MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR PAIRWISE INDEPENDENT RANDOM FIELDS

BY

EWA B. CZEREBAK-MROZOWICZ (Rzeszow), OLEG I. KLESOV (Kyiv) and ZDZISLAW RYCHLIK (Lublin)

Abstract

We present the Marcinkiewicz-type strong law of large numbers for random fields $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ of pairwise independent random variables, where $Z_{+}^{d}, d \geqslant 1$, is the set of positive d-dimensional lattice points with coordinatewise partial ordering.

1991 Mathematics Subject Classification: Primary 60F05, 60F15.
Key words and phrases: Marcinkiewicz strong law of large numbers, pairwise independent random variables, random fields.

1. INTRODUCTION

Let $Z_{+}^{d}, d \geqslant 1$, be the set of positive integer d-dimensional lattice points. The points in $Z^{d}+$ will be denoted by m, n, etc., or, sometimes, when necessary, more explicitly by ($\left.m_{1}, m_{2}, \ldots, m_{d}\right),\left(n_{1}, n_{2}, \ldots, n_{d}\right)$, etc. Also, for $\boldsymbol{n}=\left(n_{1}, \ldots, n_{d}\right)$ we define $|\boldsymbol{n}|=\prod_{i=1}^{d} n_{i}$. We shall write 0 and 1 for points $(0,0, \ldots, 0)$ and $(1,1, \ldots, 1)$, respectively. The set Z_{+}^{d} is partially ordered by stipulating $m \leqslant n$ if $m_{i} \leqslant n_{i}$ for each $i, 1 \leqslant i \leqslant d$. Furthermore, we shall write $\boldsymbol{m}<\boldsymbol{n}$ if $\boldsymbol{m} \leqslant \boldsymbol{n}$ and $m_{i}<n_{i}$ for at least one $i, 1 \leqslant i \leqslant d$. In this paper the limit $n \rightarrow \infty$ will mean $\max _{1 \leqslant i \leqslant d} n_{i} \rightarrow \infty$.

Let us define

$$
d(x)=\operatorname{Card}\left\{\boldsymbol{n} \in \boldsymbol{Z}_{+}^{d}:|\boldsymbol{n}|=[x]\right\}
$$

and

$$
M_{d}(x)=\operatorname{Card}\left\{n \in Z_{+}^{d}:|n| \leqslant[x]\right\}=M(x)
$$

where $[x]$ denotes the greatest integer not exceeding $x, x \in[0, \infty)$. We have, cf. Simithe [6], [7],

$$
\begin{equation*}
M_{d}(n)=n\left(\log _{+} n\right)^{d-1} /(d-1)!-M_{d-1}(n), \quad d \geqslant 2 \tag{1.1}
\end{equation*}
$$

where $\log _{+} x=\max (1, \log x), x>0$. Thus, by (1.1),

$$
\begin{equation*}
M_{d}(x)=O\left(x\left(\log _{+} x\right)^{d-1}\right) \quad \text { as } x \rightarrow \infty \tag{1.2}
\end{equation*}
$$

Furthermore, for every $\delta>0$,

$$
\begin{equation*}
d(x)=o\left(x^{\delta}\right) \quad \text { as } x \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field of pairwise independent random variables, defined on a probability space (Ω, \mathscr{A}, P). For $\boldsymbol{n} \in Z_{+}^{d}$ define the partial sum

$$
S_{n}=\sum_{k \leqslant n} X_{k}
$$

The aim of this paper is to present the Marcinkiewicz-type strong law of large numbers for random fields $\left\{X_{n}, \boldsymbol{n} \in Z_{+}^{d}\right\}$ of pairwise independent random variables. The basic assumption we make is that, for some $0<C<\infty$,

$$
\begin{equation*}
\sum_{n:|n|=k} P\left(\left|X_{n}\right| \geqslant t\right) \leqslant C d(k) P(|X| \geqslant t) \tag{1.4}
\end{equation*}
$$

for all $k \in N$ and every $t>0$, where X is a random variable. Let us observe that if (1.4) holds, then for all $n \in Z_{+}^{d}$ and every $t>0$

$$
\begin{align*}
\sum_{k \leqslant n} P\left(\left|X_{k}\right| \geqslant t\right) & \leqslant \sum_{k:|k| \leqslant|n|} P\left(\left|X_{k}\right| \geqslant t\right)=\sum_{i=1}^{|n|} \sum_{k:|k|=i} P\left(\left|X_{k}\right| \geqslant t\right) \tag{1.5}\\
& \leqslant C \sum_{i=1}^{|n|} d(i) P(|X| \geqslant t)=C M_{d}(|n|) P(|X| \geqslant t) .
\end{align*}
$$

Thus, from this point of view, the condition (1.4) seems to be weaker than the following one:

$$
\begin{equation*}
\sum_{k \leqslant n} P\left(\left|X_{k}\right| \geqslant t\right) \leqslant C|n| P(|X| \geqslant t) \tag{1.6}
\end{equation*}
$$

for all $n \in Z_{+}^{d}$ and every $t>0$.
If (1.6) holds, then we sometimes say that the sequence $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ is weakly mean dominated by the random variable \boldsymbol{X}, cf. Fazekas and Tómács [3] (Definition 2.3). In general, in our opinion, the conditions (1.4) and (1.6) are indeperident. If (1.4) holds, then we have (1.5).

