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Abstract. In this paper we fmd a nonexponential Lundberg ap- 
proximation of the ruin probability in a Cox model, in which a govern- 
ing process has a regenerative structure and claims are light-tailed or 
have an intermediate regularly varying distribution. Examples include 
an intensity process being reflected Brownian motion, square functions 
of the Omstein-Uhlenbeck process and splitting reflected Brownian 
bridges. In particular, we consider a non-Markovian intensity process. 
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This paper is concerned with a risk theory subject to a combination of two 
features: a stochastic modulation and regularly varying claim size distributions. 
We consider a canonical surplus process {S ( t ) ,  t 2 0) given by 

S ( t )  = C u i - t ,  
i =  1 

where ( N ( t ) ,  t 2 0) is a Cox process with an underlying cadlhg process 
( X ( t ) ,  t 2 0). That is, if a realization of the process ( X ( t ) ,  t 2 0) is 
x ( t )  E 3 [0, + a), then for a nonnegative measurable function A: R -, R ,  u (0) 
the process ( N  (t), t 2 0) has the same law as a nonhomogeneous Poisson 
process (N'x)(t),  t 2 0) with an intensity function q t )  = A(x(t)).  The process 
{ A  (X (t)),  t 3 0) is called an intensity process. Thus stochastic modulation means 
that the surplus process is not time-homogeneous, but evolves in some random 
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environment. A detailed discussion of Cox processes and their impact on risk 
theory is to be found in Grandell [I91 and Rolski et al. [33]. The claim sizes 
U1, U,, . . . are i.i.d. r.v.'s independent of the process {N(t), t 2 0) with a com- 
mon distribution function Fo(x) .  Let u be an initial reserve and assume that 
S( t )  + -a a.e. as t + +a. An inftnite horizon retin probability is then 

$ (u) = P (sup S (t) > u) . 
t B O  

The model, in which {N (t), t 2 0) is Coxian, is called the Bjurk-Grandell model 
which goes to the pioneering paper Bjtirk and Grandell [lo]. In that paper one 
derives by a martingale approach an exponential upper bound of $ (u) when an 
intensity process has piecewise constant realizations and claim sizes are light- 
-tailed. Further generalizations can be found in Embrechts et al. [16] (finite time 
non-Markovian intensities) and Grigelionis [22]. In applications one needs 
also to consider environment which changes more widely like it is in the case of 
diffusions or Gaussian processes. Grandell and Schmidli [21] and Palmowski 
[29] find a Lundberg upper bound and a Lundberg approximation of $(u) 
when an intensity process is governed by a diffusion process and claim sizes are 
light-tailed. These papers faiI to capture another main feature considered in this 
paper, namely, that of regularly varying tails. Relevance of heavy-tail condi- 
tions can be found e.g. in Embrechts and Veraverbeke [I71 and Kliippelberg 
[26]. Asmussen et al. [5] find the nonexponential asymptotics in the Bjork- 
Grandell model when the governing process is a finite-state Markov process 
and the claim size has a heavy-tailed distribution. Asmussen et al. [8] generalize 
it to the case when {S(t), t 2 0) has a regenerative structure. In this paper we 
apply this result to get the asymptotics of $ (u) when a rate of arrival of a claim 
at time t is a function I (x) of a regenerative process {X(t), t 3 0); in particular, 
when {X(t), t 2 0) is a recurrent diffusion process. 

Denote by 0 = To < TI 6 T2 6 < . . . the regenerative epochs of the 
regenerative process (X(t), t 2 0). That is, (T,,+l - T,,), n = 0, 1, .. ., is a se- 
quence of i.i.d. r.v.3 with generic interregenerative time T We say that the 
r.v. G is heavier than the r.v. H if 

Define the r.v. 

Denote by F(x) the heavier distribution from distributions of variables Z 
and U. Further on, we will assume that F(x) has a regularly varying distribution. 
We wil l  write f (x) - g(x)  as x + + m if lim,,, , f (x)/g(x) = 1. In this paper 
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we show that if ET < +a, then under some mild assumptions 

where Fa is the residual distribution of F and the constant C is given explicitly 
(see Theorem 3.2 (iHiii)). Thus even in the case of light-tailed claims one can 
get the nonexponential asymptotics. The asymptotics of $(u)  in this case de- 
pends on the distribution of the interarrival time T only via its mean if 
ET < + a. If ET = + m, then its tail also has an impact on the rate of the 
asyrnptotics of the ruin probability (see Theorem 3.2 (iv) and Section 5.2). The 
method of proof of the main Theorem 3.2 is based on the Karamata-Tauberian 
Theorem and the Kingman-Taylor expansion of the LapIace transform (see 
Stam [35], Cohen [I51 and Asmussen et al. [8], Corollaries- 3.1 and 3.2). 

To apply this result for the specific governing process {X(t), t 2 0) one 
has to determine the asymptotic tails of r.v.'s Z = ::+ I(X (t)) dt and T and 
their means. We refer to Asmussen et al. [I for similar functionals. Note that 
the r.v. Z may be heavy-tailed (Section 4) or light-tailed (Section 5). In the 
second part of this paper we calculate some examples presenting there main 
techniques useful in solving this problem. 

To prove that the r.v. Z is light-tailed we generalize Wentzell [38], p, 265, 
in the following way. Consider a family of diffusion processes (X , ( t ) ,  t B 0) 
parametrized by w 2 0 starting at Xw(0) = x,. Let z, be an exit time from 
a compact set D. If there exists wo > 0 such that E,;rw is uniformly bounded 
for a11 0 < w < w,, then E$;exp {wz,) is also uniformly bounded. 

