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1. INTRODUCTION 

Since the pioneer works of Kolrnogorov, Marcinkiewicz and Zygmund, 
and Hartman and Winter [lo], [15], [16], [18], a wide literature concerning 
the Law of Iterated Logarithm (LIL) for sequences of independent random 
variables has been available. Many probabilists have attempted to find mini- 
mal conditions under which the LIL holds. A typical result is the general LIL 
established by Wittmann 1231. Let (5,) be a sequence of independent random 
variables with E [5,] = 0 and E [5:] = an. Define 

THEOREM 1.1, Assume that 

An+ 1 lim A, = ao and limsup- 
n+ i -  m n-+m An < a1 
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Then we have the LIL 

On the one hand, if (l,) are identically distributed, Theorem 1.1 contains 
the classical result of Hartman and Winter [lo]. On the other hand, if 
sup E [[e,la] < cr, with u > 2, then condition (1.1) immediately implies that 
a, = o (A, log, A,). In fact, with additional suitable assumptions on (t,), Tom- 
kins has shown [19] that it is possible to establish the LIL when an = o(A,,). 
One might wonder if such a result is true with a less restrictive assumption on 
(G). This question has been positively answered by Hartman [9] for Gaussian 
random variables. 

THEOREM 1.2. Assume that (5,) are independent with N ( 0 ,  an) distribution. 
Moreover, assume that 

(1.3) 
a n  lim A n = m  and limsup-cl.  

n++ m n + + g  An 

lhen we have the LJL 

One can observe that if A, - can with c > 1, the series given by (1.1) 
diverges and the strongest available result is Hartman's LIL. 

The purpose of this paper is to prove LIL for explosive martingales, i.e. for 
martingales with increasing processes growing exponentially fast to infinity. 
Instead of proposing a rather technical general theory, we have deliberately 
chosen to enlighten our approach by focusing our attention on the very 
instructive explosive Gaussian autoregressive process. 

The paper is organized as follows. Section 2 is devoted to the LIL for the 
maximum likelihood estimator of the unknown parameter of the explosive 
Gaussian autoregressive process. In Section 3, we prove that we can do without 
the normality assumption via a suitable averaging on the maximum likelihood 
estimator. However, without averaging, we show in Section 4 that for some 
simple explosive martingales, it is impossible to get rid of the normality as- 
sumption on (53. 

2. MAIN RESULTS 

Corisider the autoregressive process of order p 2 1 given, for all n 2 0, by 
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where the inifial state (Xo, . . ., X-,+ is a square-integrable random vector 
and (E~) are i.i.d. distributed as JV (0, 02) with a > 0. Moreover, assume that (E,) 
are independent d (Xo, . . . , X - + I). Let A be the companion matrix associated 
with (2.1) 

In all the sequel, we assume that we are in an explosive situation, i.e. all 
the eigenvalues of A Iie outside the unit circle. Relation (2.1) can be rewritten 
as 

n 

(2.2) @n=A@n-l+en, @ , = A n @ o + ~  AnLkek, 
k = l  

where 8; = (X,, . . ., Xn-,+ ,) and e: = (E,, 0, . . ., 0). Hence, it follows from (2.2) 
that Y, = converges a.s. and in mean square to 

The maximum likelihood estimator of the unknown parameter 0' = (al, . . ., a,), 
which coincides with the least-squares estimator, is given by 

where the identity matrix I, is added in order to avoid useless invertibility 
assumptions. First of all, it was shown in [8] and [14] that 

where L is the a.s. invertible matrix 

Moreover, the asymptotic behavior in law of on, properly normalized, is known 
from the earlier papers of Anderson [l], Rao [17], White [22] and the recent 
extensions obtained by Touati [20], [21]. To be more precise, we have 
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with 

where (C,) are i.i.d. with N ( 0 ,  a2)  distribution, and (C,) are independent of 
@, and (E,). In the particular case p = 1 and Xo = 0, the limiting distribution 
L-I H is Cauchy. It is an important question to know, in addition, whether or 
not an LIL holds and it is the purpose of this paper to show that it is the case. 
Surprisingly, in contrast with the estimation theory for supercritical Gal- 
ton-Watson processes illustrated by the important contribution of Heyde [ 5 ] ,  
[ll], [12], [13], this question has not been tackled in the literature for expIo- 
sive autoregressive processes. 

