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1. INTRODUCTION 

Denote by A = (aij] an rn x n real matrix with m < n. Then a permanent 
of the matrix A is defined by 

Per (A) = C alii . . . ami,,,. 
(il, ..., i , , , ) :( i~ ,..., i m } c { l  ,... .n) 

In this paper we study the h o s t  sure asymptotic behavior of a permanent of an 
m x n (m < n) random matrix X = EX..] of square integrable entries such that its 

? 
columns are independent identically dstributed random vectors of exchangeable 
components. For 1 . m and j = 1 ,  ..., n we put p=E(Xij), 
a2 = Var(Xij) and e = Corr (Xkj,  Xij). In the sequel we always assume that p # 0 
and 0 < 0' < a. We denote additiondy by y = c / p  the variation coefficient. In 
this setting we are interested in finding the conditions under which 
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2. THE BACKWARD MARTlRTGALE PROPERTY 

It has been proved in Rempala and Weso~owski [6] that 

Per (X) 
c=  1 

where 

for Ti j  = X i j / p -  1, i = 1, . . ., rn, j = 1,  . , ., n. Moreover, the Uim.")"s are 
orthogonal, i.e., 

(2) C o v ( U ~ ~ ~ " ) ,  ULyn)) = 0 for c, # c, 

as well as 

m-r ~ ' - ~ ( l - ~ y  
(3) var(u:m*n)) = (:)-I (:)-I y2' ~ = o  2 ( c-r ) r ! 

Under our assumptions, when p = 1, the above decomposition is simply 
the usual Hoeffding decomposition of the elementary symmetric polynomial 
statistic of increasing order (i.e., rn = m, is a non-decreasing function of n), and 
then it is well known (cf., e.g., Rempala and Gupta [4]) that the sequence 
(U~mn~"))n=,o,,,+l,.., is a backward martingale for a natural sequence of a-al- 
gebras. 

Let us first show that this property is valid for any QE[O, 11. 

FROPOS~ON 1. Let rn =rn, be a non-decreasing sequence and for anyfixed 
natural number c let us put = CJ { u $ ~ ~ ~ " ) ,  U$mn+ I*"+ , . . .) . Then the sequence 
(Ukmnrn), F~) )n=no ,nO + ,... is a backward martingale, i.e., 

E(Uimn.") I *?+I)) = ULmn+17n+1) for all n = no, no + 1, . . . 
Proof.  Let us denote an dement of the Hoeffding-like decomposition of 

an m, x n matrix obtained from the mn+l x n+ 1 matrix by deleting m,+l-mn 
rows: 11, .. ., lm,+l-mn, and the k-th column by Uimn**(ll, . . ., lmn+l-mn; k), i.e., 
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Observe that 

since any given Per [ ~ i a , ] u = l  i.e., a permanent with fixed roprs i,, . . ., i, 
u= 1.. ..,c 

and columns j , ,  . . ., j,, is contained in 

elements of the form ULmnmnl (I1, . . ., lmn+ -mn; k) such that 

(il? ..-, ic)  (4, ..., ~mn+l-m,) = a, k & G i ~ ,  ... . , jc) .  

Since 

it follows that 

But due to the exchangeability of distribution within columns (treated as infjnite 
sequences) and the assumption that columns are independent and identically dis- 
tributed, it follows that the conditional distribution of U~m".n)(I1, . . ., Ln+, -,,; k) 
given 9;Pf I) is the same for any particular choice of k E (1, . . . , n + 1) and 
{Il, . . ., im,+ -m,) c (1, . . . , mn+ l). Consequently, 

Now, it follows that 
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since after changing the order of taking the expectation and summations we see 
that all the summands are equal, by what was observed above. But on the other 
hand, using the identity (4), we get 

Consequently, combining the above two formulas, we get the final result. 

3. LAWS OF LARGE NUMBERS 

The first result which can be considered a version of the strong law of large 
numbers (SLLN) for random permanents was obtained in Haldsz and Szikely 
E31. The authors considered symmetric polynomials of increasing order for 
positive independent identically distributed random variables, which, for the 
matrix of positive entries, is equivalent to taking e = 1 in the scheme we con- 
sider here. They have shown that under the condition rn/n 4 A 2 0 

where S (A) is uniquely determined and S(0)  = y. The above result is implied by 
the relation (1) but only when A = 0. For some further discussion of that and 
related issues see Sztkely [7] and, more recently, Rempaia and Gupta [4]. In 
the latter paper it was argued that the relation (1) cannot hold if m/& -+ 1 > 0 
and a logarithmic version of the SLLN for elementary symmetric polynomials 
under even more restrictive technical assuxpptions was obtained. 

Additionally, it was proved in van Es and Helmers [8] for Q = 1 in the 
scheme we consider here that a version of the CLT for random permanents 
holds if m2/n + 0. This result has been extended to any e ~ ( 0 ,  11, again under 
the assumption that mz/n +O, in Rempda and Wesobwski 161, but without 
the exchangeability assumption. Here we present the SLLN in the exchange- 
able scheme. It  appears that in this setting a slightly more stringent condition 
on the rate of relative asymptotic behavior of m and n has to be imposed. 

