PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 22, Fasc. 2 (2002), pp. 319-331

ON THE DUGUE PROBLEM WITH A SOLUTION
IN THE SET OF SIGNED MEASURES

BY
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Abstract. There are two methods of obtaining symmetric proba-
bility measure on a base of an arbitrary probability measure p corre-
sponding to the random variable X. The first relies on considering
distribution of Y= X — X", where X' is an independent copy of X. In
the language of measures we have then #(Y)=pu=*p~, where
p#”(A) = u(— A). In the second method we consider the mean of two
measures u and p”. In the paper we want to present some known and
new results on characterizing such measures y for which both methods
coincide, i.e. measures for which

FutpT)=p*p

In the literature one can find also the following generalization of this
question: for fixed pe(0, 1] what is the characterization of such pairs
of distributions g and v for which

pu+(1—p)v =px*v?

This problem was posed by Dugué in 1939 and it was extensively
studied since then. However, the full characterization has not been
found yet. In the paper we show some constructions of the Dugué
question with the properties of simple fractions classes of characteristic
functions. We give also a collection of new solutions and an example of
" three measures y, v and % such that '

putgvrn = pxvsn.

In the last section we give also some solutions in the set of signed
o-finite measures. The authors would like to express their_gratitude to
Professor D. Szynal for his interesting questions and discussions.
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1. INTRODUCTION

In this paper we study the following problem: For fixed probability dis-
tribution y and fixed constant pe(0, 1] we want to find whether or not there
exists any signed, maybe o-finite measure v such that

(1 pu+(l1—p)v=p=*v.

If ¢ and ¢ are the Fourier transforms of the measures p and v, respectively,
then the equation (1) can be rewritten in the following form:

1) pe()+(1-p)¥ () = o ()Y (.

This problem, in a slightly different form, was posed by D. Dugué in 1939 (see
[13, [2]). It was studied later by Szynal and Wolinska (see [8], [10], [11]). Also
recently there appeared a paper of Krakowiak (see [3]). The beginning is very
simple: in probability there are two methods of symmetrization of the given
distribution u; one is based on taking the mean of the original measure and its
symmetric image; the other leads to the distribution of X — X’, where X and X’
are independent with the same distribution u. Dugué’s question was to charac-
terize such distributions u for which these two methods coincide, i.e. to charac-
terize such distributions p for which

) Fp+pT)=pxp",
where u~ (A) = u(— A) for every Borel set A. If ¢ is the characteristic function

of u, we can equivalently say that we want to characterize such characteristic
functions ¢ for which

2) Rep = |g*.
After some generalizations (convex linear combination instead of mean and
any probability distribution v instead of u~) the Dugué problem was to
characterize pairs of probability distributions (u, v) such that for given
pe(0, 1] the following equation is satisfied:

pu+(l—p)v=px*v.
In this paper we denote by @ the set of all characteristic functions. For every

pe(0, 1] and g = 1—p, we define two operators Ty, Tf: & — @ by the fol-
lowing formulas:
p P po

T3 (p) = g0’ T (9) = T—qo

- Calculating the Fourier transform ¢ of the measure v from equation (1) we

obtain

PO ges
=2 ¥ Gr(y).
Y P ()
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For every pe(0, 1] the function G?(¢) is well defined on the set ¢(f) # g.
Notice that in general G”(¢p) does not have to be a characteristic function.
The following lemma will be very useful in this paper:

LEmMMA 1. For every pe(0,1] and every probability measure u with
f(t) = @ (¢) the functions T} (@) and TT (@) are the characteristic functions of the
following measures:

. o0
| ef - .
pdu*, TEW= Y pgt it
k=1 -=

9 () &

_
[{}
iM1s

Proof. It is enough to calculate the characteristic functions for the mea-
sures Ty (1) and T (u). = :

2, WHEN DO TWO METHODS OF SYMMETRIZATION COINCIDE?

We consider the equations (2) and (2'). In [2] Dugué noticed that the
characteristic function ¢ (t) = 1/(1—it/a} of an exponential distribution I'(1, a)
satisfies the equation (¢ + @)/2 = ¢@@. This means that for I' (1, a) two types of
stochastic symmetrization coincide.

