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Abstract. There are two methods of obtaining symmetric proba- 
bility measure on a base of an arbitrary probability measure p wrre- 
sponding to the random variable X. The first relies on considering 
distribution of Y= X-X', where X' is an independent copy of X. In 
the language of measures we have then 9 ( Y )  = p * p - ,  where 
p- (A) = p( -A) .  In the second method we consider the mean of two 
measures p and p- .  In the paper we want to present some known and 
new results on characterizing such measures p for which both methods 
coincide, i.e. measures for which 

In the literature one can find also the following generalization of this 
question: for f i e -  ps(0 ,  11 what is the characterization of such pairs 
of distributions p and v for which 

This problem was posed by Dug& in 1939 and it was extensively 
studied since then. However, the full characterization has not been 
found yet. In the paper we show some constructions of the Dug& 
question with the properties of simple fractions classes of characteristic 
functions. We give also a collection of new solutions and an example of 
three measures p, v and q such that 

In the last section we give also some solutions in the set of signed 
c-finite measures. The authors would like to express theirgratitude to 
Professor D. Szynal for his interesting questions and discussions. 
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In this paper we study the following problem: For fixed probability dis- 
tribution p  and fixed constant p ~ ( 0 ,  11 we want to find whether or not there 
exists any signed, maybe a-finite measure v such that 

If cp and I,$ are the Fourier transforms of the measures p  and v, respectively, 
then the equation (1) can be rewritten in the following form: 

This problem, in a slightly different form, was posed by D. Puguk in 1939 (see 
[I], [2]). It  was studied later by Szynal and Wolinska (see [8], [lo], [I 11). Also 
recently there appeared a paper of Krakowiak (see [3]). The beginning is very 
simple: in probability there are two methods of symmetrization of the given 
distribution p; one is based on taking the mean of the original measure and its 
symmetric image; the other leads to the distribution of X - X f ,  where X and X' 
are independent with the same distribution p. DuguG's question was to charac- 
terize such distributions p for which these two methods coincide, i.e. to charac- 
terize such distributions ,u for which 

(21 + k + p - )  = P * P - >  

where p- (A) = p(-A) for every Bore1 set A. If cp is the characteristic function 
of p, we can equivalently say that we want to characterize such characteristic 
functions rp for which 

After some generalizations (convex linear combination instead of mean and 
any probability distribution v instead of p-) the DuguC problem was to 
characterize pairs of probability distributions by v) such that for given 
p ~ ( 0 ,  11 the following equation is satisfied: 

In this paper we denote by @ the set of all characteristic functions. For every 
p ~ ( 0 ,  I] and q = 1 -p, we define two operators T,P, T f :  @ + @ by the fol- 
lowing formulas: 

P GP(d = - 
Pcp 

TI? (cp) = l--grp. 
1 - 4cp' 

Calculating the Fourier transform $ of the measure v from equation (1') we 
obtain 

Pq def $=-- 
4'-q 

- GP(y). 
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For every p E (0 ,  11 the function GP(q) is well defined on the set cp ( t )  # q. 
Notice that in general GP(q j  does not have to be a characteristic function. 

The following lemma will be very useful in this paper: 

LEMMA 1. For every p ~ ( 0 ,  11 and every probability measure p with 
P ( t )  = q ( t )  the functions T , ( q )  and T/(ip) are the characteristicJirnctions of the 
,following measures: 

Proof. It is enough to calculate the characteristic functions for the mea- 
sures T:(p] and T,P (p). rn 

2. WHEN DO TWO METHODS OF SYMMETRIZATION CCMNCIQE? 

We consider the equations (2) and 12'). In [2] Duguk noticed that the 
characteristic function cp (t) = 1/(1- itla) of an exponential distribution T (1, a) 
satisfies the equation (cp  + @)/2 = q@. This means that for T (1,  a) two types of 
stochastic symmetrization coincide. 

Fkows~no~ 1. If a probability measure p satisfies the equation (2), then 
there exists a function u: R -P R such that the characteristic function p(t) of the 
measure p is of the form 

$ (t) = 3 + 3 exp {iu (t)} . 
The function u(t)  is continuous, uniquely determined and u ( -  t )  = - u (t). 

