PROBABILITY AND MATHEMATICAL STATISTICS Vol. 22, Fasc. 2 (2002), pp. 343–354

THE RATE OF CONVERGENCE IN THE PRECISE LARGE DEVIATION THEOREM

BY

ALEKSANDRAS BALTRŪNAS (VILNIUS)

Abstract. Let $X_1, X_2, ...$ be i.i.d. random variables with a common d.f. F. Let $S_n = X_1 + ... + X_n$, $n \ge 1$, and $M_n = \max_{k \le n} X_k$, $n \ge 1$. In this paper for a large class of subexponential distributions we estimate the rate of convergence

$$\Delta_n(t) = \mathbf{P}(S_n > t) - \mathbf{P}(M_n > t),$$

where $n \ge 1$ and $t \ge 0$. We close this paper with some examples.

2000 AMS Subject Classification: Primary 60F10; Secondary 60E05.

Key words and phrases: Limit theorems, large deviations, subexponential distributions.

1. INTRODUCTION

Let X_1, X_2, \ldots be i.i.d. real random variables with a common distribution function (d.f.) F(t), $t \in \mathbb{R}$, which has the mean $\mathbb{E}X_1 = 0$.

DEFINITION. We say that the d.f. F belongs to the class S of subexponential distributions if its tail $\overline{F} := 1 - F$ satisfies

(1.1)
$$\lim_{t\to\infty} \overline{F}(x+y)/\overline{F}(x) = 1, \quad y \in \mathbb{R},$$

and

(1.2)
$$\lim_{t \to \infty} \overline{F * F}(t) / \overline{F}(t) = 2,$$

where, as usual, * denotes the Stieltjes convolution of F with itself.

The class S of subexponential distributions was introduced by Chistyakov [3] (in the case F(0) = 0).

It is well known (see [3], Theorem 2) that if F(0) = 0, then (1.2) implies (1.1).

We denote by \mathfrak{L} a class of heavy tailed distributions for which the relation (1.1) is satisfied.

Let $S_n = \sum_{k=1}^n X_k$ and $M_n = \max_{k \le n} X_k$, $n \in N$. By definition it follows that if $F \in S$, then

 $\mathbb{P}(S_n > t) \sim \mathbb{P}(M_n > t)$ as $t \to \infty$.

Thus, we infer that if d.f. F is subexponential, then there exists a positive sequence t_n , $n \in N$, such that

(1.3) $\mathbb{P}(S_n > t) \sim \mathbb{P}(M_n > t) \quad \text{as } n \to \infty$

uniformly in $t \in (t_n, \infty)$.

This means that in the investigation of precise large deviations for subexponential distributions the main problem becomes finding the intervals (t_n, ∞) .

Many papers are devoted (see [12] and the references contained therein) to search conditions for which the relation (1.3) holds as $n \to \infty$ uniformly for $t \in (t_n, \infty)$. There are but a few papers that consider the rate of convergence in the relation (1.3). Perhaps the most important paper among them is [2] in which Borovkov has established the rate of convergence in a theorem of large deviations for a class of subexponential distributions, the so-called semiexponential distributions. In the present paper we shall investigate the rate of convergence in (1.3) for one rather wide subclass of subexponential distributions.

2. PRELIMINARIES

Let us define the hazard function R_F of F by

$$R_F(t) = -\log \overline{F}(t), \quad t \in \mathbf{R}.$$

Assume that there exists a non-negative function $q_F: \mathbb{R}^+ \to \mathbb{R}$ such that

$$R_F(t) = R_F(0) + \int_0^t q_F(u) du, \quad t \in \mathbb{R}^+.$$

The function q_F is called the *hazard rate* of $F_0 = F \cdot U_0$, where U_0 is the d.f. concentrated at 0.

It is well known (see [7]) that if for some $F_0 \in \mathfrak{L}$ the hazard rate q_F or $\lim_{t\to\infty} q_F(t)$ does not exist, one can always construct a d.f. H_0 such that $\overline{H}_0(t) \sim \overline{F}_0(t)$ as $t \to \infty$, and $q_H(t) \to 0$ as $t \to \infty$, where q_H is the hazard rate of H_0 .