THEOREM 2.1. For any Jefi eigenvector f of A associated with the eigenuahe 
A, we have the LIL 

lim sup lf*~n-,(Jn-8)l - . l ( f Y  Y)I - 
n - -  1nlnJ2%& ,/- a's" 

lim sup If * L (~YOn-8) l  - - 0 I < f ,  01 
n+ rn JG JW a.S7 

where Y and L are given by (2.3) and (2.6), respectively. 

COROLLARY 2.1. In the scalar case p = 1, the maximum likelihood estima- 
tor (&) folbws the LIL 

Re mark. It was shown in [I41 that, for all v E RP with v # 0, (v, Y) has 
a continuous distribution. Hence, in the scalar case, Y # 0 a.s. Moreover, one 
can also estimate 0  by the YuleWalker estimator 

It is easy to see that &,, converges a.s, to 8 - I  and we infer from Corollary 2.1 
that 

lirn sup 
101~18~-8-~1 - gJn - 

021yI . n-r m JG 
In order to establish a more general result on the LIL associated with (d,,), we 
need some algebraic preliminaries on the Jordan canonical form associated 
with the companion matrix A. One can find an invertible matrix P such that 
PAP-' is a Jordan matrix J ,  i.e. a direct sum of q Jordan blocs J , ,  J 2 ,  .. ., Jq ,  
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where, for 1 < i d q ,  Ji is either a scalar li E C or a square matrix of order 
di > 1 with diagonal terms each equal to Ai E C, di- 1 terms each equal to one in 
the subdiagonal and all other entries equal to zero. We have dl + d ,  + . . . + d, = p 
and the orders di  may not be distinct and the values li may not be distinct either. 
Moreover, for 1 < i < q, let be the left eigenvector associated with the Jordan 
block Ji and set f = Cf :, f:, . . ., f 2. Furthermore, for any vector v of CS set 
v = (v:, 0 5 ,  . . ., vi), where, for 1 < i < q, vi is a vector of Cd'. Finally, for any 
vectors u and v of CP, define 

4 - 

A (u, v )  = C lluill I I l ~ i l l l  and A (u) = sup ( A  (u, v? wi'th 11v112 = 1)- 
i=  1 

THEOREM 2.2. Let e ( A )  be the spectral radius of A and denote by v the 
index associated with @(A) .  Then, for any vector u of CP, we have the LIL 

lim sup Iv* PQn - 1 (on - 011 
n+m ~ ( V ~ " ~ ( A ~ J G  ' 

which implies that 

. , 

lirn sup 

In addition, for any vector v of CP7 we also have 

IV* L ( A ~ ) ~ ( ~ ~ - o ) ~  cz 
(2.12) lirn sup = .(C (.*A+ Y)2)lP a,, 

R + W  4- k = l  

More particularly, 

m 

(2.13) lim sup I I ( A " ) ~ ( ~ - ~ ) ~ ~ '  G 02 z I I L ; I A - L  yllz a.s. 
n+ 03 2 log n k = l  

P r o  of, First of all, it follows from (2.4) that Q,- (8, - 0) = M, with 
n 

M , = M o + z  @ k - l ~ k  and M , = - 0 .  
k =  1 

Moreover, relation (2.2) can be rewritten as 

(2.14) @, = A" Y- R,, 

where 
m m 

Y = @ j o + C  A - k ~ k  and R n =  1 
k =  1 k = l  
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Consequently, we infer from (2.14) that M, = Mo + U,  Y- with 

(2.15) Un=  A k p l e k  and K =  z R k - l ~ k .  
k =  1 k =  1 

On the one hand, we have 

For any vector v of CP, if wk = v* R k ~ k ,  it is not hard to see that (w,) is 
a sequence of square-integrable random variables such that 

and 

E[lwkI2] a a411allZQ2(l-e2)-1 with 0 < < Q < 1, 

where g(A-l) denotes the spectral radius of A-l. Then, it follows from the 
Rademacher-MenchofF theorem (see e.g. Theorem 2.3.2 of [la]) together with 
the usual strong law of large numbers that, for any vector v of CP, 

lim ~ ' u * A v ,  = a2(v, S , )  as., 
n- tm 

where 6: = (1,0, . . ., 0). Hence, we obtain l1K11 = O(n) a.s. On the other hand, 
for the sequence (U,), assume first of all that f is a left eigenvector of A as- 
sociated with the eigenvalue 1. For any vector u of CP, if <, = An-1 (f, t6) E,, 

then (5.) is a sequence of independent random variables distributed as N(0, a,) 
with a, = a2 lr112(n-1)l(f, u)I2. Consequently, we find by the use of Theorem 1.2 
that 

lim sup If*Vnul -al<f ,u>l  
n-- 111" J5&i - Jjpz a's' 