P r o  of. We can write f i  ( t )  = x (t) + iy (t), where x ,  y: R -, R. Then using 
the equation (2') we have (2x (t)  - i)' +(2y (t))l = 1. NOW it is enough to define 
2x (t) - 1 = sin u ( t )  and 2y(t) = cos u (t). The properties of the function u (t)  are 
simple implications of general properties of characteristic functions. H 

EXAMPLE. It is known that the following probability measures satisfy 
equation (2): 

1) pl = $So++8., ~ E R ;  
2) p2 (dx) = ae-"" l~o,,,(x)dx, a > 0; 
3) pg = (4 do +$da) * T[(da), where p E (0, I), a ER. 
Let ( t)  = ++* exp {ui (t)). Evidently, f i ,  ( t )  = $++ eita, so u, (t) = at. For 

the function f i2  we have 

1 1  1 
- + - exp {iu, (t)) = --- 
2 2 1 - itla' 
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Taking the derivative of both the sides of this equation we obtain 

L 
U; (t) exp (iu2 (t)) = 

a (1 - it/a)" 

which leads us to the equation 

L 
u'z (t) = 

a (1 + @/a)') ' 

Hence er, (t) = 2 arctan (t/a) + C, and since u2 (0) = 0, we finafly have 

u, (t)  = 2 arctan (t/a). 

For the measure p3 and its characteristic function we have the equation 

The complex logarithm gives 

cos (at) - q + i sin (at) 
UJ (t) = Arg 

1 - q cos (at) - iq sin (at)' 

3. ON THE GENERAL DUG& PROBLEM 

For the first time the equation pcp, (t)+qq, (t) = rpl ( t )  qz (t), p +  q = 1, 
p > 0, q > 0, was considered by Kubik (see [4]). He gave two examples of pairs 
of measures for which the condition (1) is satisfied: a pair of discrete measures 

and a pair of exponentiai distributions 

Rossberg in [7] proved (see Theorem 3, p. 213) that only such a pair of exponen- 
tial distributions can have all the following properties: supp(p) = (- co, 0), 
supp(v) = (0, co), v is no lattice distribution, and pp + qv = p * v for some 
p = l-q€(o, 1). 

It was proved (see [3], [ll]) that if the pair (p, v) of probability measures 
satisfies (I), then both the measures are discrete or absolutely continuous or 
singular. In [8], [lo], [11] one can find many examples of characteristic func- 
tions for which (1') holds. Moreover, Woliriska in [lo] and [11] gave some 
recursive formulas for a sequence of pairs of characteristic functions satisfying 
(1') when we have at least one such pair. 
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For every p ~ ( 0 ,  11 we define the set 9, E @ by the following: 

BP = (q  E @ : Gp ((P) is a characteristic function). 

The set 9 c Q, is defined as 

It means that a characteristic function cp belongs to 3 if and only if GP(q) is 
a characteristic function for every p ~ ( 0 ,  11. Krakowiak (see [3])proved that 
for every rp E @ one of the following conditions holds: 

1) rp 4 BP for every p E (0, 1); 
2) q f g ;  
3) 3p0 E (0,  1 ) :  9, E gP for every p E (0, p o l y  and q 4 gP for p > po . 
PROPOSITION 2. If q E gP for some p E (0,  I), then: 
(4 lq-(1 + p r l l  2 P/U +PI; 

(ii) rp E Qu for every u ~ ( 0 ,  p]; 
(iii) $ = GP ((P) E Bu for every u E (0, 1 - p ]  . 
Proof.  Another proof of this proposition can be found in [3]. 
(i) We want to show that for ~ ~ 9 9 ~  the function (P is taking values in 

the set 

Let q (t) = x (t)+ iy (t). Of course, 1tp1 < 1. Since GP ((P) E @, we have IGP (q)I < 1 .  
Thus 

It  is easy to see that the set of x+ iy having these two properties is equal to D,. 
(5) We have (p E gP, i.e. $ = GP ((p) E 8. Hence the function T', ($) E @ for 

every r ~ ( 0 ,  11. On the other hand, we have 

Prp r -  
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This proves that GU (q) E 8 for every u = rp/( l  - p  + rp) ,  r ~ ( 0 ,  I], which was to 
be shown. 

(iii) Let v = 1 -u. It is easy to see that 

There must be 0 < (up)/(vq) d 1 and v - p  2 0. Thus 0 < u 2 1 - p .  rn 

COROLLARY 1. If q = @ and q E QP for some p E ( 0 ,  I), then (P ( t )  = 1,  since 
the real part of the set D, is equal to [- 1,  (1 - p)/(l + p ) ] v  {I} and the function 
q is continuous. 

PROPOSITION 3. The characteristic functions of the folluwing distributions 
belong to $: 

(i) Dirac measure p = 6,, where U E R ;  
(ii) exponential distribution p (dx) = ae-"" Ico,,,, (x) dx, a > 0; 
(iii) geometric distribution p = s x,", , uk-I a,, s, u E (0 ,  I), s + u = 1. 