THEOREM 1. Let m = m, be a non-decreasing sequence. If QE(O, I] and 
mP/n -, 0 for same p > 2, then 

Per (X) 
+ 1 a.s. 
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P r o  of. We use the Hoeffding-like decomposition recalled briefly, after 
Rempala and Wesolowski [6], in Section 1. Hence it suffices to prove that 

Obsewe that for sufficiently large n, say n > no, we have m = m, < n l ' P .  

Now, we shall prove that for any arbitrary but fixed c 2 1 

To this end notice that for any E > 0 . 

Since 

it follows that 

Now, by the maximal inequality for backward martingales (see, for instance, 
Chow and Teicher [I], Chapter 7), we get 

\e /  
since it follows by (3) for Q > 0 that 

Let us note that for sufEciently Iarge n we have 

which entails 
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and the last series converges since p > 2, i.e., 2 / p -  1 < 0. Thus, it follows that 

and, consequently, 

Now, let us put - 

Rmfl (k) = f c) upsn) for some L k < m. 
c = k  

We will prove that there exists k satisfying 2 < k < m such that R,,,(k) con- 
verges to zero completely, i.e., for all E > 0, zF= =, P (IR,,, (k)l > s) < m. This 
will obviously hold if we can show that Z:= T a r  (R,,, (k)) i ar . 

By (2) it follows that 

Consequently, by (3), 

since ec--' (1 -e)' < 1 and 

(:I;) . (:) for a n y c = l ,  ..., m a n d r = O  ,..., c. 

Observe now that the inequality (m - r)'/(n - r)  < m2/n implies that 

Applying this inequality to the relation above, we obtain 

m2 k m m2 c - k  2c 

var (Rm,* (k)) . e Zk (;) 5. 
Now, for n large enough we have m2/n < 1, and hence 
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Since 

for sufficiently large n, it follows that for k such that k (1 - 2 / p )  > 1 the sequence 
(R,,, (k)) converges completely to 0 as n + co . H 

Now let us turn our attention to the case Q = 0. Extending the earlier 
results of Girko [2] it was proved in Rempala and Wesolowski [5] that in 
the case of independent identically distributed entries of the matrix X the 
CLT holds if m/n + 0, as long as the coefficient of variation y satisfies 
0 < y2 c m. However, in the case of uncorrelated (not necessarily indepen- 
dent) components of the column vector, in order to obtain asymptotic nor- 
mality without the exchangeability assumption some additional restrictions 
on the rate of m/n were needed (cf. Rempala and Wesolowski [6]). Similarly, 
in the case of the permanent SLLN in the scheme we consider here, for uncor- 
related (and thus possibly independent) within-column components, an addi- 
tional technical condition on the behavior of the sequence na = rn, is also 
needed. 

T H E O ~ M  2. Let p = 0 and let m = m, be a non-decreasing sequence. As- 
sume that there exist p > 1 and L > 0 such that 

and 

(6) m;, < Lm, n1/P. 

Then 

Per (X) 
+ 1 a.s. 

Proof.  Observe that in the case Q = 0 it follows from (3) that 

Var (Ukm.')) = 
Y 

Consequently, using the same argument as in the proof of Theorem 1, we 
obtain 
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Now by (6) it follows that 

and the series converges, since p > 1. Hence for any fixed c we have 

As in the proof of Theorem 1 we consider again - 

R m G ( q  = f (:) uimvn) for some 2 < k < m. 
c = k  

We shall prove that there exists k  (2 < k < m) such that R,,,(k) converges to 
0 completely. 

To this end it suffices to observe that 

But now it follows immediately that the series of variances converges if 
only the parameter k is chosen in such a way that k ( 1 - l / p )  > 1, since 

for sufficiently large n's. ra 

Remark 1. Observe that if m2,/mn is bounded, then the condition (6) 
holds. 

  em ark 2. Instead of (6) one can require 

To see this note that 

which follows from the inequality m,, < nliP holding true for sufficiently large n's. 
The fact that the last series converges follows in view of the condensation 
criterion and (6'). 
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The above implies in particular that if p > 2, then the assumption (6) may 
be dropped, since the condition (6') is then always satisfied. 

Let us conclude with the following simple example of our result to random 
graphs (see also Rempala and Wesokowski [5]). 

EXAMPLE (Counting matchings in a bipartite random graph). Let G,,",, = 
( V ,  V ;  E be a bipartite random graph with Vl = {rl, rZy . . .* rm), 

= {cl, c2, . . ., c,) (rn 6 n) and E c Vl x V2. Assume that the edges occur 
independently with a fixed probability 0 < p < 1. In this setting, the reduced 
adjacency matrix of G,,,,, is a random m x n matrix X = [Iij] of independent 
Bernoulli B(p)  random variables. Denoting the number of fully saturating 
matchings by H(G,,n,p) we have H(G,,n,p) = Per (X). Thus, in the notation of 
this section, we have p = p > 0. Therefore, by Theorem 2 under ihe provisos (5) 
and (61, we obtain 
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