Hence (2.7) and (2.8) follow from the conjunction of (2.5), (2.17) and (2.18). 
More generally, for any vector v of CP, we infer from (2.15) that 

We shall focus our attention on a particular Jordan block J  of dimension d ,  
associated with the eigenvalue 1 E C with 111 > 1, where the index i is omitted in 
order to avoid heaviness in the notation. There exists a basis V1, f2, . . ., f,) of Cd * such that f:J = ,If: and, for 2 < j < d, f 7 J  = lf;+fj-l. Hence f l  Jk = lZk f  
and, for 2 < j , < d ,  

f;(~-,i~,,)k=f;-~ if l < k < j - 1  and fj*(J-lld)k=O i f j < k < d .  
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Therefore, one can easily check that for all 1 6 j < d 

where (p, (1) = A k - I  and, for k 3 d, yk (I) = C ~ I ?  jlk-j+'- Furthermore, for 
any vector u of Cd and for all 1 6 j 6 d, set 

l =-I 
- 

As before, (5,) is a sequence of independent random variables distributed as 
N (0, a") with 

We can show after some straightforward calculations that 

Consequently, it immediately follows from Theorem 1.2 that for any vector ra of 
Cd and for all l d j g d  

* k l  I C f j J  - E ~ U I  
(2.20) lim sup k = l  a.s. .+, nt i - l~  111 0-3 4 %  

We shall now put together the results obtained for the various compo- 
nents in (2.19). Let Q(A)  be the spectral radius of A and denote by v the index 
associated with @(A), that is the order of the largest block corresponding to 
@(A).  Then, we deduce from (2.19) together with (2.20) that, for any vectors 
u and v of CP, 

(2.21) lim sup A (u, v)  as. 
.-a 

Therefrom, (2.17) and (2.21) imply (2.10) and (2.1 1). Furthermore, for any vec- 
tors u and v of CP, set 

The random variable is distributed as N(O, a:) with 
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Hence, it is well known that 

Finally, we deduce (2.12) and (2.13) from (2.17) and (2.22), completing the proof 
of Theorem 2.2. ra 

3. EXTENSION - 

One might wonder if an LIL similar to that of Theorem 2.2 holds without 
the normality assumption on (en). As we shall see in Section- 4, we cannot do 
without this normality assumption. However, we shall now prove that, via 
a suitable averaging on (on), it is possible to obtain an LIL with the only 
hypothesis that (E,) is a martingale difference sequence with constant condi- 
tional variance aZ and finite conditional moment of order greater than 2. The 
main tool for proving LIL in the martingale framework is given by the foI- 
lowing lemma (see [7] and [18]). 

Let F = (F,) be a sequence of nondecreasing G-algebras. Moreover, let (<,I 
be a martingale difference sequence adapted to F such that, for all n 2 0, 
E I Fn] = a2 with 0 > O and sup E [Itn + ,I" 1 P,] < co as. for some > 2. 
For a p-dimensional sequence of random vectors (q,) adapted to F, define 

where the identity matrix I ,  is added in order to avoid useless invertibility 
assumptions. 

LEMMA 3.1. Let ( c3  be a deterministic real sequence increasing to infinity. 
As sum that c i l  Pn-l converges a s .  to a finite random matrix L and that 

with 2 < p < a. Then, for any vector u € R P  such that v* Lv > 0, we have the LIL 

Consider the autoregressive process of order p 2 1 given, for all n 2 0, by 

Denote by F = (9") the natural filtration 9, = a (@,, E,, . . ., e,). Assume that 
the initial state @, is a square-integrable random vector independent of (E , ) .  
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Moreover, assume that (sn) is a martingale difference sequence adapted to 
F such that, for all n 2 0, E ( Fn] = tr2 > O and, for some a > 2, 

sup E [JE, + 1 S,] c co as. 
n 

THEOREM 3.1. For any vector VERP, we have the LIL 

(3.4) lim sup t+A-k Q ~ -  l(&-O)) = G - ~ u ~ ( A - I ~ ) - ~  Y1 a.s., 

(3.5) limsup (2n 1ig2 JI2 I k: C u'(A-g'(Bk-s)l = G ~ u ~ ( A L - L ) - ' Y ~  ass. 

with Y and L given by (2.3) and (2.6), respectively. 

Remark. It is possible to establish a similar result to Theorem 3.1 for 
multitype supercritical branching processes. 

