PROBABILITY AND MATHEMATICAL STATISTICS Vol. 22, Fasc. 2 (2002), pp. 253–258

SOME REMARKS ON $S\alpha S$, β -SUBSTABLE RANDOM VECTORS

Jolanta K. Misiewicz Shigeo Takenaka

Abstract: An $S\alpha S$ random vector X is β -substable, $\alpha < \beta \leq 2$, if $X \stackrel{d}{=} Y \Theta^{1/\beta}$ for some symmetric β -stable random vector $Y, \Theta \geq 0$ a random variable with the Laplace transform $\exp\{-t^{\alpha/\beta}\}$, Y and Θ are independent. We say that an $S\alpha S$ random vector is maximal if it is not β -substable for any $\beta > \alpha$.

In the paper we show that the canonical spectral measure for every $S\alpha S$, β -substable random vector X, $\beta > \alpha$, is equivalent to the Lebesgue measure on S_{n-1} . We show also that every such vector admits the representation X = Y + Z, where Y is an $S\alpha S$ sub-Gaussian random vector, Z is a maximal $S\alpha S$ random vector, Y and Z are independent. The last representation is not unique.

2000 AMS Mathematics Subject Classification: 60A99, 60E07, 60E10, 60E99.

Key words and phrases: Symmetric α -stable vector, substable distributions, spectral measure.

THE FULL TEXT IS AVAILABLE HERE