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T"HE BATE OF CONVERGENCE 
IN THE PRECISE LARGE DEVIATION TEEOREM 

Abstract. Let XI,  X,, . .. be i.i.d. random variables with a com- 
mondf.P.LetS,=X,+ ...+ X,,n>1,andMm=max,s ,Xk,n21.  
In this paper for a large class of subexponential distributions we es- 
timate the rate of convergence 

where n 3 1 and t 2 0. We close this paper with some examples. 
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1. INTRODUCTION 

Let XI, X,, . . . be i.i.d. real random variables with a common distribution 
function (d.f.) F (t), t E R, which has the mean EX, = 0. 

DEFINITION. We say that the d.f. F belongs to the class S of subexponential 
distributions if its tail F : = 1 - F satisfies 

and 

where, as usual, * denotes the Stieltjes convolution of F with itself. 

The class S of subexponential distributions was introduced by Chistyakov 
[3] (in the case F ( 0 )  = 0). 

It is well known (see [3], Theorem 2) that if F(0) = 0, then (1.2) implies (1.1). 
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We denote by 2 a class of heavy tailed distributions for which the relation 
(1.1) is satisfied. 

Let S ,  = x:-I~k and M,, = maxkGnXk, n s N .  
By definition ~t follows that if F E S, then 

Thus, we infer that if d.f. F is subexponential, then there exists a positive 
sequence t,,  EN, such that 

uniformly in t E (t, , m). 
This means that in the investigation of precise large deviations for subex- 

ponential distributions the main. problem becomes finding the intervals (t,, a). 
Many papers are devoted (see 1121 and the references contained therein) 

to search conditions for which the relation (1.3) holds as n cc uniformly for 
t~ (t,, CO). There are but a few papers that consider the rate of convergence in 
the relation (1.3). Perhaps the most important paper among them is 123 in 
which Borovkov has established the rate of convergence in a theorem of large 
deviations for a class of subexponential distributions, the so-called semiexpo- 
nential distributions. In the present paper we shall investigate the rate of con- 
vergence in (1.3) for one rather wide subclass of subexponential distributions. 

2. PRELIMINARIES 

Let us define the hazard function Rp of F by 

Assume that there exists a non-negative function q,: R+ + R such that 

The function q, is called the hazard rate of Fo = F -  Uo, where U, is the 
d.f. concentrated at 0. 

It is well known (see [7]) that if for some FO€!i? the hazard rate q, 
or lirn,,, q,(t) does not exist, one can always construct a d.f. Ho such that 
go ( t )  - Fo (t) as t + m, and q, (t) + 0 as t -, m, where q, is the hazard rate 
of Ho. 

Let us define 

a = sup{k: E(Xt, XI > 0) < m), 

B=sup(k: E((Xllk,X1<O)< m), y=min(a,/3). 
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Moreover, let us define the hazard ratio index 

r : = lim sup tq, (t)/R, ( t ) .  
t - rm 

LEMMA 2.1. Assume that y > 2 and E X ,  = 0. Then for z > 0 we have 

Proof. We note that 
- 

l l r  112 112 
j eugdF(u)-1 = j (eU'-1-zu)dF(u)-P(l /z)+z j udF(u). 

- m  -m - m .  

Since EX, = Q we have 

Hence 

112 112 91 

( j e"' dF (u) - 11 G z2 J uz dF (u) + z j udF (u) + F(l/z) 6 5z2 EX; 

The proof is complete. 

3. MAIN RESULTS 

In this section we study the rate of convergence in (1.3). For further use, let 
us define 

An(t) = P(Sn  > t ) - P ( M ,  > t), 
where  EN and t  2 0 .  

Put s : = s ( t )  = RF(t) / t ,  t > 0. 
We have 

Our first preliminary result is used to estimate the term L1 in (3.1). 

