiting density f, has to be symmetric about 1/2, and thus 
C1 = C 2  = C .  

Remark. Observe that the density f, from Theorem 1 is a special case of 
symmetrized beta (SB(a ,  b)) density of the general form 

where a > 0 and b can be any real numbers (recall that for the ordinary beta 
distribution b is necessarily positive) and c is a suitable constant (in general, 
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intractable). Note that our density f, is of the form SB lp, 1 -p). Observe also 
that SB (0.5, 0.5) is just the ordinary beta distribution with the same parame- 
ters, i.e. the arcsine law. Another example of SB distribution has been intro- 
duced only recently by van Dorp and Kotz [13], [14], while looking for alter- 
natives for the beta distribution. Among others, they considered a so-called 
symmetric two-sided power distribution which is nothing else but SB(n,  1). 

3. LEFT OR RIGHT SHRINKING SUBINTERVALS 
- 

This scheme is concerned with a sequence of shrinking intervals. In the 
first step a point is dropped at random on the unit interval [O ,  11 and with 
probability p the left subinterval is taken for the next step, the right subinterval 
is taken with probability q = 1-p. Next steps do not depend directly on p: 
A point is dropped at random on the subinterval which was chosen in a pre- 
vious step. Then we choose the Ieft subinterval if the previous choice was for 
the right subinterval, and the right subinterval is chosen if the last choice was 
for the left subinterval. 

Denote by [Lo, R,] = [0, I] the starting interval and by [L,, R,] the n-th 
step subinterval, Then the evolution of intervals is described for an odd itera- 
tion by 

where 

and for even iteration by 

where 

It is assumed above that (U,) is a sequence of i.i.d. uniform U(0 ,  1) random 
variables also independent of the Bernoulli b(1 ,  p) random variable Y.  

Now by elementary properties of Y we get 
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where 

The limiting behavior of the shrinking sequence of intervals ([L,, R,]) is 
described in the following result: 

THEOREM 2. - Both sequences (L,) and (R,) converge a.s. to the s h e  limiting 
random variable, say L, having the density 

Pro o f. Observe that by the considerations preceding the formulation of 
Theorem 2 it follows that for any n = 1,  2,  . . . 

where 

Now by (7) we get 

Consequently, 

where Cj = Uzj-l Uzj, Dj = U2j-l, j = 1, 2, . - ., and A. = Bo = 1. 
Now we will need the following simple observation: 

LEMMA 1 .  Let (K) be a sequence of i.i.d. random variables with E IVll < 1. 
Then 

n 

lim IT Vj = 0 a.s. 
n+m j = 1  
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Proof of L m m  a 1. The result is implied by the following sequence of 
(in)equalities. Namely, for any E > 0 we have 

lim P(sup 151 > E )  = lim P ( U  (n 151 > E ) )  
"jm k 3 n  j =1  n+m k 3 n  j=1 

k 1 
6 lim P ( f l  151 > E )  < - lirn (E(Vl',I)k = 0. ra 

"+m k & n  j =  1 E n+m k > n  

By Lemma 1 it follows that both the products fly=, A~ and ~ Y = , B ,  
converge a.s. to zero. Consequently, R,- L, converges a.s. to-zero, which, on 
the other hand, implies that both L, and R, converge a.s. to a common limiting 
random variable, say L. It follows from the fact that (L,) is an a.s. increasing 
sequence bounded from above by 1 and (R,) a.s. decreases and is bounded from 
below by 0. 

Let us iterate now (8) to arrive at 

where M, = C1+C2Al+...+C,A,-1.. .Al, Nn = D1+D2B1+...+DnB,-1...B1, 
n = 1,2, . . . Observe that the sequences (M,) and (N,) converge a,s. since they 
are increasing' and bounded from above by 1 as. 

Observe also that 

where ML- M,-I and is independent of (A,, C1). Taking the limit in dis- 
tribution in the above equation we obtain 

where M has the distribution of the a.s. limit of the sequence (M,) and is 
independent of (Al, C,) and Y. Then (9) implies for any x E (0, 1) 

where FM is the distribution of M. Consequently, the distribution of M can be 
treated as a stationary distribution of a Markov chain with the transition 
probability distribution of the form 

Hence the density fM of FM exists and satisfies the equation 
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I for any x E (0, 1). NOW rewrite (10) as 

Multiplying (11) by x and adding to (121, for any x ~ ( 0 ,  1) we obtain 

Hence fM is differentiable and - 

which implies f,(x) = C(l  -x). Since f, is a density concentrated on (0 ,  I), we 
conclude finally that f, (x) = 2(1 -  x) I(,,,l ( x ) .  

Similar considerations for the sequence (NJ and its a.s. limit N lead to the 
following analogues of (12) and (11): 

1 and 

Multiplying (14) by 1-x and adding to (13) we get 

and its unique probabilistic solution is f,(x) = 2xIc,,,,(x). 
Finally, since L = YM + (1 - Y) N, it follows that fL, the probability dis- 

tribution function of L, takes the form 

4 LEBT OR RIGHT NONSHRINKING SUBINTERVALS OF [O,1] 

The procedure is started by choosing at random a point Xo on the interval 
LO, 11 creating two subintervals in this way. In the first step, with probability p we 
drop at random a point XI on the left subinterval [0, Xo] and with probability 
1-p on the right subinterval [X, ,  11. In subsequent steps we obtain the point 
X,,, by choosing at random a point from the right subinterval [X, ,  11 if X ,  was 
chosen from the left [0, X,-J, and from the left subinterval [0, XJ if X,, was 
chosen from the right [X,- ,, 11. Let us point out that the scheme described above 
generalizes one of the schemes considered recently in Stoyanov and Pirinsky [12]. 
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Then the sequence (X,) satisfies the equality X, = Fn(X,- ,) ,  where 

F,n-l(xl= yu2,-,x+(l-y)(~2n-,+~l-U,,-,)x)Y 

F ~ . ( x )  = y ( U 2 * + ~ ( 1 - - ~ 2 1 3 ) + ( 1 -  Y)U2nx, 

and Y is a Bernoulli b (I, p) random variable independent of the sequence (U,) 
of i.i.d, uniform [0, 11 random variables. Consequently, 

where Gj(x) = U z j + ( l  - U z j )  U z j - l  x and Hj(x)  = U,(U2j-1-- t (1-UzJ- l )x) ,  
j = 1,2,  . . . Now by the contraction principle of Chamayou and Letac [2] (see 
their Proposition 1) it follows that the sequence G, o Gnu, o  . . . o G1 (X,) has the 
same limit distribution (that of the random variable N) as the sequence N ,  = 

= G1 o . . . o Gn(Xo) from the previous section. Similarly, H, o H,- 0. . . o H1 (X,) 
converges in distribution to M which is the a.s. limit of the sequence 
M ,  = HI o . . , o H,  (X,) also defined in the preceding section. Consequently, 
x2,5 Y N + ( l -  Y ) M .  

Analogous considerations lead to X,, + 5 Y M  + (I - Y) N ,  since then 

x,,., = Y Z ? , O ~  n - , o . . . o ~ l ~  X , ) + ( I - Y ) G ; , ~ G , - ,  . . .el(  x,), 
whereflj(x) = U v + l ( U 2 j + ( l - U 2 j ) x ) L  Hj(x)and Ej(x) = U z J + ~ + ( l - U z J + l ) ~  

d x U z j  x = Gj(x), j = 1,2, . . . Consequently, we have 

THEOREM 3. In the left-right non-shrinking scheme defined above, (X,,) con- 
verges in distribution to a random variable having the density 

and (X, , - , )  converges in distribution to a random variable hauing the density 
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