Many authors have investigated the Marcinkiewicz-type strong law of large numbers for random fields $\left\{X_{n}, \boldsymbol{n} \in Z_{+}^{d}\right\}$ in the case $d=1$. Etemadi [2] extended the classical law of large numbers for independent and identically distributed random variables to the case where the random variables are pairwise independent and identically distributed. Choi and Sung [1] have shown that if $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of pairwise independent and dominated in distribution by a random variable X such that $E|X|^{p}\left(\log _{+}|X|\right)^{2}<\infty$, $1<p<2$, then $\left(S_{n}-E S_{n}\right) / n^{1 / p} \rightarrow 0$ a.s. as $n \rightarrow \infty$. In the case $d=2$, also Etemadi [2] proved that if $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ is a sequence of pairwise independent and identically distributed random variables such that $E\left|X_{1}\right|\left(\log _{+}\left|X_{1}\right|\right)<\infty$, then
$\left(S_{n}-E S_{n}\right) /|n| \rightarrow 0$ a.s. as $n \rightarrow \infty$. On the other hand, Hong and Hwang [4] proved that if $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ is a double sequence of pairwise independent random variables such that, for every $n \in Z_{+}^{2}$ and all $t>0$,

$$
\begin{equation*}
P\left(\left|X_{n}\right| \geqslant t\right) \leqslant P(|X| \geqslant t) \tag{1.7}
\end{equation*}
$$

and $E|X|^{p}\left(\log _{+}|X|\right)^{3}<\infty, 1<p<2$, then

$$
\begin{equation*}
\left(S_{n}-E S_{n}\right) /(|n|)^{1 / p} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

Furthermore, Hong and Hwang [4] proved that if (1.7) holds with a random variable X such that $E|X|^{p}\left(\log _{+}|X|\right)<\infty, 1<p<2$, then

$$
\begin{equation*}
\left(S_{n}-E S_{n}\right) /(|n|)^{1 / p} \rightarrow 0 \text { in } L_{1} \quad \text { as } n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

This paper contains complements to the results presented by Hong and Hwang [4] and their generalizations. Let us observe that the condition (1.7) implies (1.4). We would also like to note that some calculations given in the paper by Hong and Hwang [4] are not understandable, for example, why

$$
\int_{0}^{(i j)^{2 / p}} P\left(t \leqslant|X|^{2}<(i j)^{2 / p}\right) d t=\int_{0}^{(i j)^{1 / p}} x^{2} d F(x),
$$

where $F(x)$ is the distribution of X. Assume that, for example, $P(X \geqslant 0)=0$. Then the right-hand side of the last equality equals zero, but the left-hand side can be positive (cf. (2.2), (2.3), (2.10), (2.14)-(2.16) in Hong and Hwang [4]).

Let us observe that the Marcinkiewicz-type strong law of large numbers holds for identically distributed random variables with arbitrary dependence structure if $0<p<1$, cf., e.g., Petrov [5], Chapter IV, Theorem 16. Fazekas and Tómács [3] extend this result to the case of weakly mean dominated random fields $\left\{X_{n}, n \in Z_{+}^{d}\right\}$. Thus, this paper also contains complements to some results given by Fazekas and Tómács [3] and their generalizations. We present the Marcinkiewicz-type strong law of large numbers for $1<p<2$.

2. RESULTS

We can now formulate our main results.
Theorem 1. Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field of pairwise independent random variables satisfying the condition (1.4). If, for some $1<p<2$,

$$
\begin{equation*}
E|X|^{p}\left(\log _{+}|X|\right)^{d+1}<\infty \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(S_{n}-E S_{n}\right) /|n|^{1 / p} \rightarrow 0 \text { a.s. as } n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Theorem 2. Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field of pairwise independent random variables satisfying the condition (1.4). If, for some $1<p<2$,

$$
\begin{equation*}
E|X|^{p}\left(\log _{+}|X|\right)^{d-1}<\infty \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(S_{n}-E S_{n}\right) /|n|^{1 / p} \rightarrow 0 \text { in } L_{1} \quad \text { as } n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

3. AUXILIARY LEMMAS

In the proofs of the results stated in Section 2 we need some lemmas, which we present in this section.

Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field. Let us put

$$
X_{n}^{\prime}=X_{n} I\left(\left|X_{n}\right| \leqslant|n|^{1 / p}\right), \quad X_{n}^{\prime \prime}=X_{n}-X_{n}^{\prime}
$$

where $1<p<2$.
Lemma 1. Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field of random variables satisfying the condition (1.4). Then for every $1<p<2$ there exists a positive constant C such that

$$
\begin{equation*}
\sum_{n \in Z_{+}^{d}} E\left(X_{n}^{\prime}\right)^{2} /\left(|n|^{2 / p}\right) \leqslant C E|X|^{p}\left(\log _{+}|X|\right)^{d-1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \in Z_{+}^{d}} E\left|X_{n}^{\prime \prime}\right| /(|n|)^{1 / p} \leqslant C E|X|^{p}\left(\log _{+}|X|\right)^{d-1} \tag{3.2}
\end{equation*}
$$

Let us observe that we do not assume that the random field $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ is pairwise independent.