Let us define

$$\alpha = \sup \{k: \mathbb{E}(X_1^k, X_1 > 0) < \infty\},\$$

$$\beta = \sup \{k: \mathbb{E}(|X_1|^k, X_1 < 0) < \infty\}, \quad \gamma = \min(\alpha, \beta).$$

Moreover, let us define the hazard ratio index

$$r:=\limsup_{t\to\infty}tq_F(t)/R_F(t).$$

LEMMA 2.1. Assume that $\gamma > 2$ and $\mathbb{E}X_1 = 0$. Then for z > 0 we have

$$\left|\int_{-\infty}^{1/z} e^{zu} dF(u) - 1\right| < C_0 z^2.$$

Proof. We note that

$$\int_{-\infty}^{1/z} e^{uz} dF(u) - 1 = \int_{-\infty}^{1/z} (e^{uz} - 1 - zu) dF(u) - \overline{F}(1/z) + z \int_{-\infty}^{1/z} u dF(u).$$

Since $\mathbb{E}X_1 = 0$, we have

$$\int_{-\infty}^{1/z} u dF(u) = -\int_{1/z}^{\infty} u dF(u).$$

Hence

$$\left|\int_{-\infty}^{1/z} e^{uz} dF(u) - 1\right| \leq z^2 \int_{-\infty}^{1/z} u^2 dF(u) + z \int_{1/z}^{\infty} u dF(u) + \overline{F}(1/z) \leq 5z^2 \mathbb{E}X_1^2.$$

The proof is complete.

3. MAIN RESULTS

In this section we study the rate of convergence in (1.3). For further use, let us define

$$\Delta_n(t) = \mathbb{P}(S_n > t) - \mathbb{P}(M_n > t),$$

where $n \in N$ and $t \ge 0$.

Put $s := s(t) = R_F(t)/t$, t > 0. We have

 $(3.1) \ \Delta_n(t) = \mathbb{P}(S_n > t, \ M_n > t) - \mathbb{P}(M_n > t) + \mathbb{P}(S_n > t, \ M_n \leq t) := L_1 + L_2.$

Our first preliminary result is used to estimate the term L_1 in (3.1). LEMMA 3.1. If z > 0 is small enough, then

(3.2)
$$0 \ge L_1 \ge -\mathbb{P}(M_n > t) \Big(\int_t^{t+1/z} q_F(u) \, du + \mathbb{P}(|S_n| \ge 1/z) + \mathbb{P}(X_1 > t) \Big).$$

Proof. Let us put $A_n^k = \{1, ..., n\} \setminus \{k\}$ and $S_n^k = \sum_{k \in A_n^k} X_k$, $n \in \mathbb{N}$. From (3.1) it follows that

$$\mathbf{P}(M_n > t) \ge \sum_{k=1}^n \mathbf{P}(S_n > t, \ M_n > t, \ M_n = X_k)$$

10 - PAMS 22.2

A. Baltrūnas

$$\geq \sum_{k=1}^{n} \int_{-1/z}^{\infty} \mathbb{P}(X_k > \max(t-u, t)) d\mathbb{P}(S_n^k < u)$$

$$\geq \sum_{k=1}^{n} \mathbb{P}(X_k > t+1/z) \mathbb{P}(S_n^k \ge -1/z)$$

$$\geq \mathbb{P}(M_n > t+1/z) - \mathbb{P}(M_n > t) \mathbb{P}(|S_n| \ge 1/z) - \mathbb{P}(M_n > t) \mathbb{P}(X_1 > t).$$

Since z > 0 is small enough, we have

$$\mathbb{P}(M_n > t) - \mathbb{P}(M_n > t + 1/z)$$

$$\leq \mathbb{P}(M_n > t) \left(1 - \exp\left(-\int_{t}^{t+1/z} q_F(u) \, du\right)\right) \leq \mathbb{P}(M_n > t) \int_{t}^{t+1/z} q_F(u) \, du$$

The proof is complete.

Let $X_{1:n} \leq X_{2:n} \leq \ldots \leq X_{n-1:n} \leq X_{n:n} = M_n$ denote the order statistics of the sample.

Define

$$b(r) = \begin{cases} 2 & \text{if } r = 0, \\ 4/(1-r) & \text{if } r \neq 0. \end{cases}$$

Our main result is the following

THEOREM 3.2. Assume that
(i)
$$\mathbb{E}X_1 = 0$$
;
(ii) $\liminf_{t \to \infty} tq_F(t) > 2$;
(iii) $r < 1$;
(iv) $\beta > 2$, $\alpha > b(r)$.
Then for n and t large enough

(3.3) $-\mathbf{P}(M_n > t)(c_0 n^{1-\gamma/2} + c_1 \sqrt{n \log n}s) \leq \Delta_n(t)$

$$\leq \mathbf{P}(M_n > t) (\exp(c^* ns^2)/t^2 + C_1 \sqrt{n \log ns} + C_2 ns^2 + C_3 n^{1-\gamma/2}),$$

where $c_0 > 0$, $c_1 > 0$, $c^* > 0$, $C_1 > 0$, $C_2 > 0$, $C_3 > 0$ are some constants.