COROLLARY 3.1. In the scalar case p = 1, the least-squares estimator (8,) 
follows the LIL 

R em ark. As in the previous section, since lim inf E [E:, 1 F,,] = a2 with 
a > 0, the random variable ( v ,  Y) has a continuous distribution for all v E RP 
with Y # 0. Hence, in the scalar case, Y # 0 as. Moreover, we immediately infer 
from Corollary 3.1 that the YuleWalker estimator 6", given by (2.9) satisfies 

Proof. As in the previous section, we have 8, - 0 = QZ1 Mn with 
n 

M ,  = M o +  @ k - l ~ k  and MO = -0. 
k =  1 

If Z ,  = A-:ME,  we clearly have 

13.6) Zn = A-lZn-l+ql,-l~n, 

where q, = A-I and Y, = Set 

We have already seen that Y ,  converges a.s. to Y given by (2.3). Hence, it 
follows from Kronecker's lemma that 

lim n-I Pn = A-I YYf(A-l)f a.s. 
n+ m 
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Moreover, as (p,) is almost surely bounded, we immediately have for all P > 2 

Consequently, we find via Lemma 3.1 that for any V E R ~  

Furthermore, (3.6) can be rewritten as Z,+ -Z, = -BZ,  + cp, &,,+ with 
3 = I p -  A - l .  As the matrix B is invertible, we obtain 

In addition, we can easily deduce from (3.6) together with (3.3) that 

(3.9) 112,11 = 0 ( max 1 ~ ~ 1 )  = o(nli8) a.s. 
1SkGn 

with 2 < p < a. Hence, we infer from (3.7H3.93 that for any v€RP 

1 112 n 

(3.10) limsup( ) Ivf C Zkl = Q Iut(A -Ip)- '  YI a.s. 
n - t m  2nlog,n R =  1 

Finally, recalling that 2, = A-" (Mo  + en- (& - O)),  (3.4) and (3.5) follow from 
(3.10) together with (2.5), completing the proof of Theorem 3.1. H 

4. CONCLUSION 

In this paper, we have studied the LIL for (S,) of the typical form 

where la1 > 1 and (En)  are independent with N(0, a') distribution. A natural 
question is, without averaging, is it possible to do without the normality assump- 
tion on (c.)? We shall show in this section that, except for bounded random 
variables, it is impossible to get rid of this normality assumption. Assume that (5,) 
are i.i.d. with mean zero and variance a2 with a > 0. It is easy to see that 

m 

(4.1) 5 H with H = C a-k5,+1. 
k = O  

In order to prove an LIL for (S,), a classical approach is to introduce a time 
change as follows. Let A be the function defined, for all t E R  with t 2 1, by 
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A (t) = a", We obviousIy have A -  (t) = (2log lal)- log (t).  Consequently, if 

then it follows from (4.1) that 

(4.2) lal-vn ISv.I 5 IHI. 
Moreover, we have 

a2 G~ 
E [S;]  = -(azn- I), - 

a2- 1 

which implies that E [s:"] - aZ o2 (a2 - I)-' aZvn. However, we shall now show 
that the sequence (n-' lazvn) is such that ( n - I  E [S;J) is bounded by 1 but it 
never converges. As a matter of fact, let !P be the function given, for all t E W, by 
P(t) = t - [t] - 1/2. One can easily check that 

As !I? is a periodic function with period one, the sequence (t-' a2'~) never 
converges. Hence, an LIL similar to that of Lemma 3.1 never holds for (S,,). 
Furthermore, we have 

as soon as = 4 s )  as. Then we can deduce from Proposition 5 of [fl that 

However, we have already seen that (4.3) is no longer true when replacing vn by n. 

THEOREM 4.1. Assume that (5,) is a sequence of independent and identically 
distributed random umiables with lcnl = o(&) U.S. Then we haue 

(4.4) lim sup 
Isnl I5n l  (&) lim sup --- .-- lain 6 + &j a.S. 

Proof. If Z,, = a-" s./&, we clearly have 

Zn+l = a-' Z,, 5n+ I 
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Hence, for all n 3 2, we find that 

which implies (4.4). 

Remark. If 

IGI lim sup ------ = m , 
n-- & 

one can observe that 

lim sup ISnl 
= 03 as. 

n-- 

REFERENCES 

[I] T. W. Anderson, On the asymptotic distributions of estimates of parameters of stochastic 
diflerence equations, Ann. Math. Statist. 30 (1959), pp. 676487. 