Proof. By (1.4) we have

$$
\begin{align*}
& \sum_{n \in Z_{+}^{d}} E\left(X_{n}^{\prime}\right)^{2} /(|n|)^{2 / p}=\sum_{n \in Z_{+}^{d}}|n|^{-2 / p} \int_{0}^{\infty} P\left(\left(X_{n}^{\prime}\right)^{2} \geqslant t\right) d t \tag{3.3}\\
& \leqslant \sum_{n \in Z_{+}^{d}}|n|^{-2 / p} \int_{0}^{|n|^{2 / p}} P\left(t \leqslant\left|X_{n}\right|^{2}\right) d t=\sum_{k=1}^{\infty} k^{-2 / p} \int_{0}^{k^{2 / p}} \sum_{n:|n|=k} P\left(\left|X_{n}\right|^{2} \geqslant t\right) d t \\
& \leqslant C \sum_{k=1}^{\infty} k^{-2 / p} d(k) \int_{0}^{k^{2 / p}} P\left(|X|^{2} \geqslant t\right) d t \\
& =C \sum_{k=1}^{\infty} k^{-2 / p} d(k) \int_{0}^{k^{2 / p}}\left\{P\left(|X|^{2} \geqslant k^{2 / p}\right)+P\left(t \leqslant|X|^{2}<k^{2 / p}\right)\right\} d t \\
& =C \sum_{k=1}^{\infty} d(k) P\left(|X| \geqslant k^{1 / p}\right)+C \sum_{k=1}^{\infty} d(k) k^{-2 / p} \int_{0}^{k^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t
\end{align*}
$$

But, by (1.2), we get

$$
\begin{align*}
& \text { (3.4) } \quad \sum_{k=1}^{\infty} d(k) P\left(|X| \geqslant k^{1 / p}\right)=\sum_{k=1}^{\infty} d(k) \sum_{i=k}^{\infty} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \tag{3.4}\\
& =\sum_{i=1}^{\infty}\left(\sum_{k=1}^{i} d(k)\right) P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right)=\sum_{i=1}^{\infty} M_{d}(i) P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \\
& \leqslant C_{1} \sum_{i=1}^{\infty} i\left(\log _{+} i\right)^{d-1} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \leqslant C_{2} E|X|^{p}\left(\log _{+}|X|\right)^{d-1},
\end{align*}
$$

where C_{1} and C_{2} are absolute constants depending only on p and d. On the other hand,

$$
\begin{align*}
\sum_{k=1}^{\infty} d(k) & k^{-2 / p} \int_{0}^{k^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \tag{3.5}\\
& =\sum_{k=1}^{\infty} k^{-2 / p} d(k) \sum_{i=1}^{k} \int_{(i-1)^{2 / p}}^{i^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \\
& \leqslant \sum_{k=1}^{\infty} k^{-2 / p} d(k) \sum_{i=1}^{k} P\left((i-1)^{2 / p} \leqslant X^{2}<k^{2 / p}\right)\left(i^{2 / p}-(i-1)^{2 / p}\right) \\
& \leqslant \sum_{k=1}^{\infty} k^{-2 / p} d(k) \sum_{i=1}^{k} P\left((i-1)^{1 / p} \leqslant|X|<k^{1 / p}\right) i^{2 / p-1} \\
& =\sum_{k=1}^{\infty} k^{-2 / p} d(k) \sum_{i=1}^{k} i^{2 / p-1} \sum_{j=i}^{k} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right)
\end{align*}
$$

But
(3.6) $\sum_{i=1}^{k} i^{2 / p-1} \sum_{j=i}^{k} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right)$

$$
=\sum_{j=1}^{k} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \sum_{i=1}^{j} i^{2 / p-1} \leqslant C_{4} \sum_{j=1}^{k} j^{2 / p} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right),
$$

where C_{4} is an absolute constant. Hence, by (3.5) and (3.6), we have

$$
\begin{align*}
& \sum_{k=1}^{\infty} d(k) k^{-2 / p} \int_{0}^{k^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \tag{3.7}\\
& \leqslant C_{4} \sum_{k=1}^{\infty} k^{-2 / p} d(k) \sum_{j=1}^{k} j^{2 / p} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \\
&=C_{4} \sum_{j=1}^{\infty} j^{2 / p} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \sum_{k=j}^{\infty} k^{-2 / p} d(k) .
\end{align*}
$$

But $d(k)=M(k)-M(k-1)$, so that by (1.2) and the mean-value theorem we get

$$
\begin{equation*}
\sum_{k=j}^{\infty} k^{-2 / p} d(k) \leqslant C_{5} \sum_{k=j}^{\infty} k^{-2 / p}(\log k)^{d-1} \leqslant C_{6} j^{1-2 / p}(\log j)^{d-1} \tag{3.8}
\end{equation*}
$$

where, here and in what follows, C with or without subscripts denotes a positive generic constant.

Consequently, (3.5)-(3.8) yield

$$
\begin{align*}
& \sum_{k=1}^{\infty} d(k) k^{-2 / p} \int_{0}^{k^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \tag{3.9}\\
& \leqslant C \sum_{j=1}^{\infty} j(\log j)^{d-1} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \leqslant C E|X|^{p}\left(\log _{+}|X|\right)^{d-1}
\end{align*}
$$