Remarks. 1. Let $t_n, n \in N$, be a sequence such that

$$\lim_{n\to\infty}\sqrt{n\log ns}(t_n)=0.$$

From (3.3) it follows that under the conditions of Theorem 3.2 we have

$$\Delta_n(t) = o(1) \mathbf{P}(M_n > t) \quad \text{as } n \to \infty$$

uniformly with respect to $t \in (t_n, \infty)$.

2. Moreover, we can see that in this large deviation result the assumption of the concavity of a hazard function R_F can be removed.

For the proof of Theorem 3.2 we first need the next lemma. LEMMA 3.3. Assume that

$$r:=\limsup_{t\to\infty}tq_F(t)/R_F(t)<1.$$

Then

(3.4)
$$\int_{1/s}^{t} \exp(su) dF(u) \leq C < \infty.$$

Proof. Using the partial integration, we have

$$\int_{1/s}^{t} \exp(su) dF(u) \leq s \int_{1/s}^{t} \exp(su) \overline{F}(u) du + e\overline{F}(1/s) := I + II.$$

Let us put $r_{\varepsilon} = r + \varepsilon$, where ε is small enough and $r_{\varepsilon} < 1$. From the relation

$$\limsup_{t\to\infty} tq_F(t)/R_F(t) < 1$$

it follows that for u large enough

$$(R_F(u)/u)' = (uq_F(u) - R_F(u))/u^2 < -(1 - r_e) R_F(u)/u^2 < 0,$$

so that $R_F(t)/t$ is non-increasing. Then for u such that $1/s \le u \le t$ we obtain

(3.5)
$$su - R_F(u) = \frac{R_F(t)u}{t} - R_F(u)$$

 $\leqslant -(1 - r_{\epsilon})u \int_{u}^{t} (R_F(v)/v^2) dv \leqslant -(1 - r_{\epsilon}) \frac{R_F(t)}{t^2} u(t - u).$

Consequently, from (3.5) it follows that

$$I = s \int_{1/s}^{t} \exp\left(su - R_F(u)\right) du \leq 4s/(1-r_e) s.$$

Moreover, we have

II < e.

The proof is complete.

Proof of Theorem 3.2. Let us define y as follows:

$$y = \max\left\{u > 0: \frac{2\log u}{R_F(u)} \leq (1 - r_\varepsilon) \frac{t - u}{t}\right\}.$$

It is known that if r = 0, then $y > \delta t$ for some $\delta > 0$. In the case $r \neq 0$ we can see that $y > (1/2 + \delta_0)t$ for some $\delta_0 > 0$.

Let ξ be the number of summands X_k , k = 1, ..., n, in S_n such that $X_k \ge y$. Since the random variable ξ has the Bernoulli distribution with parameters n and $\overline{F}(y)$, we may write

$$L_{2} = \mathbb{P}(S_{n} > t, M_{n} \le t) = \mathbb{P}(S_{n} > t, \xi = 0) + \mathbb{P}(S_{n} > t, \xi = 1, M_{n} \le t)$$
$$+ \mathbb{P}(S_{n} > t, \xi \ge 2, M_{n} \le t) := I + II + III.$$

We have

III
$$\leq \mathbb{P}(X_{n-1:n} > y, M_n \leq t) = O(1)\mathbb{P}^2(M_n > y)$$

= $O(1)\mathbb{P}(M_n > t)n\exp(-2R_F(y) + R_F(t)).$

Under our assumptions we obtain

$$R_F(t) - R_F(y) \leq r_e s(y)(t-y),$$

where r_{ε} is the same as in Lemma 3.3. Hence

$$R_F(t)-2R_F(y) \leqslant -R_F(y)+r_e s(y)(t-y) = -R_F(y)\left(1-r_e\frac{t-y}{y}\right).$$