LEMMA 3.1. I f  z > 0 is small enough, then 
t + l / z  

(3.2) 0 2 L,  2 - P ( M ,  > t ) (  j q,(u)du+P(JS,I 2 l / z ) + P ( X l  > t)). 
t 

Pro of. Let us put A: = (1 ,  . . ., n}\{k} and Si = C,,:X,, ne N. From 
(3.1) it follows that 

10 - PAMS 222 



2 P(M, > t + l / z ) - P ( M n  > t)P(IS,I 3 I/z)-P(M, > t)P(X1 > t ) .  

Since z > 0 is small enough, we have 

The proof is complete, 

Let XI:, 6 X,:, < . .. < X ,-,:, < X,:, = M, denote the order statistics of 
the sample. 

Define 
if r = 0, 

b (r) = 
( i / ( l - r )  i f r + O .  

Our main result is the following 

THE~REM 3.2. Assume that 
(i) E X ,  = 0; 

(ii) lim id, ,  , tq, ( t)  > 2; 
(iii) r < 1; 
(iv) > 2, a > b (r).  
Then for n and t large enough 

where co > 0, c ,  > 0, c* > 0, C1 > 0, Cz > 0, C3 > 0 are some constants. 

Remarks. 1. Let en,  EN, be a sequence such that 

From (3.3) it follows that under the conditions of Theorem 3.2 we have 

uniformly with respect to t ~ ( t , ,  co). 
2. Moreover, we can see that in this large deviation result the assumption 

of the concavity of a hazard function R, can be removed. 
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For the proof of Theorem 3.2 we first need the next lemma. 

LEMMA 3.3. Assume that 

r : = lim sup tq, (t)/Rp (t) < 1. 
t 4  w 

, Then 

(3.4) 

Proof. Using the partial integration, we have 
- 

t t 

j exp (su) d F (u) 4 s j exp (su) F (u) du + eF(l/s)  : = I + 11. 
11s 11s 

Let us put r,  = r + E ,  where E is small enough and r, < 1. From the relation 

lim sup tqp (t)/Rp (t)  < 1 
t+m 

it follows that for u large enough 

so that Rp(t)/ t  is non-increasing. Then for u such that l / s  d u 6 t we obtain 

R p ( t ) U  R p  (u) (3.5) su - Rp (u) = -7 

t  
f 

R ~ ( t ) u  (t- U ) .  < - (1 - r.) u J (RF (v)/u2) du d - ( 1  - r3 --;i- 
a4 

Consequently, from (3.5) it follows that 

Moreover, we have 

The proof is complete. 

Proof of Theorem 3.2. Let us define y as follows: 

It is known that if r  = 0, then y > St for some 6 > 0, In the case r # 0 we 
can see that y > (1/2 + 6,) t for some 6, > 0. 
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Let t be the number of summands Xk, k = 1, ..., n, in S, such that 
Xk 3 y. Since the random variable ( has the Bernoulli distribution with pa- 
rameters n and F(y) ,  we may write 

L 2 = P ( S , > t , M , < t ) = P ( S n > t , ~ = O ) + P ( S n > t , ~ = 1 , M n < t )  

+P(Sn > t, 5 2 2, M ,  < t):= I+II+III.  

We have 

111 g B(X, - ,: ,  > y, M ,  G t) = o ( ~ ) P ~ ( M , ,  > y)  

= O(l)P(M, > t)nexp(-2~,Cy)+~,(t)). 

Under our assumptions we obtain 

RP (t1-R~ (Y) 6 r, s 6') It- Y), 

where r, is the same as in Lemma 3.3. Hence 

Since E is an arbitrarily small positive quantity, in the case r = 0 we obtain 

RF (t)-2R~ (Y)  G -RF (Y)+ re s (Y)(~-Y) 

G -Rp(dt)(l-E) < -2logt+O(l). 

In the case r # 0 we have 

Consequently, we obtain 

I n  = O(I)P(M, > t)n/t2 = O(I)P(M, > t)ns2. 