Thus, from (3.3), (3.4) and (3.9) we get (3.1).
Let us observe that, by (1.4),

$$
\begin{align*}
& \sum_{n \in Z_{+}^{d}} E\left|X_{n}^{\prime \prime}\right| /\left(|n|^{1 / p}\right)=\sum_{n \in Z_{+}^{a}}|n|^{-1 / p} \int_{0}^{\infty} P\left(\left|X_{n}^{\prime \prime}\right| \geqslant t\right) d t \tag{3.10}\\
= & \sum_{n \in Z_{+}^{d}}|n|^{-1 / p}\left\{|n|^{1 / p} P\left(\left|X_{n}\right|>|n|^{1 / p}\right)+\int_{|n|^{1 / p}}^{\infty} P\left(\left|X_{n}\right| \geqslant t\right) d t\right\} \\
= & \sum_{k=1}^{\infty} k^{-1 / p} \sum_{n:|n|=k} k^{1 / p} P\left(\left|X_{n}\right|>k^{1 / p}\right)+\sum_{k=1}^{\infty} k^{-1 / p} \int_{k^{1 / p}}^{\infty} \sum_{|n|:|n|=k} P\left(\left|X_{n}\right| \geqslant t\right) d t \\
\leqslant & C \sum_{k=1}^{\infty} d(k) P\left(|X|>k^{1 / p}\right)+C \sum_{k=1}^{\infty} k^{-1 / p} d(k) \int_{k^{1 / p}}^{\infty} P(|X| \geqslant t) d t .
\end{align*}
$$

Furthermore, by (1.2), we get

$$
\begin{align*}
& \sum_{k=1}^{\infty} d(k) P\left(|X|>k^{1 / p}\right)=\sum_{k=1}^{\infty} d(k) \sum_{j=k}^{\infty} P\left(k^{1 / p}<|X| \leqslant(k+1)^{1 / p}\right) \tag{3.11}\\
= & \sum_{j=1}^{\infty} P\left(j^{1 / p}<|X| \leqslant(j+1)^{1 / p}\right) \sum_{k=1}^{j} d(k) \\
\leqslant & C \sum_{j=1}^{\infty} j(\log j)^{d-1} P\left(j^{1 / p}<|X| \leqslant(j+1)^{1 / p}\right) \leqslant C E|X|^{p}\left(\log _{+}|X|\right)^{d-1} .
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& \sum_{k=1}^{\infty} k^{-1 / p} d(k) \int_{k^{1 / p}}^{\infty} P(|X| \geqslant t) d t=\sum_{k=1}^{\infty} k^{-1 / p} d(k) \sum_{j=k}^{\infty} \int_{j^{1 / p}}^{(j+1)^{1 / p}} P(|X| \geqslant t) d t \tag{3.12}\\
\leqslant & \sum_{k=1}^{\infty} k^{-1 / p} d(k) \sum_{j=k}^{\infty} P\left(|X| \geqslant j^{1 / p}\right) j^{1 / p-1}
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} k^{-1 / p} d(k) \sum_{j=k}^{\infty} j^{1 / p-1} \sum_{i=j}^{\infty} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \\
& =\sum_{k=1}^{\infty} k^{-1 / p} d(k) \sum_{i=k}^{\infty} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \sum_{j=k}^{i} j^{1 / p-1} \\
& \leqslant C_{1} \sum_{k=1}^{\infty} k^{-1 / p} d(k) \sum_{i=k}^{\infty} i^{1 / p} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \\
& =\sum_{i=1}^{\infty} i^{1 / p} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \sum_{k=1}^{i} k^{-1 / p} d(k) \\
& \leqslant C_{2} \sum_{i=1}^{\infty} i(\log i)^{d-1} P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \leqslant C_{3} E|X|^{p}\left(\log _{+}|X|\right)^{d-1} .
\end{aligned}
$$

Thus, taking into account (3.10)-(3.12) we easily get (3.2), and this completes the proof of Lemma 1.

Lemma 2. Let $\left\{X_{n}, n \in Z_{+}^{d}\right\}$ be a random field of pairwise independent random variables such that $E X_{n}=0, n \in Z_{+}^{d}$. Then there exists a positive constant C such that

$$
\begin{equation*}
E\left(\max _{1 \leqslant k \leqslant n}\left|S_{k}\right|\right)^{2} \leqslant C\left|\log _{+} n\right|^{2} \sum_{k \leqslant n} E X_{k}^{2}, \tag{3.13}
\end{equation*}
$$

where, for $n=\left(n_{1}, \ldots, n_{d}\right),\left|\log _{+} n\right|=\prod_{i=1}^{d} \log _{+} n_{i}$.
Proof. If $\boldsymbol{n}=\mathbb{1}$, then (3.13) holds. We now turn to the case $\mathbb{1}<\boldsymbol{n}=$ $\left(n_{1}, \ldots, n_{d}\right) \in Z_{+}^{d}$. Let $s=s(n)=\left(s_{1}, \ldots, s_{d}\right)$, where $s_{i}, 1 \leqslant i \leqslant d$, are integers such that $2^{s_{i}-1}<n_{i} \leqslant 2^{s_{i}}$ if $n_{i}>1$ and $s_{i}=0$ if $n_{i}=1$, i.e., $s_{i}=\left\lceil\log _{2} n_{i}\right\rceil=$ $=\min \left\{k \geqslant 0: \log _{2} n_{i} \leqslant k\right\}$. Set $X_{\boldsymbol{k}}^{*}=X_{\boldsymbol{k}}$ if $k \leqslant n$ and $X_{\boldsymbol{k}}^{*}=0$ otherwise. We obviously have

$$
\sum_{k \leqslant 2^{s}} X_{k}^{*}=\sum_{k \leqslant n} X_{k}, \quad S_{k}=S_{k}^{*}, k \leqslant n,
$$