ProposiTioN 1. If a probability measure u satisfies the equation (2), then
there exists a function u: R — R such that the characteristic function fi(t) of the
measure p is of the form

fi(t) = 3+ exp {iu (8}

The function u(t) is continuous, uniquely determined and u(—t) = —u(2).

Proof. We can write f(t) = x(#)+iy(s), where x, y: R — R. Then using
the equation (2') we have (2x (£)—1)>+(2y(#))* = 1. Now it is enough to define
2x(t)—1 =sinu(f) and 2y(t) = cos u(t). The properties of the function u(f) are
simple implications of general properties of characteristic functions. =

ExampLE. It is known that the following probability measures satisfy
equation (2):

1) 3 =360+30,, aeR;

2) pz(dx) = ae™* 1,0y (x)dx, a > 0;

3) ps = (30+%0.) % T3 (3.), where pe(0, 1), acR.

Let fi;(¢) = 3+4exp {u;(¢t)}. Evidently, #, () = $+3€™, so u, (f) = at. For
the function £, we have

1

1—itja’

11 .
§+§exp {iu, (t)} =
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Taking the derivative of both the sides of this equation we obtain

. 2
uy (t)exp {iux ()} = a(—iay?
which leads us to the equation
2
20 = ———
0 = i wa?)

Hence u,(t) = 2arctan(t/a)+ C, and since u,(0) =0, we finally have

u, (t) = 2arctan (t/a).
For the measure u, and its characteristic function we have the equation
2t q

ita®

exp {iuz (£)} = T—go®
The complex logarithm gives

cos (at)—q +isin(at)
1—qcos(at)—igsin (at)’

u3 (t) = Arg

3. ON THE GENERAL DUGUE PROBLEM

For the first time the equation p@y(t)+g@,() = @1 () @2 (t), p+q=1,
p > 0, g > 0, was considered by Kubik (see [4]). He gave two examples of pairs
of measures for which the condition (1) is satisfied: a pair of discrete measures

h=4qbo+pd_s V=pSo+4qd,, acR;

and a pair of exponential distributions
pu(dx) = aexp{ax}1 - o,0(X)dx, v(dx)= %pexp {—%x} 10,0 (x) dx.

Rossberg in [7] proved (see Theorem 3, p. 213) that only such a pair of exponen-
tial distributions can have all the following properties: supp(u) = (—oc, 0),
supp(v) = (0, o©), v is no lattice distribution, and pu+qv = u*v for some
p=1—¢qe(0,1).

It was proved (see [3], [11]) that if the pair (1, v) of probability measures
satisfies (1), then both the measures are discrete or absolutely continuous or
singular. In [8], [10], [11] one can find many examples of characteristic func-
tions for which (1) holds. Moreover, Woliniska in [10] and [11] gave some
recursive formulas for a sequence of pairs of characteristic functions satisfying
(1) when we have at least one such pair.



The Dugué problem 323

For every pe(0, 1] we define the set 47 = @ by the following:

4? = {pe®: G’ (p) is a characteristic function}.
The set ¥ — @ is defined as

g= () @
pe(0,1]

It means that a characteristic function ¢ belongs to ¢ if and only if G?(¢) is
a characteristic function for every pe(0, 1]. Krakowiak (see [3])-proved that
for every pe® one of the following conditions holds:
1) p¢%* for every pe(0, 1);
2) pe¥;
3) 3poe(0, 1): pe%? for every pe(0, pol, and @ ¢%* for p > p,.
ProroOSITION 2. If @€ %® for some pe(0, 1), then:
@ le—(1+p)~! = p/(1+p);
(i) % for every uc(0, p];
(iii) ¥ = G?(p)e¥" for every uec(0, 1—p].
Proof. Another proof of this proposition can be found in [3].
(i) We want to show that for ¢ e %” the function ¢ is taking values in
the set 7
D, = {x+iy: x—L 2+y2 > ——Iﬁ—— x24+y? < 1}
? 7 14p ~(1+p” sl
Let @(t) = x(t)+iy(t). Of course, |¢| < 1. Since G? (p) e P, we have |G?(¢)| < 1.
Thus

p(x+iy)

< 1.
x+iy—q|

It is easy to see that the set of x +iy having these two properties is equal to D,.