Next we consider I. Let us define 

q=r X ~ < ~ y  U n =  C n V,. 
for X k 2 y Y  k =  1 

Let al, a2, . . . be a sequence of i.i.d. random variables with common d.f. 
F, which equals 

U Y 

F, (u) = min { 1, ( [ exp (sv) dF (u))  ( 1 exp (su) dF (v)) - ' } . 
- m  - m  
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So, to estimate the term I, we use the Cramer equality (see e.g. [9]): for any 
u > 0 we have 

m n 

P(S, > u,  5 = 0) = ( ~ ( e x ~ ( s ~ ~ ) ) ) "  j e-"dP(Z di < v) .  
u i=l 

Hence 
A 

(3.6) P(S, > u, t = 0)'< e x p ( - s u ) ( ~ ( e x ~ ( s ~ ~ ) ) ) " ~ ( ~  Sj  L 4. 
j= 1 

We have 
- 

I t s  s 
E exp (sV1) = { 5 + j ) exp (su) dF (u) 

- m 113 

Using the condition y > 2, from Lemma 2.1 we get 

Now we consider J2. We have 

Y 

J ,  g s2 j u2 exp (SU - KF (u)) du . 
11s 

Let us define the function Q1 as follows: 

Since lim inf,,, tq, (t) > 2, we infer that Q, is a hazard function. Let us put 

We can show that under our assumptions 

tql (') g lim sup lim sup - t4 (t) - 2 
t - tm Ql(t) t+m RF(t)-210gt 

rE {RP (t) - 210g t) + 2 (rE log t - 1) < lim sup < 1. 
t -m RF(t)-210g t 

We have 



where sl : = sl (y)  = Ql (y) /y .  Therefore, from Lemma 3.3 it follows that 

Y 9 

(3.7) s 1 u2 exp (su- ~ ~ ( u ) )  du < s1 exp(s, u- Q1 (u))du < m . 
11s 113 

From (3.6) it follows that under our assumptions 
n 

(3.8) PIS, 2 u,  5 = 0) 6 exp(c*ns2)exp(-su)P(C dj 3 u). 
j =  1 

We have - 

1 1s Y 

Ed: < (E (exp (sv1)))- ' ( j u2 esu dF (u) + u2 8" dF (u)). 
- m  11s 

Since y > 2, we obtain 

Note that 

Using (3.7), we obtain 

Hence E6: < co. From this it follows that 

Application of (3.9) now shows that 

I = 0 (1) P ( M ,  > t)  exp (c* ns2)/t2. 

To complete the proof, it remains to estimate 11. For J G s  < 1 we have 
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Using (3.41, (3.8) and (3.9) we obtain 

A = O(1)n 1 P(Sn- l  2 t - u ,  rnax Xk < y)dF(u) 
Y k d n - 1  

n t -11s 

= 0 (1) nP ( C di 2 l/s) exp ( - s t )  j exp (su) dF (u) 
i =  1 Y 

Now, we use the next result of [ 5 ] :  Iet Yl, &, . . . be a sequence of i.i.d. 
random variables such that EYl = 0, E lYl',la < co, where f l> 2. Let us put 

I 3, = Z;=, EY,~ ,  = x;=l E I % ( ~ .  Then 

Moreover, we have 

For C, we have 

t 

= 0 (1) P (M. > t )  ( qF (u) du) = 0 (I) P (Mn > t)  J G i .  
t-Jnlogn 

If &log ns 5 1, then 

I1 =P(Sn>t ,  t >  M n >  y,  Xn-,:, 4 y )  

t 

= O(l)nJP(Sn-l 2 t-u, max Xk < y)dF(u) 
Y k 4 n - 1  
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t n 

= O ( l ) n S P ( C  Si > t-u)exp(s- (t-er))dF(u) 
y i = l  

1 

= O(l)nexp(-st)jexp(su)d~(u) = O(l)B(M,, > t). 
Y 

Hence 

The lower bound of A, (t) follows from Lemma 3.1 with z = 1/Jn log n. 
Thus Theorem 3.2 is proved. 

4. EXAMPLE 

We say that d.f. F belongs to the class of dominated-variation distribu- 
tions if its tail F satisfies 

lim sup F (t)/F (2t) < co . 
t""m 

It follows from this definition that the class of distributions with regularly 
varying right tails is contained in an 2. 

It is well known (see e.g. [6 ] )  that if F E  D n 2, then F E S .  
It is also known ([7], Theorem 3.3) that if limsup,,, tq(t) < m, then 

F E 3 n 2. On the other hand, if the hazard rate q is non-increasing, then the 
statements F E D n 2 and lim sup,, , tq (t) < oo are equivalent (see [7], Corol- 
lary 3.4). 