where $2^{s}=\left(2^{s_{1}}, \ldots, 2^{s_{d}}\right)$ and $S_{k}^{*}=\sum_{i \leqslant k} X_{i}^{*}$.
Let us divide every interval $\left(0,2^{s_{i}}\right]$ into $\left(0,2^{s_{i}-1}\right]$ and $\left(2^{s_{i}-1}, 2^{s_{i}}\right]$ and each of these two intervals into two halves, and so on. Thus, the elements of the j_{i}-th partition are of length $2^{s_{i}-j_{i}}, j_{i}=0,1, \ldots, s_{i}$, so that we obtain the $j=\left(j_{1}, j_{2}, \ldots, j_{d}\right)$-th partition $P_{j}=P_{j_{1}, \ldots, j_{d}}$ of $\left(0,2^{s_{1}}\right] \times \ldots \times\left(0,2^{s_{d}}\right]$ by the j_{i}-th partition of $\left(0,2^{s_{i}}\right], 1 \leqslant i \leqslant d$. Furthermore, let us observe that for every $k=\left(k_{1}, \ldots, k_{d}\right) \in Z_{+}^{d}, \boldsymbol{k} \leqslant n$, the set $(0, k]=\left(0, k_{1}\right] \times \ldots \times\left(0, k_{d}\right]$ is the sum of at most $|s+\mathbb{1}|=\prod_{i=1}^{d}\left(s_{i}+1\right)$ disjoint sets each of which belongs to a different partition. Thus, we can write

$$
S_{k}=\sum_{0 \leqslant l \leqslant s} Y_{l, k},
$$

where $Y_{l, k}$ is the sum of all random variables X_{r}^{*} belonging to the set $\left(a_{1}, b_{1}\right] \times \ldots \times\left(a_{d}, b_{d}\right], b_{i}-a_{i}=2^{l_{i}}, 1 \leqslant i \leqslant d$, and such that $r \leqslant k$, where $l=\left(l_{1}, \ldots, l_{d}\right)$.

Let

$$
T_{j}=\sum_{k \leqslant 2^{j}}\left|Y_{k}\right|^{2}, \quad T=\sum_{0 \leqslant r \leqslant s} T_{r},
$$

where $Y_{\boldsymbol{k}}$ is the sum of all random variables X_{r}^{*} which belong to the \boldsymbol{k}-element of P_{j} and $2^{j}=\left(2^{j_{1}}, \ldots, 2^{j_{d}}\right)$. By the Schwarz inequality we have

$$
\begin{equation*}
\left|S_{k}\right|^{2} \leqslant|s+1| \sum_{0 \leqslant l \leqslant s}\left|Y_{l, k}\right|^{2} \leqslant|s+1| T, \tag{3.14}
\end{equation*}
$$

where $s+\mathbb{1}=\left(s_{1}+1, \ldots, s_{d}+1\right)$. On the other hand,

$$
\begin{equation*}
E T_{j} \leqslant \sum_{k \leqslant n} E\left|X_{k}\right|^{2} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
E T \leqslant|s+1| \sum_{k \leqslant n} E\left|X_{k}\right|^{2} \tag{3.16}
\end{equation*}
$$

Thus, by (3.14)-(3.16), we get

$$
E\left(\max _{1 \leqslant k \leqslant n}\left|S_{k}\right|\right)^{2} \leqslant|s+1|^{2} \sum_{k \leqslant n} E\left|X_{k}\right|^{2} \leqslant\left|\left\lceil\log _{2} n\right\rceil+\mathbb{1}\right|^{2} \sum_{k \leqslant n} E\left|X_{k}\right|^{2}
$$

where $\left\lceil\log _{2} n\right\rceil=\left(\left\lceil\log _{2} n_{1}\right\rceil, \ldots,\left\lceil\log _{2} n_{d}\right\rceil\right)$.
This last inequality implies (3.13) and completes the proof of Lemma 2.
Lemma 2 is a d-dimensional version of Lemma 2.2 presented by Hong and Hwang [4].

4. PROOFS OF THEOREMS

The symbol C, with or without subscripts, denotes a positive generic constant.

Proof of Theorem 1. Let us put

$$
\begin{gathered}
X_{n}^{\prime}=X_{n} I\left(\left|X_{n}\right| \leqslant|n|^{1 / p}\right), \quad X_{n}^{\prime \prime}=X_{n}-X_{n}^{\prime \prime} \\
S_{n}=\sum_{k \leqslant n} X_{k}, \quad S_{n}^{\prime}=\sum_{k \leqslant n} X_{k}^{\prime} .
\end{gathered}
$$

Then, by (1.4), we get

$$
\begin{align*}
& \text { (4.1) } \quad \sum_{n \in Z_{+}^{d}} P\left(X_{n} \neq X_{n}^{\prime}\right)=\sum_{k=1}^{\infty} \sum_{n:|n|=k} P\left(\left|X_{n}\right|>|n|^{1 / p}\right) \leqslant C \sum_{k=1}^{\infty} d(k) P\left(|X| \geqslant k^{1 / p}\right) \tag{4.1}\\
& =C \sum_{k=1}^{\infty} d(k) \sum_{j=k}^{\infty} P\left(j^{1 / p} \leqslant|X|<(j+1)^{1 / p}\right) \\
& =C \sum_{j=1}^{\infty} P\left(j^{1 / p} \leqslant|X|<(j+1)^{1 / p}\right) M(j) \\
& \leqslant C_{1} \sum_{j=1}^{\infty} j\left(\log _{+} j\right)^{d-1} P\left(j^{1 / p} \leqslant|X|<(j+1)^{1 / p}\right) \leqslant C_{2} E|X|^{p}\left(\log _{+}|X|\right)^{d-1}<\infty .
\end{align*}
$$