Since ε is an arbitrarily small positive quantity, in the case r = 0 we obtain

$$R_F(t) - 2R_F(y) \leqslant -R_F(y) + r_\varepsilon s(y)(t-y)$$

$$\leqslant -R_F(\delta t)(1-\varepsilon) \leqslant -2\log t + O(1).$$

In the case $r \neq 0$ we have

$$R_F(t) - 2R_F(y) \leq -R_F(y) + r_\varepsilon s(y)(t-y) = -R_F(y) \left(1 - r_\varepsilon \frac{t-y}{y}\right)$$
$$\leq -R_F(t/2)(1-r) \leq -2\log t + O(1).$$

Consequently, we obtain

III =
$$O(1) \mathbb{P}(M_n > t) n/t^2 = o(1) \mathbb{P}(M_n > t) ns^2$$
.

Next we consider I. Let us define

$$V_k = \begin{cases} X_k & \text{for } X_k < y, \\ 0 & \text{for } X_k \ge y, \end{cases} \quad U_n = \sum_{k=1}^n V_k.$$

Let $\delta_1, \delta_2, \ldots$ be a sequence of i.i.d. random variables with common d.f. F_s which equals

$$F_s(u) = \min\left\{1, \left(\int\limits_{-\infty}^{u} \exp(sv) \, dF(v)\right) \left(\int\limits_{-\infty}^{y} \exp(sv) \, dF(v)\right)^{-1}\right\}.$$

So, to estimate the term I, we use the Cramer equality (see e.g. [9]): for any u > 0 we have

$$\mathbf{P}(S_n > u, \ \xi = 0) = \left(\mathbb{E}\left(\exp\left(sV_1\right) \right)^n \int_{u}^{\infty} e^{-sv} d\mathbf{P}\left(\sum_{i=1}^n \delta_i < v \right).$$

Hence

(3.6)
$$\mathbf{P}(S_n > u, \ \xi = 0) \leq \exp(-su) \left(\mathbb{E}\left(\exp(sV_1)\right) \right)^n \mathbf{P}\left(\sum_{j=1}^n \delta_j \geq u\right).$$

We have

$$\mathbb{E} \exp(sV_1) = \left(\int_{-\infty}^{1/s} + \int_{1/s}^{y}\right) \exp(su) dF(u)$$

$$\leq J_1 + s \int_{1/s}^{y} \exp(su - R_F(u)) du := J_1 + sJ_2.$$

Using the condition $\gamma > 2$, from Lemma 2.1 we get

$$J_1 = 1 + O(1)s^2$$
.

Now we consider J_2 . We have

$$J_2 \leqslant s^2 \int_{1/s}^{y} u^2 \exp\left(su - R_F(u)\right) du.$$

Let us define the function Q_1 as follows:

$$Q_1(t) = R_F(t) - 2\log t, \quad t \ge t_1 \ge 1.$$

Since $\liminf_{t\to\infty} tq_F(t) > 2$, we infer that Q_1 is a hazard function. Let us put

$$q_1(t) = \frac{d}{dt}Q_1(t), \quad t \ge t_1 \ge 1.$$

We can show that under our assumptions

$$\limsup_{t \to \infty} \frac{tq_1(t)}{Q_1(t)} \leq \limsup_{t \to \infty} \frac{tq(t) - 2}{R_F(t) - 2\log t}$$
$$\leq \limsup_{t \to \infty} \frac{r_{\varepsilon}(R_F(t) - 2\log t) + 2(r_{\varepsilon}\log t - 1)}{R_F(t) - 2\log t} < 1.$$

We have

$$\frac{R_F(t)}{t} = \frac{R_F(y) - 2\log y}{y} + \frac{2\log y}{y} + \frac{R_F(t)}{t} - \frac{R_F(y)}{y}$$
$$\leqslant s_1(y) + \frac{2\log y}{y} - (1 - r_{\varepsilon}) \frac{R_F(y)}{yt} (t - y) \leqslant s_1(y),$$

where $s_1 := s_1(y) = Q_1(y)/y$. Therefore, from Lemma 3.3 it follows that

(3.7)
$$s \int_{1/s}^{y} u^2 \exp(su - R_F(u)) du \leq s_1 \int_{1/s}^{y} \exp(s_1 u - Q_1(u)) du < \infty.$$

From (3.6) it follows that under our assumptions

(3.8)
$$\mathbb{P}(S_n \ge u, \ \xi = 0) \le \exp(c^* ns^2) \exp(-su) \mathbb{P}\left(\sum_{j=1}^n \delta_j \ge u\right).$$