P.r o of. To prove these facts it is enough to notice that v = GP (,u) is a prob- 
ability measure for every p E (0, 11. 

Thus G P ( e i t 4 ) ~  @ because T,P(e-"") is the characteristic function of the dis- 
tribution 

m 

Hence 

a-it -A 4 

It is a characteristic function of the exponential distribution with a density 
function 
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pseit 
Se" and CP@) = - - 

s+& 
(iii) B ( t )  = 1-ue" (s+qu)eit-q 

4 e - i t  1 -- 

So it is the characteristic function of the probability measure 

4. THE DUG- PROBLEM ANI) SIMPLE FRACTlONS 

In 151 the authors considered some special classes of probability measures 
and their characteristic functions. The main reason for studying these classes 
was that the convolution of the measures from a fixed class is equivalent to the 
linear combination of these measures. However, the coefficients of linear com- 
bination do not have to be positive. This concept seems to have a lot in 
common with the DuguC problem. 

Following the construction given in 151 for every fixed probability mea- 
sure p with the characteristic function cp we define 

h (t) = 
for q(t) = 0. 

We denote by @(q) the following class of characteristic functions: 

@ (cp) is the set of all characteristic functions which are the simple fractions 
of the variable h(t). It turns out that the crucial role in the Duguk problem 
plays the following set: 

It is easy to see that for the exponential distribution p (dx) = e-" (x) dx we 
obtain cp ( t)  = l/(l -it) and 8(q) is the class of all exponential distributions 
(also those which are supported on the negative half-line), and T(q) = R\(O). 
For more interesting examples of such classes we refer to [5].  

It was shown in Proposition 1 of C5J that for every p ~ ( 0 ,  11 and every 
characteristic function 9 we have pT(q) c T(9). In particular, we infer then 
that (0, 11 c T(q) for every characteristic function cp. The following theorem 
shows the connection between T(q) and the Dugut problem: 

THEOREM 1. Let p be a probability measure with the characteristicfunction 
cp. There exists p E (0, 1) such that G P h )  is a probability measure if and only $ 
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[-p/(1 -p), 0) c T (q). Moreover, if Gp (p) is a probability measure, then its 
characteristic function GP(rp) belongs to @(cp). 

P r o  of. For the proof we calculate: 

Prp lo - 
7 

1-P - 
GP(m)(t1 = C(t)-*+p - V p K l  -p)(f). 

l , P  

Now it is enough to notice that if Gp(rp) is a characteristic- function, then 
for every r ~ ( 0 ,  p) Gr(cp) is a characteristic function, and consequently 
- r/(l- r)  E T(rp) for every r ~ ( 0 ,  p] .  The opposite implications also hold. 

As a trivial consequence of Theorem 1 we obtain 

COROLLARY 2. If p i s  a probability measure with the characteristic function 
q, then ~ € 3  ifand only i f ( - m , O ) r  T((P) .  

THEOREM 2. If T(q)  = W\{O), p ~ ( 0 ,  I), p + q  = 1, and 

qa1/a2$(-(1 +&12, -(I -&12), 
then there exist bl, b2 # 0 such that 

THEOREM 3. If al,  . . ., a,, bl, . . ., bn E T(cp), n E N, then for every p E (0, I), 
p + q  = 1, we have 

n n n n 

P rI rp.r+4 rZ (Pb, = rr q., rI (Pbk 
k = 1  k =  1  k = 1  k = 1  

if and only iffor n = 1 

pal +qh= 0, 
and for n 2 2 

~ ~ Z ~ a i + ~ n ~ , ~ b i  =0, 

z n ( k n )  a n l l , ~ .  - . a z ( k ,  = Xn(,, b,l,k) - . b,,k), k = 1 Y . - ., n - 1, 

where n(k, n) is the set of all choices K = (n(1, k), . . ., n(k, k)} of k diferent 
elements from the set (1, 2, . .., n). 

Proof .  The proof is only a matter of laborious calculations. In the paper 
we present it for n = 2. The equation 

which shall hold for every value of h = h(t). 
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EXAMPLE. Let n = 2. Then 

-6 -6  
P I 4  = v^ ( t )  = 

(6 + h (t)) (- 1 + h(t))' (3 + h (0) (2 + h (t)) 

satisfy the equation $ ji ( t )  + i f  (t)  = ,ti ( t )  $It). 