Thus, by (4.1) and the Borel-Cantelli lemma, we obtain

$$
\begin{equation*}
\left(S_{n}-S_{n}^{\prime}\right) /|n|^{1 / p} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty . \tag{4.2}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left(S_{n}-E S_{n}\right) / /|n|^{1 / p}=\left(S_{n}-S_{n}^{\prime}\right) /|n|^{1 / p}+\left(S_{n}^{\prime}-E S_{n}^{\prime}\right) /|n|^{1 / p}+\left(E S_{n}^{\prime}-E S_{n}\right) /|n|^{1 / p} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|E S_{n}^{\prime}-E S_{n}\right| /|\boldsymbol{n}|^{1 / p} \leqslant \sum_{k \leqslant n} E\left|X_{k}^{\prime \prime}\right| /|n|^{1 / p} \tag{4.4}
\end{equation*}
$$

Moreover, by (3.2) in Lemma 1, we have

$$
\begin{align*}
& \sum_{k \in Z_{+}^{d}}\left(\sum_{i \leqslant 2^{k}} E\left|X_{i}^{\prime \prime}\right|\right) /\left|2^{k}\right|^{1 / p} \tag{4.5}\\
& \\
& \qquad C C \sum_{i \in Z_{+}^{d}} E\left|X_{i}^{\prime \prime}\right| /|i|^{1 / p} \leqslant C_{1} E|X|^{p}\left(\log _{+}|X|\right)^{d-1}<\infty
\end{align*}
$$

where, for $\boldsymbol{k}=\left(k_{1}, \ldots, k_{d}\right)$, here and subsequently $2^{\boldsymbol{k}}=\left(2^{k_{1}}, \ldots, 2^{k_{d}}\right)$. We conclude from (4.5) that

$$
\begin{equation*}
\sum_{k \leqslant 2^{n}} E\left|X_{k}^{\prime \prime}\right| / /\left.2^{n}\right|^{1 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Moreover, for every $n \in Z_{+}^{d}$ such that $2^{\boldsymbol{k}}<\boldsymbol{n}<2^{\boldsymbol{k + 1}}$, we have

$$
\begin{equation*}
\sum_{i \leqslant 2^{k}} E\left|X_{i}^{\prime \prime}\right| /\left|2^{k+1}\right|^{1 / p} \leqslant \sum_{i \leqslant n} E\left|X_{i}^{\prime \prime}\right| /|n|^{1 / p} \leqslant \sum_{i \leqslant 2^{k+1}} E\left|X_{i}^{\prime \prime}\right| /\left|2^{k}\right|^{1 / p} \tag{4.7}
\end{equation*}
$$

and $\left|2^{k+1}\right|=2^{d}\left|2^{k}\right|$ for all $k \in Z_{+}^{d}$. By using now (4.4) combined with (4.5)-(4.7), we find

$$
\begin{equation*}
\left|E S_{n}^{\prime}-E S_{n}\right| /|\boldsymbol{m}|^{1 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\left(S_{n}^{\prime}-E S_{n}^{\prime}\right) /|n|^{1 / p} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{4.9}
\end{equation*}
$$

By Chebyshev's inequality and (3.1) in Lemma 1, we get

$$
\begin{align*}
& \sum_{k \in Z_{+}^{d}} P\left(\left|S_{2^{k}}^{\prime}-E S_{2^{k}}^{\prime}\right| \geqslant \varepsilon\left|2^{k}\right|^{1 / p}\right) \leqslant \varepsilon^{-2} \sum_{k \in Z_{+}^{d}} E\left(S_{2^{k}}^{\prime}-E S_{2^{k}}^{\prime}\right)\left|2^{k}\right|^{-2 / p} \tag{4.10}\\
& \leqslant \varepsilon^{-2} \sum_{k \in Z_{+}^{d}}\left(\left|2^{k}\right|^{-2 / p}\right) \sum_{i \leqslant 2^{k}} E\left(X_{i}^{\prime}\right)^{2} \leqslant C \varepsilon^{-2} \sum_{n \in Z_{+}^{d}} E\left(X_{n}^{\prime}\right)^{2} /|n|^{2 / p} \\
& \leqslant C \varepsilon^{-2} E|X|^{p}\left(\log _{+}|X|\right)^{d-1}<\infty .
\end{align*}
$$

Thus, by the Borel-Cantelli lemma and (4.10), we have

$$
\begin{equation*}
\left(S_{2^{n}}^{\prime}-E S_{2^{n}}^{\prime}\right) /\left[\left.2^{n}\right|^{1 / p} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty\right. \tag{4.11}
\end{equation*}
$$

On the other hand, if $2^{k}<n<2^{k+1}$, then

$$
\begin{align*}
\left|S_{n}^{\prime}-E S_{n}^{\prime}\right| /|n|^{1 / p} & \leqslant\left|S_{2^{k}}^{\prime}-E S_{2^{k} \mid}^{\prime}\right| /|n|^{1 / p}+\left.\right|_{2^{k}<i \leqslant n}\left(X_{i}^{\prime}-E X_{i}^{\prime}\right)\left|/|n|^{1 / p}\right. \tag{4.12}\\
& \leqslant \mid S_{2^{k}}^{\prime}-E S_{2^{k}\left|/\left|2^{k}\right|^{1 / p}+\max _{2^{k}<i<2^{k+1}}\right| T(i, k)\left|/\left|2^{k}\right|^{1 / p}\right.} .
\end{align*}
$$

where

$$
T(i, k)=\sum_{2^{k}<l \leqslant i}\left(X_{i}^{\prime}-E X_{1}^{\prime}\right)
$$