We have

$$\mathbb{E}\delta_{1}^{2} \leq \left(\mathbb{E}\left(\exp\left(sV_{1}\right)\right)\right)^{-1} \left(\int_{-\infty}^{1/s} u^{2} e^{su} dF(u) + \int_{1/s}^{y} u^{2} e^{su} dF(u)\right).$$

Since $\gamma > 2$, we obtain

$$\int_{-\infty}^{1/s} u^2 e^{su} dF(u) < \infty.$$

Note that

1

$$\int_{1/s}^{y} u^{2} e^{su} dF(u) \leq e^{s^{-2}} \overline{F}(1/s) + s \int_{1/s}^{y} u^{2} e^{su} \overline{F}(u) du + 2 \int_{1/s}^{y} ue^{su} \overline{F}(u) du$$
$$\leq e^{s^{-2}} \overline{F}(1/s) + s \int_{1/s}^{y} u^{2} e^{su} \overline{F}(u) du + 2s \int_{1/s}^{y} u^{2} e^{su} \overline{F}(u) du$$

Using (3.7), we obtain

$$\int_{1/s}^{y} u^2 e^{su} dF(u) < \infty.$$

Hence $\mathbb{E}\delta_1^2 < \infty$. From this it follows that

(3.9)
$$\mathbf{P}\left(\sum_{i=1}^{n} \delta_{i} > t\right) \leq n \mathbb{E} \,\delta_{1}^{2}/t^{2} = O\left(1\right) n/t^{2}.$$

Application of (3.9) now shows that

$$I = O(1) \mathbb{P}(M_n > t) \exp(c^* ns^2)/t^2.$$

To complete the proof, it remains to estimate II. For $\sqrt{n \log n} < 1$ we have

$$II = \mathbb{P}(S_n > t, t \ge M_n > y, X_{n-1:n} \le y)$$

= $\mathbb{P}(S_n > t, t-1/s \ge M_n > y, X_{n-1:n} \le y)$
+ $\mathbb{P}(S_n > t, t-\sqrt{n\log n} \ge M_n > t-1/s, X_{n-1:n} \le y)$
+ $\mathbb{P}(S_n > t, t \ge M_n > t-\sqrt{n\log n}, X_{n-1:n} \le y) := A+B+C.$

Using (3.4), (3.8) and (3.9) we obtain

$$A = O(1)n \int_{y}^{t-1/s} \mathbb{P}(S_{n-1} \ge t-u, \max_{k \le n-1} X_k < y) dF(u)$$

= $O(1)n \int_{y}^{t-1/s} \mathbb{P}(\sum_{i=1}^{n} \delta_i > t-u) \exp(-s(t-u)) dF(u)$
= $O(1)n \mathbb{P}(\sum_{i=1}^{n} \delta_i \ge 1/s) \exp(-st) \int_{y}^{t-1/s} \exp(su) dF(u)$
= $O(1) \mathbb{P}(M_n > t) \mathbb{P}(\sum_{i=1}^{n} \delta_i \ge 1/s) = O(1) \mathbb{P}(M_n > t) ns^2$

Now, we use the next result of [5]: let $Y_1, Y_2, ...$ be a sequence of i.i.d. random variables such that $\mathbb{E}Y_1 = 0$, $\mathbb{E}|Y_1|^{\beta} < \infty$, where $\beta \ge 2$. Let us put $B_n = \sum_{k=1}^n \mathbb{E}Y_k^2$, $M_{\beta,n} = \sum_{k=1}^n \mathbb{E}|Y_k|^{\beta}$. Then

$$\mathbb{P}\left(\sum_{k=1}^{n} Y_{k} \ge x\right) \le (1 + 2/\beta)^{\beta} M_{\beta,n} x^{-\beta} + \exp\left(-c_{0} x^{2} B_{n}^{-1}\right).$$

Moreover, we have

$$B \leq n \int_{t-1/s}^{t-\sqrt{n\log n}} \mathbf{P}(S_{n-1} \geq t-u, \max_{k \leq n-1} X_k < y) dF(u)$$

= $O(1) n\overline{F}(t) \mathbf{P}(S_{n-1} \geq \sqrt{n\log n})$
= $O(1) \mathbf{P}(M_n > t) \mathbf{P}(S_{n-1} \geq \sqrt{n\log n}) = O(1) \mathbf{P}(M_n > t) n^{1-\gamma/2}.$