Prof. D. Szynal asked whether or not there exist three measures p, v and 
q such that for some p, q, r E (0, l), p + q +r = 1, the folIowing condition holds: 

Now we are able to give a positive answer to this question: 

PROPOSITION 4. If p is a probability distribution with the characteristic 
function q such that a, by c, d~ T(q) ,  then for p + q + r  = 1 the following equa- 
tion is satisfied: 

if a d  only if 
qc +rd = 0, 

EXAMPLE. If a probability measure ,u with the characteristic function cp is 
such that 1- 1 5 , 4 q  c T(cp), then choosing 

we obtain 

5. SOLUTIONS IN THE SET OF SIGNED MEASURES 

In this section we consider the following problem: for an arbitrary but 
fixed probability measure p we want to find any signed a-finite measure v for 
which the equality ( 1 )  holds, i.e. 

It turns out that in some cases this problem has some interesting solution. The 
measure v for which this equality holds will be denoted by GP(p) .  
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EXAMPLE. Let n: be a Poisson distribution with the parameter 1 > 0, i.e. 

Then, for p  E (0, 1) and the probability measure p = Th-P (i), GP (p )  is a signed, 
finite measure such that 

T ~ R E M  4. Let q be a probability measure on R, r E (0, 11, r + s = 1 ,  and let 
p = r a O + s y .  

1. If s  < p/2, p+q = 1, then G P ( p )  is a signed measure defined by 

2. If s = p/2, then GP(p )  is a signed measure of the form 

Proof. Ad 1. Notice first that the function GP @) can be written in the 
following way: 

Under o w  assumptions p > 2s, so s / lp-s)  < 1 and we can write 

k Pr G'(@) = p+U f (-A) f k  = + -  
P - s  k = o  p - s  p - s k = ,  pq f ( - 2 y d k ,  

since the corresponding series converges. It is easy to see now that GP(P) is the 
Fourier transform of the measure G P ( ~ )  defined in the theorem. 

Ad 2. For p  = 2s we can write 
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Notice that for every t E R such that Itj (t)l < 1 we have 1+(1 -d)I < 1, so 

The equality (*) follows from the formula 

for XE(O, I) 

(see formula 5.2.1 1.3 in [6]) and the series converges unconditionally for lij[ < 1. 
Finally, we obtain 

EXAMPLE. Assume that q has an exponential distribution r(1, ol) and 
p > 2s. Then q" has the distribution T(k,  ol) and 

GP(p) has an atom at zero of the weight pr/(p-s) and outside zero it is ab- 
solutely continuous with respect to the Lebesgue measure with the density 

EPqs f (x) = -- 
(P - sI2 e x P { - a x ~ }  P-s  l(o,m)(x). 

Since p > 2s, the absolutely continuous part of the measure GP(p) is negative 
and finite with the support LO, a). In the case p = 2s, GP(,u) has an atom at 
zero of the weight 2r and the absolutely continuous part of this measure has the 
density function 

EXAE~IPLE. Let pl be a Poisson distribution with a parameter A >  0 and 
p > 2s. Then the support of the measure GP(p) is N u  (01, and 

GP(p) (in31 = p (r + se-') for n = 0. 
p-s+se-" 

9 - PAMS 22.2 



3 30 M. T. Malinowski and J. K. Misiewicz 

For p = 2s we have 

(- l)ke-" kk" for n 2 1, 

for n = 0 .  

EXAMPLE. Let q be a geometric distribution, i.e. q = xr=, rs"-l 6,. Then 

For p > 2s we have 

P4 " k 
pr GP(p)  = -a0+- rnd. ( - l Y ( . - ' ) ( ~ )  

p-S P - s ~ = ~  k = l  n - k  p - s  

- - Pr -So---  P W  f (-4)"-' a,, 
p - s  ( ' p - - ~ ) ~ , = ,  p-s 

and for p = 2s 

As a special case of Theorem 4 we obtain the following: 

THEOREM 5 .  Let p ~ ( 0 ,  1)  and ,u = r6,+(1-r)6,; r ,  s > 0, r f s  = 1 .  If 
rE [0,  1 -PI, then 

G P k )  = rTf/ ( l -r ) (S-a)+( l  -r)  T,1(1-r)(6-a) 

is a probability measure. For r > 1 -p, Gp  (ji) is a signed measure with non-trivial 
negative part, and 

Proof. For p ~ ( 0 ,  1) and ~ E [ O ,  1 - p ]  we have p/(l-r)€(O, 11, so 

= r7'//(1-')(e-'fy+(1 -r)  ~ ~ / ( l - r ) ( ~ - i t a ) ,  0 

which was to be shown. 
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Let now r = 1-p+&, where E E ( O ,  p/2) and $(t) = 1-p+&+ @ - ~ ) e " ' .  Then 

since under our assumptions ~/(p- E) E (0, 1 )  and the corresponding series are 
unconditionally convergent. The other two cases are simple consequences of 
Theorem 4. 
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