Now, by using Lemma 2, easy computations lead to

$$
\begin{align*}
& \sum_{k \in Z_{+}^{d}} P\left(\max _{2^{k}<i<2^{k+1}}|T(i, k)| \geqslant \varepsilon\left|2^{k}\right|{ }^{1 / p}\right) \tag{4.13}\\
& \leqslant \varepsilon^{-2} \sum_{k \in Z_{+}^{d}} E\left(\max _{2^{k}<i<2^{k+1}}|T(i, k)|^{2}\right) /\left|2^{k}\right|^{2 / p} \\
& \leqslant C \varepsilon^{-2} \sum_{k \in Z_{+}^{a}}\left|2^{k}\right|^{-2 / p}\left|\log _{+}\left(2^{k+1}-2^{k}\right)\right|^{2} \sum_{2^{k}<i<2^{k+1}} E\left(X_{i}^{\prime}\right)^{2} \\
& \leqslant C_{1} \varepsilon^{-2} \sum_{k \in Z_{+}^{d}}|k|^{2}\left|2^{k}\right|^{-2 / p} \sum_{2^{k}<i<2^{k+1}} E\left(X_{i}^{\prime}\right)^{2} \\
& \leqslant C_{2} \varepsilon^{-2} \sum_{k \in Z_{+}^{d}}\left(\log _{2^{+}}|k|\right)^{2}|k|^{-2 / p} E\left(X_{k}^{\prime}\right)^{2}
\end{align*}
$$

where, if $k=\left(k_{1}, \ldots, k_{d}\right)$, then

$$
\left(2^{k+1}-2^{k}\right)=\left(2^{k_{1}+1}-2^{k_{1}}, \ldots, 2^{k_{d}+1}-2^{k_{d}}\right)=2^{k}
$$

Moreover, as in the proof of Lemma 1 ((3.3)-(3.9)), we get

$$
\begin{align*}
\leqslant & C \sum_{k=1}^{\infty}\left(\log _{+} k\right)^{2} k^{-2 / p} \int_{0}^{k} \sum_{n:|n|=k} P\left(\left|X_{n}\right|^{2} \geqslant t\right) d t \tag{4.14}\\
\leqslant & C \sum_{k=1}^{\infty}\left(\log _{+} k\right)^{2} k^{-2 / p} d(k) \int_{0}^{2 / p} P\left(|X|^{2} \geqslant t\right) d t \\
\leqslant & C \sum_{k=1}^{\infty}\left(\log _{+} k\right)^{2} d(k) P\left(|X| \geqslant k^{1 / p}\right) \\
& +C \sum_{k=1}^{\infty}\left(\log _{+} k\right)^{2} d(k) k^{-2 / p} \int_{0}^{k^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \\
\leqslant & C \sum_{i=1}^{\infty}\left(\sum_{k=1}^{i} d(k)\left(\log _{+} k\right)^{2}\right) P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \\
& +C \sum_{k=1}^{\infty} k^{-2 / p} d(k)\left(\log _{+} k\right)^{2} \sum_{i=1}^{k} \int_{(i-1)^{2 / p}}^{i^{2 / p}} P\left(t \leqslant X^{2}<k^{2 / p}\right) d t \\
\leqslant & C \sum_{i=1}^{\infty}\left(\log _{+} i\right)^{2} M(i) P\left(i^{1 / p} \leqslant|X|<(i+1)^{1 / p}\right) \\
& +C \sum_{k=1}^{\infty} k^{-2 / p} d(k)\left(\log _{+} k\right)^{2} \sum_{i=1}^{k} P\left((i-1)^{2 / p} \leqslant X^{2}<k^{2 / p}\right)\left(i^{2 / p}-(i-1)^{2 / p}\right) \\
\leqslant & C_{1} E|X|\left(\log _{+}|X|\right)^{d+1} \\
& +C_{2} \sum_{k=1}^{\infty} k^{-2 / p} d(k)\left(\log _{+} k\right)^{2} \sum_{i=1}^{k} i^{2 / p-1} P\left((i-1)^{1 / p} \leqslant|X|<k^{1 / p}\right) \\
= & C_{1} E|X|\left(\log _{+}|X|\right)^{d+1} \\
& +C_{2} \sum_{k=1}^{\infty} k^{-2 / p} d(k)\left(\log _{+} k\right)^{2} \sum_{i=1}^{k} i^{2 / p-1} \sum_{j=i}^{k} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \\
\leqslant & C_{1} E|X|\left(\log _{+}|X|\right)^{d+1} \\
& +C_{3} \sum_{k=1}^{\infty} k^{-2 / p} d(k)\left(\log _{+} k\right)^{2} \sum_{j=1}^{k} j^{2 / p} P\left((j-1)^{1 / p} \leqslant|X|<j^{1 / p}\right) \\
\leqslant & C_{1} E|X|\left(\log _{+}|X|\right)^{d+1} \\
\leqslant & C_{1} E|X|\left(\log _{+}|X|\right)^{d+1}+C_{5} \sum_{j=1}^{\infty} j^{2 / p} P\left(j-1 \leqslant|X|^{p}<j\right) \sum_{k=j}^{\infty} k^{-2 / p} d(k)\left(\log _{+} j\right)^{d+1} P\left(j-1 \leqslant|X|^{p}<j\right) \\
\leqslant & C_{6} E|X|\left(\log _{+}|X|\right)^{d+1} .
\end{align*}
$$

Finally, (4.9) follows by combining (4.11) with (4.12)-(4.14) and the Borel-Cantelli lemma. We complete the proof of Theorem 1 by using (4.3) together with (4.2), (4.9) and (4.8).