The next result is true. 

COROLLARY 4.1. Assume that 
(i) EXI = 0; 

(ii) A : = lim sup,, , tq, (t) < co ; 
(iii) y > 2. 
Then for some co > 0, c* > 0, C1 > 0, C2 > 0 

- P (M.  > t) (co n1 -"' + A , / G / t )  4 A, ( t )  

4 P (Mn > t) (exp (c* ns2)/t2 + C1 n1 -"' + C2 , / G / t ) .  

Proof.  We restrict ourselves only to indicating the changes which are 
necessary to make in the proof of Theorem 3.2. The basic change is in the 
estimates of the term 11. 

For t > Jn log n we have 
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For t large enough we have y > St, where 6 > 0. We obtain 

A G n 1 P(Sn-l 3 t -u ,  max Xk < y)dF(u) 
Y k g n - 1  

For t > ,/= and n large enough we have 

The proof is complete. 

Remark. Let t,, n E IV, be a sequence such that 

lim sup Jm/tn < E (dc*)-'/' < m, 
n+ m 

where c* is the same as in Corollary 4.1 and co > d > a. Then we have 

exp (c* ns2)/t2 < t / t2  = o (1) as n + CE 

uniformly with respect to t ~ ( t , ,  ao). Hence under the conditions of Corolla- 
ry 4.1 we obtain 

uniformly with respect to t ~ ( t , ,  co). 

REFERENCES 

[I] A. Baltriinas, On the asymptotics of one-sided large deviation probabilities, Lithuanian Math. 
J. 35 (1995), pp. 11-17. 

[2] A. A. Boro vkov, Large deviation probabilities for random walk with semiexponential dis- 
tributions (in Russian), Sibirsk. Math Zh. 41 (6) (2000), pp. 129C1324. 

E3] V. P. Chis t y a kov, A theorem on sums of independent positive random variables and irs ap- 
plications to branching random processes, Theory Probab. Appl. 9 (1964), pp. 640648 (= En- 
glish translation of: Teor. Veroyatnost. i Primenen. 9 (1964), pp. 71g718). 

[4] D. B. H. Cline and T. Hsing, Large deviation probabilities for sums and maxima of random 
variables with heavy or subexponential tails, preprint, Texas A & M  University, 1991. 



354 A. Baltriinas 

[5] D. H. Fuc and S. V. Nagaev, Probability inequalities for the sums of independent random 
variables (in Russian), Teor. Veroyatnost. i Primenen. 16 (1971), pp. 66CM75. 

[6] C. M. Goldie, Subexponential distributions and dominated-variation tail, J. Appl. Probab. 15 
(19781, pp. 440442. 

[7] C. Kliippelberg, Subexponential distributions and integrated tails, J. Appl. Probab. 25 
(1988), pp. 132-141. 

[XI T. M i  kosc  h and A. V. Nagaev, Large deviations of heauy-tailed sums with applications in 
insurance, Extremes 1 (19981, pp. 81-110. 

[9] A. V. Nagaev, On a property of sums of independent random variables (in Russian), Teor. 
Veroyatnost. i Primenen. 22 (1977), pp. 335-346. 

[lo] S. V. Nagaev, On the asymptotic behaviour of one-sided large deviation probabilities (in 
Russian), Teor. Veroyatnost. i Primenen. 26 (1981), pp. 369-372. 

[I l l  I. F. Pinelis, Asymptotic equivalence of the probabilities of large deviations for sums and 
maxima of independent random variables (in Russian): Limit theorems of the probability theory, 
Trudy Inst. Mat. (Novosibirsk) 5 (1985), pp. 144173. 

[I21 L. V. Rozovskii,  Probabilities of large deuiations on the whole axis (in Russian), Teor. 
Veroyatnost, i Primenen. 38 (1993), pp. 79-109. 

Institute of Mathematics and Informatics 
Akademijos 4 
2021 Vilnius, Lithuania 
E-mail: baltrunas@takas.lt 

Received on 11.12.2001; 
revised version on 14.10.2002 