[2] S. Asm ussen and N. Keidin g, Martingale central limit theorems and asymptotic theory for 
multitype branching processes, Adv. in Appl. Probab. 10 (19781, pp. 109-129. 

[3] K. 3. Athreya  and P. E. Ney, Branching Processes, Springer, Berlin 1972. 
[4] B. B e r c y  On large deviations in the Gaussian autoregressive process: stable, unstable and 

explosive cases, Bernoulli 7 (2001), pp. 299-316. 
[5] B. M. Brown and C. C. Hey de, An invariance principle and some convergence rates for 

branching processes, Z .  Wahrscheinlichkeitstheorie verw. Gebiete 20 (1971), pp. 271-278. 
161 M. Duflo, Random Iterative Models, Springer, Berlin 1997. 
171 M. Duflo, R. Senoussi  and A. Touati ,  Sur la loi des grands nombres pour les martingales 

vectorielles et l'estimateur des moindres carrks d'un rnod6le de rigression, Ann. Inst. H. Poin- 
car6 26 (1990), pp. 549-566. 

[8] M. Duflo, R. Senoussi  and A. To  ua ti, Propriitis asymptotiques presque srires de l'es- 
timateur Hes moindres c a d s  d'un moddk mtorigressif vectoriel, Ann. Inst. H. Poincark 27 
(1990), pp. 1-25. 

191 P. Hartman,  Normal distributions and the law of iterated logarithm, Amer. J .  Math. 63 (1941), 
pp. 584-588. 

[lo] P. H a r t m a n  and A. Winter, On the law of iterated logarithm, Amer. J. Math. 63 (1941), 
pp. 169-176. 

[lll C. C. Hey de, Some almost sure convergence theorems jor branching processes, Z. Wahrschein- 
lichkeitsthwrie verw. Gebiete 20 (1971), pp. 189-192. 

[12] C. C. He  yde and J. R. Leslie, Improved classical limit analogues for Galton-Watson processes 
with or without immigration, Bull. Austral. Math. Soc. 5 (1971), pp. 145-155. 

[13] R. M. Huggins, Laws of iterated logarithm for time changed Brownian motion with an ap- 
plication to branching processes, Ann. Probab. 13 (1985), pp. 1148-1156. 

[14] T. L. La i  and C. 2. Wei, Asymptotic properties of general autoregressiue models and strong 
consistency of least-squares estimates of their parameters, J. Multivariate Anal. 13 (1983), 
pp. 1-23. 



Hartman's law of itmated logarithm 113 

[IS] J. M arcin k iewicz  wd A. Z y gmund, Remarque sur In loi du logarithms itirk, Fund. Math. 
29 (1937), pp. 21S222. 

[la V. V. Petrov ,  Limit Theorems of Probability Theory, Oxford University Press, Oxford 1995. 
[lq M .  M. Rao,  Consistency and limit distribution of estimators of parmneters in explosive stochas- 

tic dzTerence equations, Ann. Math. Statist. 32 (19611, pp. 145218. 
[lg] W. F. S t o u t ,  Almost mre convergence, Academic Press, New York 1974. 
[19] R. J. T o m k i n s ,  Some iterated logarithm remlts related to the centrnl limit theorem, Trans. 

Amer. Math. Soc. 156 (19711, pp. 185-192. 
[20] A. T o u a t i ,  %o theorems on convergence in distribution for stochustic integrals and statistical 

applications, Probab. Theory Appl. 38 (19933 pp. 95-117. 
[21] A. T o u a t i ,  Vitesse de convergence en bi de l'estimateur des moindres carrPs d'un moddle 

autoregressij (cas mixte), Ann. Inst. H. Poincari 32 (1996), pp. 211-230. - 

1221 J. S. W h i t e ,  The limit distribution oj  the serial correlation in the explosiue case, Ann. Math. 
Statist. 29 (1958), pp. 1188-1197. 

[23] R. Wit tmann,  A general law of iterated Iogarithm, Z. Wahrscheinlichkeitstheorie verw. 
Gebiete 68 (1985), pp. 521-543. 

Bernard Bercu Abderrahmen Touati 
Laboratoire d e  Mathkmatiques Laboratoire de Mathhatiques 
U M R  8628 CNRS U M R  7534 CNRS 
Bitiment 425, Universit6 Paris-Sud Place du Markcha1 Delattre de Tassigny 
91405 Orsay Cedex, France 75775 Paris Cedex 16, France 
Email: Bernard.Bercu@ath.u-psud.fr E-mail: abdertouati@yahoo.com 

Received on 12.1 0.2001 