Proof of Theorem 2. It follows that

$$
\begin{align*}
& E\left|S_{n}-E S_{n}\right| /|n|^{1 / p} \tag{4.15}\\
& \leqslant \\
& \leqslant\left|S_{n}-S_{n}^{\prime}\right| /|n|^{1 / p}+E\left|S_{n}^{\prime}-E S_{n}^{\prime}\right| /|n|^{1 / p}+\left|E S_{n}^{\prime}-E S_{n}\right| /|n|^{1 / p} \tag{4.16}\\
& \\
& \quad E\left|S_{n}-S_{n}^{\prime}\right| /|n|^{1 / p} \leqslant \sum_{k \leqslant n} E\left|X^{\prime \prime}\right| /|n|^{1 / p},
\end{align*}
$$

$$
\begin{equation*}
E\left|S_{n}^{\prime}-E S_{n}^{\prime}\right| /|n|^{1 / p} \leqslant\left\{E\left(S_{n}^{\prime}-E S_{n}^{\prime}\right)^{2}\right\} /|n|^{1 / p} \leqslant\left\{\sum_{k \leqslant n} E\left(X_{k}^{\prime}\right)^{2} /|n|^{2 / p}\right\}^{1 / 2} \tag{4.17}
\end{equation*}
$$ and, by (4.8),

$$
\begin{equation*}
\left|E S_{n}^{\prime}-E S_{n}\right| /|n|^{1 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{4.18}
\end{equation*}
$$

Notice that (4.8) is a consequence of (2.3). Moreover, (2.3) also implies that (4.6) and (4.7) hold. Thus, by (2.3), we also get

$$
\begin{equation*}
\sum_{k \leqslant n} E\left|X_{k}^{\prime \prime}\right| /|n|^{1 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.19}
\end{equation*}
$$

On the other hand, by (3.1) in Lemma 1 , we get
(4.20) $\sum_{k \in Z_{+}^{d}}\left(\sum_{i \leqslant 2^{k}} E\left(X_{i}^{\prime}\right)^{2}\right) /\left|2^{k}\right|^{2 / p} \leqslant C \sum_{k \in Z_{+}^{d}} E\left(X_{i}^{\prime}\right)^{2} /|i|^{2 / p} \leqslant C_{1} E|X|\left(\log _{+}|X|\right)^{d-1}$.

Hence, by (4.20),

$$
\begin{equation*}
\sum_{k \leqslant 2^{n}} E\left(X_{k}^{\prime}\right)^{2} /\left|2^{n}\right|^{2 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.21}
\end{equation*}
$$

Next, by using the fact that for every $2^{\boldsymbol{k}}<\boldsymbol{n}<2^{\boldsymbol{k}+1}$

$$
\sum_{i \leqslant 2^{k}} E\left(X_{i}^{\prime}\right)^{2} /\left|2^{k+1}\right|^{2 / p} \leqslant \sum_{i \leqslant n} E\left(X_{i}^{\prime}\right)^{2} /|n|^{2 / p} \leqslant \sum_{i \leqslant 2^{k+1}} E\left(X_{i}^{\prime}\right)^{2} /\left|2^{k}\right|^{2 / p}
$$

and since $\left|2^{\boldsymbol{k}+\boldsymbol{1}}\right|=2^{d}\left|2^{\boldsymbol{k}}\right|$, we obtain

$$
\begin{equation*}
\sum_{k \leqslant n} E\left(X_{k}^{\prime}\right)^{2} /|n|^{2 / p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.22}
\end{equation*}
$$

Finally, (2.4) follows by combining (4.15) with (4.16)-(4.19) and (4.22).

REFERENCES

[1] B. D. Choi and S. H. Sung, On convergence of $\left(S_{n}-E S_{n}\right) / n^{1 / r}, 1<r<2$, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), pp. 79-82.
[2] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. verw. Gebiete 55 (1981), pp. 119-122.
[3] I. Fazekas and T. Tómács, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publ. Math. Debrecen 53 (1998), pp. 149-161.
[4] D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Internat. J. Math. Math. Sci. 22 (1999), pp. 171-177.
[5] V. V. Petrov, Limit Theorems for Sums of Independent Random Variables (in Russian), Nauka, Moscow 1987.
[6] R. T. Smythe, Strong law of large numbers for r-dimensional arrays of random variables, Ann. Probab. 1 (1973), pp. 164-170.
[7] R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probab. 2 (1974), pp. 906-917.

Ewa B. Czerebak-Mrozowicz
Department of Mathematics
Technical University of Rzeszów ul. Wincentego Pola 2
35-959 Rzeszów, Poland

Oleg I. Klesov
National Technical University of Ukraine
Department of Mathematics \#1
PR. Peremogy 37
Kyiv 252056, Ukraine

Zdzisław Rychlik
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
and
Puławy High School
ul. 4. Pułku Piechoty WP 17
24-100 Puławy, Poland