(i) We have pe%?, ie. Y = G?(p)e ®. Hence the function T ()e @ for
every re(0, 1]. On the other hand, we have '

rP(P
p—q PO
W) = =
1—(1—rp)—
1—(1—n-2? e(1-(1-rp)—q
»—(q
7p
PR 4
I ) .ty g
= - =G (¢)-

¢_1—p+rp
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This proves that G*(¢p)e @ for every u = rp/(1—p—+rp), re(0, 1], which was to
be shown.

(iii) Let v=1—u. It is easy to see that

Py up
u —9Q
pe _ vq—(—pe 1_(v_p)(p
?—q vq

There must be 0 < (up)/(vg) <1 and v—p > 0. Thus O<u<1—p. m

CorOLLARY 1. If ¢ = @ and @ e %" for some pe(0, 1), then ¢ (t) = 1, since
the real part of the set D, is equal to [—1, (1—p)/(1+p)]u{1} and the function
@ is continuous.

PRrOPOSITION 3. The characteristic functions of the following distributions
belong to %:
(i) Dirac measure u = 45,, where acR,
(ii) exponential distribution p(dx) = ae™“*1(,x)(x)dx, a > 0;
(iii) geometric distribution p=sY,  u"'5, s,ue0,1), s+u=1.
Proof. To prove these facts it is enough to notice that v = G?(u) is a prob-
ability measure for every pe(0, 1].

P eita p
ita = —ita
—q 1—ge

0 G?(e) = = T,

Thus G?(e"*)e ® because TJ (e *?) is the characteristic function of the dis-
tribution

v=T0@-2)=p Y ¢6—ta

k=0
.. . a
ii t) = .
(i) A =-—
Hence
pa pa
; —it pa q
6" @) = =pa+itq=pa '
— —+it
a—1it

It is a characteristic function of the exponential distribution with a density
function

v(dx) = %exp {%x} 1i- w,0) (%) dx.
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ps

.. se' pse’ s+qu

i) A =-—2— and GP()= _ _

(i) 4@ e 2 @ Gtque—q 4
s+qu

So it is the characteristic function of the probability measure

oo k
ps q
V= T(Ps)r’(s_"qu) 6_ S 5— . B
0 (0-1) s+qu,f§‘0 s+qu ,

4. THE DUGUE PROBLEM AND SIMPLE FRACTIONS

In [5] the authors considered some special classes of probability measures
and their characteristic functions. The main reason for studying these classes
was that the convolution of the measures from a fixed class is equivalent to the
linear combination of these measures. However, the coefficients of linear com-
bination do not have to be positive. This concept seems to have a lot in
common with the Dugué problem.

Following the construction given in [5] for every fixed probability mea-
sure u with the characteristic function ¢ we define

{1/¢(t);1 for @ () # 0,

h(t) = for () = 0.

We denote by &(p) the following class of characteristic functions:

_ def
& (p) = {(pa(t) = arh

: aeR\{0}, (paedi}.

@ () is the set of all characteristic functions which are the simple fractions
of the variable A (¢). It turns out that the crucial role in the Dugué problem
plays the following set:

T(p) = {aeR\{0}: 9. (0)}.

It is easy to see that for the exponential distribution p(dx) = e™* 1,4 (x) dx we
obtain ¢ (t) = 1/(1—it) and ®(¢) is the class of all exponential distributions
(also those which are supported on the negative half-line), and T'(¢) = R\{0}.
For more interesting examples of such classes we refer to [5].

It was shown in Proposition 1 of [5] that for every pe(0, 1] and every
characteristic function ¢ we have pT(¢) < T(¢). In particular, we infer then
that (0, 1] = T (¢) for every characteristic function ¢. The following theorem
shows the connection between T(p) and the Dugué problem:

THEOREM 1. Let u be a probability measure with the characteristic function
@. There exists pe(0, 1) such that G?(u) is a probability measure if and only if
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[—p/(1—p), 0) = T(p). Moreover, if G*(u) is a probability measure, then its
characteristic function GP(p) belongs to @ ().
Proof. For the proof we calculate:
S
po(®)  _ 1-p
e@-14+p 1 . P
@ (1) 1-p
Now it is enough to notice that if G?(¢p) is a characteristic- function, then

for every re(0,p) G'(¢) is a characteristic function, and consequently
—r/(1—r)e T(¢p) for every re(0, p]. The opposite implications also hold. =

GP(p)(1) = = @ p1-p(t).