For C, we have

$$C = \mathbf{P}(S_n > t, t \ge M_n > t - \sqrt{n \log n}, X_{n-1:n} \le y) = O(1) \mathbf{P}(t \ge M_n > t - \sqrt{n \log n})$$

= $O(1) \left(\mathbf{P}(M_n > t - \sqrt{n \log n}) - \mathbf{P}(M_n > t) \right)$
= $O(1) \mathbf{P}(M_n > t) \left(\exp\left(\int_{t-\sqrt{n \log n}}^{t} q_F(u) du \right) - 1 \right)$
= $O(1) \mathbf{P}(M_n > t) \left(\int_{t-\sqrt{n \log n}}^{t} q_F(u) du \right) = O(1) \mathbf{P}(M_n > t) \sqrt{n \log n s}.$
If $\sqrt{n \log n s} \ge 1$, then

If $\sqrt{n \log ns} \ge 1$, then

$$II = \mathbb{P}(S_n > t, t \ge M_n > y, X_{n-1:n} \le y)$$
$$= O(1)n \int_y^t \mathbb{P}(S_{n-1} \ge t - u, \max_{k \le n-1} X_k < y) dF(u)$$

A. Baltrūnas

$$= O(1) n \int_{y}^{t} \mathbb{P}\left(\sum_{i=1}^{n} \delta_{i} > t - u\right) \exp(s - (t - u)) dF(u)$$

= $O(1) n \exp(-st) \int_{y}^{t} \exp(su) dF(u) = O(1) \mathbb{P}(M_{n} > t).$

Hence

$$II = O(1) \mathbb{P}(M_n > t) (\sqrt{n \log ns + ns^2 + n^{1-\gamma/2}}).$$

The lower bound of $\Delta_n(t)$ follows from Lemma 3.1 with $z = 1/\sqrt{n \log n}$. Thus Theorem 3.2 is proved.

4. EXAMPLE

We say that d.f. F belongs to the class \mathfrak{D} of dominated-variation distributions if its tail \overline{F} satisfies

$$\limsup_{t\to\infty}\overline{F}(t)/\overline{F}(2t)<\infty.$$

It follows from this definition that the class of distributions with regularly varying right tails is contained in $\mathfrak{D} \cap \mathfrak{L}$.

It is well known (see e.g. [6]) that if $F \in \mathfrak{D} \cap \mathfrak{L}$, then $F \in S$.

It is also known ([7], Theorem 3.3) that if $\limsup_{t\to\infty} tq(t) < \infty$, then $F \in \mathfrak{D} \cap \mathfrak{L}$. On the other hand, if the hazard rate q is non-increasing, then the statements $F \in \mathfrak{D} \cap \mathfrak{L}$ and $\limsup_{t\to\infty} tq(t) < \infty$ are equivalent (see [7], Corollary 3.4).

The next result is true.

COROLLARY 4.1. Assume that (i) $\mathbb{E}X_1 = 0$; (ii) $A := \limsup_{t \to \infty} tq_F(t) < \infty$; (iii) $\gamma > 2$. Then for some $c_0 > 0$, $c^* > 0$, $C_1 > 0$, $C_2 > 0$

 $-\mathbf{P}(M_n > t)(c_0 n^{1-\gamma/2} + A\sqrt{n\log n}/t) \leq \Delta_n(t)$

 $\leq \mathbb{P}(M_n > t) (\exp(c^* ns^2)/t^2 + C_1 n^{1-\gamma/2} + C_2 \sqrt{n \log n/t}).$

Proof. We restrict ourselves only to indicating the changes which are necessary to make in the proof of Theorem 3.2. The basic change is in the estimates of the term II.

For $t > \sqrt{n \log n}$ we have

$$II = \mathbb{P}(S_n > t, t \ge M_n > y, X_{n-1:n} \le y)$$

= $\mathbb{P}(S_n > t, t - \sqrt{n \log n} \ge M_n > y, X_{n-1:n} \le y)$
+ $\mathbb{P}(S_n > t, t \ge M_n > t - \sqrt{n \log n}, X_{n-1:n} \le y) := A + B.$

For t large enough we have $y > \delta t$, where $\delta > 0$. We obtain

$$A \leq n \int_{y}^{t-\sqrt{n\log n}} \mathbb{P}(S_{n-1} \geq t-u, \max_{k \leq n-1} X_k < y) dF(u)$$