As a trivial consequence of Theorem 1 we obtain

COROLLARY 2. If u is a probability measure with the characteristic function
©, then pe¥% if and only if (—o0, 0) = T(p).

THEOREM 2. If T(¢) = R\{0}, pe(0, 1), p+q =1, and
qa1/a ¢ (~(L+/p, —(1—/p)),
then there exist by, b, # 0 such that
p(plu (Paz"'qubl q)bz = (pa1 (Paz (pbl (sz-
THEOREM 3. If a4, ..., @y, by, ..., bye T (@), ne N, then for every pe(0, 1),
p+q =1, we have
P ]__[ ¢ak+q l_[ Py, = H Dgy ]__[ Dy,
k=1 k=1 k=1 k=1
if and only if for n=1
| pay +qb1 = Oa
and for n=2
pl__[?=1ai+q]_—[:=1bi = 09

Zﬂ(k,n) a.,,_-(']_’k) s a,:(k’k) = Zﬂ(k,n) bﬂ:(l,k) “es bﬂ:(k,k)’ k = 1, cany B— 1 N

where II(k, n) is the set of all choices © = {n(1, k), ..., n(k, k)} of k different
elements from the set {1,2,...,n}. .

Proof. The proof is only a matter of laborious calculations. In the paper
we present it for n = 2. The equation

PPay Pay +4Pp, Vb, = Pa, Pay Pb, Pb,
implies that

pai a;(by+h)(b2+h)+gby bz (a; +h)(az+h) = aya by by,
which shall hold for every value of h=h(). =
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ExaMPLE. Let n = 2. Then

—6 (0 = —6
6+h@)(—1+h@) (B+h®)(2+h(©)

satisfy the equation A(f)+37(2) = A() V().

fit) =

Prof. D. Szynal asked whether or not there exist three measures u, v and
n such that for some p, q, re(0, 1), p+q+r = 1, the following condition holds:
pPU+gvtrn = Uuxv*y. <=
Now we are able to give a positive answer to this question:

PrOPOSITION 4. If u is a probability distribution with the characteristic
function @ such that a, b, ¢, de T (@), then for p+q-+r =1 the following equa-
tion is satisfied:

PP Ppt+qP 101 = Qg Py P Py,

if and only if

gc+rd =0,
pab+rd(c—d)=0,
a+b=c+d,

(r—q)?* > (r+q)°.

ExampLE. If a probability measure u with the characteristic function ¢ is
such that [—15, 46] = T(¢), then choosing

A®) = @300 @1 (1), V() = @as(t), 7)) =@-150)

we obtain

1403 5 46
T26a PO+ 137" O+ 13710 = AOTOA O

5. SOLUTIONS IN THE SET OF SIGNED MEASURES

In this section we consider the following problem: for an arbitrary but
fixed probability measure u we want to find any signed o-finite measure v for
which the equality (1) holds, i.e.

put+(—p)v=p=*v.

It turns out that in some cases this problem has some interesting solution. The
measure v for which this equality holds will be denoted by G”(u).
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ExaMPLE. Let # be a Poisson distribution with the parameter 4 > 0, ie.

_lz_ék

Then, for pe (0, 1) and the probablhty measure u = T§?(n), G® () is a signed,
finite measure such that

k

6? () = i )

THEOREM 4. Let 1 be a probability measure on R,re(0, 1),r+s = 1, and let
u=rdo+sm.
1. If s<p/2, p+q =1, then G*(y) is a signed measure defined by

o= (%) (55

2. If s = p/2, then GP(p) is a signed measure of the form
G*(n) = 2—p)do+2(1—p) 3, (—1fn™.
k=1

Proof Ad 1. Notice first that the functlon G”(fi) can be written in the
following way:
_P_
G?(d) = p+q—— .
14-——ij
p—s

Under our assumptions p > 2s, so s/(p—s) <1 and we can write

g pa 2 s\, pg & s\
GP@) =p+— (——) =t —— | 7,
P—Sg=o\ P—S p—s P—Sk;1 p—s
since the corresponding series converges. It is easy to see now that G”(fi) is the
Fourier transform of the measure G?(x) defined in the theorem.

Ad 2. For p=2s we can write

GP () = 1 .
5(1 +17)
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Notice that for every teR such that |f(f)] <1 we have |3(1—-#)] <1, so
1 1 (1Y & (n .
a+d)  1-30-4) ,§0(2> k;(k)( L
@ ) 1 k o n+k 1 n " © . 1 k © .
S SR afiw
k=0 =0\ 7 k=0 k=0

The equality () follows from the formula

o0

2 (n:k)x" =(1-x)"*"1 for xe(0, 1)

n=0

(see formula 5.2.11.3 in [6]) and the series converges unconditionally for |#f[ < 1.
Finally, we obtain

G* () = (1—§+§ﬁ)(2 Y (—ﬁ)") =@-p+20-D) 3 (~i). u
k=0 k=1

ExaMpLE. Assume that n has an exponential distribution I'(1, @) and
p > 2s. Then n™ has the distribution I'(k, «) and

pr rq < s Y
670 = gor L 5 (2 Y
) p—s ' P—Sy=1\ P—S 1

G?(p) has an atom at zero of the weight pr/(p—s) and outside zero it is ab-
solutely continuous with respect to the Lebesgue measure with the density

apqs p
(x)=— ex {—ax—»——}l o0y (%)
)=~ P p—sf loo®)

Since p > 2s, the absolutely continuous part of the measure G?(u) is negative
and finite with the support [0, o). In the case p = 2s, GP(u) has an atom at
zero of the weight 2r and the absolutely continuous part of this measure has the

density function

f()C) = —2C!q eXp{—z(XX} 1(0,00) (X)

ExaMPLE. Let n be a Poisson distribution with a parameter A > 0 and
p > 2s. Then the support of the measure G”(u) is Nu{0}, and

A

Pq A" se” M\

P42y (5 )

p—snl Jc=1( p—s) for n>1,
pr+se %

p—s+se ?

G* (w)({n}) =

for n=0.

9 — PAMS 222
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For p = 2s we have

A oo _
2qmzk=1(—1)"e k" fornz1,

U =4 50 pseh

1+e?
EXAMPLE. Let 7 be a geometric distribution, ie. =Y "_ rs""'4,. Then
nt = i n—1 ts""*5,, keN. .
n—k -

n=k

for n=0.

For p > 2s we have

N 4 Pd S L. < fn—1 r \
G (N)—Fao‘i'p—' "6, 3, (—1) (n—k)(d)

—Sp=1 k=1 p—Ss

w© — n—1
_ b 5o pgsr Z( sq) 5.

, p—s = (=951 \p—s

and for p=2s
G? () = 2r6o—2qr 3, (—q)" ™" b
n=1

As a special case of Theorem 4 we obtain the following:

THEOREM 5. Let pe(0,1) and pu=rdo+(1—1)d, r,s>0, r+s=1. If
re[0, 1—p], then

GP (1) = TP () +(1 =) TP (5-0)

is a probability measure. For r > 1—p, G?(u) is a signed measure with non-trivial
negative part, and

( pg S (1-p—r¥
- 1— —
p50+1_p_rk;1< 1—r )6 aks re( pal P/2),
pr P4 < 1-r ¥
G? (1) = — 1—
® = 4 p+r—15°+p+r—1k§‘1( p+r_1> bms TE(L—D/2, 1),
2-p)So+2(1—p) Y (—1)Su, r=1-—p/2.
g k=1
Proof For pe(0, 1) and re[0, 1—p] we have p/(1—r)e(0, 1], so
p e—ita p
1— 1—
GP() =7 4 +(1—7) 4
1—(1-L )¢t 1—(1-—L_)e
1—r 1—r

— rTlp/(l—r)(e—ita)+(1 —T) rIgr/(l—r) (e—ita)’
which was to be shown.
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Let now r = 1—p+¢, where e€(0, p/2) and /() = 1 —p+2+ (p—&)e™. Then
P P e—ita

G* () = (p— ) — L+ (1—p+e) ——
1_(___)e—ita 1_(_ )e—im

P—é

—p i (_ i )ke—itka_ﬂ i (_ i )ke—itka
k=o\ DP—¢& € k=1 p—é
® k -
=p—& Z (_ & ) e—itka’

p—e¢
since under our assumptions &/{(p—e¢)€(0, 1) and the corresponding series are

unconditionally convergent. The other two cases are simple consequences of
Theorem 4. =
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