= $O(1) n\overline{F}(t) \mathbb{P}(S_{n-1} \geq \sqrt{n\log n})$
= $O(1) \mathbb{P}(M_n > t) \mathbb{P}(S_{n-1} \geq \sqrt{n\log n}) = O(1) \mathbb{P}(M_n > t) n^{1-\gamma/2}.$

For $t > \sqrt{n \log n}$ and n large enough we have $\mathbf{P}(S_n > t, t \ge M_n > t - \sqrt{n \log n}, X_{n-1:n} \le y) = O(1) \mathbf{P}(t \ge M_n > t - \sqrt{n \log n})$ $= O(1) \left(\mathbf{P}(M_n > t - \sqrt{n \log n}) - \mathbf{P}(M_n > t) \right)$ $= O(1) \mathbf{P}(M_n > t) \left(\exp\left(\int_{t - \sqrt{n \log n}}^{t} q_F(u) du \right) - 1 \right)$ $= O(1) \mathbf{P}(M_n > t) \left((1 - \sqrt{n \log n}/t)^{-A} - 1 \right) = O(1) \mathbf{P}(M_n > t) \sqrt{n \log n}/t.$ The energy is a second to

The proof is complete.

Remark. Let t_n , $n \in N$, be a sequence such that

$$\limsup_{n\to\infty}\sqrt{nR_F(t_n)}/t_n\leqslant\varepsilon(dc^*)^{-1/2}<\infty,$$

where c^* is the same as in Corollary 4.1 and $\infty > d > \alpha$. Then we have

$$\exp(c^* ns^2)/t^2 \le t/t^2 = o(1) \quad \text{as } n \to \infty$$

uniformly with respect to $t \in (t_n, \infty)$. Hence under the conditions of Corollary 4.1 we obtain

 $\Delta_n(t) = o(1) \mathbf{P}(M_n > t)$ as $n \to \infty$

uniformly with respect to $t \in (t_n, \infty)$.

REFERENCES

- A. Baltrūnas, On the asymptotics of one-sided large deviation probabilities, Lithuanian Math. J. 35 (1995), pp. 11–17.
- [2] A. A. BOTOVKOV, Large deviation probabilities for random walk with semiexponential distributions (in Russian), Sibirsk. Math. Zh. 41 (6) (2000), pp. 1290–1324.
- [3] V. P. Chistyakov, A theorem on sums of independent positive random variables and its applications to branching random processes, Theory Probab. Appl. 9 (1964), pp. 640–648 (= English translation of: Teor. Veroyatnost. i Primenen. 9 (1964), pp. 710–718).
- [4] D. B. H. Cline and T. Hsing, Large deviation probabilities for sums and maxima of random variables with heavy or subexponential tails, preprint, Texas A&M University, 1991.

A. Baltrūnas

- [5] D. H. Fuc and S. V. Nagaev, Probability inequalities for the sums of independent random variables (in Russian), Teor. Veroyatnost. i Primenen. 16 (1971), pp. 660-675.
- [6] C. M. Goldie, Subexponential distributions and dominated-variation tail, J. Appl. Probab. 15 (1978), pp. 440–442.
- [7] C. Klüppelberg, Subexponential distributions and integrated tails, J. Appl. Probab. 25 (1988), pp. 132-141.
- [8] T. Mikosch and A. V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance, Extremes 1 (1998), pp. 81-110.
- [9] A. V. Nagaev, On a property of sums of independent random variables (in Russian), Teor. Veroyatnost. i Primenen. 22 (1977), pp. 335-346.
- [10] S. V. Nagaev, On the asymptotic behaviour of one-sided large deviation probabilities (in Russian), Teor. Veroyatnost. i Primenen. 26 (1981), pp. 369-372.
- [11] I. F. Pinelis, Asymptotic equivalence of the probabilities of large deviations for sums and maxima of independent random variables (in Russian): Limit theorems of the probability theory, Trudy Inst. Mat. (Novosibirsk) 5 (1985), pp. 144-173.
- [12] L. V. Rozovskii, Probabilities of large deviations on the whole axis (in Russian), Teor. Veroyatnost. i Primenen. 38 (1993), pp. 79–109.

Institute of Mathematics and Informatics Akademijos 4 2021 Vilnius, Lithuania *E-mail*: baltrunas@takas.lt

> Received on 11.12.2001; revised version on 14.10.2002