We calcuIate the asymptotics of the tail of the distribution of Z and its 
mean using the Laplace transform method. In most cases we take the square 
function R(x). Then the method of computing the m.g.f. (or the Laplace trans- 
form) consists in changing probability so that the quadratic functional disap- 
pears and the remaining problem is to calculate the m.g.f. and the Laplace 
transform of some hitting or exit times. In other words, we linearize the original 
problem by transferring the computational problem for a variable belonging to 
a second Wiener chaos to computations for a variable in the first chaos. One 
can calculate the Laplace transform of hitting and exit times using the Feyn- 
man-Kac formula (see It8 and McKean [23], Wentzell [38] and Borodin and 
Salminen [12]). 

The rest of the paper is organized as follows. In Section 2 we recall the 
Karamata-Tauberian theorem. The main Theorem 3.2 is stated in Section 3, 
We consider the following examples of the governing process (X (t), t 2 0) and 
the function I(x): the semi-Markov process and A(x) = x (Section 4), the re- 
flected Brownian motion at 0 and 1 and I(x) = x (Section 5.11, the Brownian 
motion and A(x) = e-rixl (Section 5,2), the Omstein-Uhlenbeck process and 
A (x) = x2 + k (Section 5.3) and A(x) = (x +pI2 (Section 5.4), and finally the split- 
ting Brownian bridges and I(x) = 1x1 (Section 5.5). 
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The main technique useful in finding the asymptotics of t,h (u) is the Kara- 
mata-Tauberian Theorem, which we rw;all now. The critical index is defined in 
extended real numbers by 

That is, if there exists d > 0 such that EedK < +a, then a, = +a. We say 
that the r.v. K has a regularly varying distribution if -; 

for a slowly varying function I&). Let us put 

The Karamata-Tauberian Theorem relates the tail behaviour of a distribution 
function to the asymptotic behaviour of its Laplace transform at the origin. For 
a variable K let a, < +a and define n = [a,]. Then by Kingman and Taylor 
[25] the Laplace transform FK(s)  of the r.v. K may be expanded in the Taylor 
series as far as the f term: 

Let 

We will write f (x) - g (x)  as x + 0 if lirn,+, f (x)/g ( x )  = 1, From Bingham et al. 
[9], p. 333, we have the following theorem. 

THEOREM 2.1. Let EK(x) be a slowly varying function. Then the following are 
equivalent: 

From Feller [18], Theorem 2, p. 445, we have the following theorem. 

THEOREM 2.2. Consider some function L ( x )  and a > 0. Let us deJine 
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Then for a slowly varying function IL (x) the foilowing are equivalent: 

3. MAIN THEOREM 

Let (A ( X  (t)),  r 2 0) be an intensity process defined by the regenerative 
process {X (t), t 2 0) and a nonnegative function ;l(x). Then the surplus pro- 
cess (S(t), t > 0) also has a regenerative structure. We let S be &e increment of 
(S ( t ) ,  t 2 0) during the generic cycle TT; that is 

Further, let 

NiT) T 
S ' =  C U, and Z = [ A ( ~ ( s ) ) d s .  

i =  1 0 

CONDITION A. We assume that 

where as > 0 and Zs(x) is a slowly varying function. 

By Asmussen et al. [Sj, Lemma 5.1, we have the following lemma. 

LEMMA 3.1. Assume that the folbwing condition holds: 

Then condition (A) holds. 

Note that 

Thus under (A), following Asmussen and Kliippelberg [6] and Asmussen et al. 
181, Theorem 3.3, we have 

$(u) - P(max(Yl + Y2+.. .+,YA > u), 
nB 1 

where Y, are i.i.d. r.v.'s such that Y, S. Note also that if v = E IS1 < + ao , then 
as > 1.  
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THEOREM 3.1. Assume that (A) holds. 
(i) If v <  +a and ES<O,  then 

(ii) If v = +a, Is(x) = cl and 

(3.2) B (T > x) - c2 x-B 

for 0 < f i  < 1 and /3 < a,, then - 
sin (8x1 c  t m  

$(u) - - U ~ - ~ Q  j yP-l(l  + y ) - ' ~  d y .  
P. Cz 0 

Proof. Part (i) follows from Corollary 3.1 of Asmussen et al. [a]. 
We now prove (ii). Denote by G' (x) and G- (x) the ascending and de- 

scending weak ladder height distributions, respectively, of random walk 
Yl $- Yz +. . . + Y,. Thus G +  (x) and G I  (x )  are concentrated on [O, + co) and 
( - a, 01, respectively. From the Wiener-Hopf factorization (see Borovkov 
[13], (33), p. 165) we have 

where p  = $ (0). Let 
+ m  

H - ( t ) =  C ( G - y k ( - t ) ,  t 2 0 ,  
k = O  

and FG- (s) = d e-" dG- ( - X I .  Then the Laplace transform of X- is equal to 
1 

F-- (s) = 
I -FG- (s)' 

From the Karamata-Tauberian Theorem 2.1 the following holds: 
FH- (s) 

lim - = lim 
s@ - 1 - P  

S-+O s s-0 1 -FG- (s) - r(1 -PI  c2' 

Thus, by the Karamata-Tauberian Theorem 2.2, 

H -  ( t )  - 1 - P  t ~  = ( 1  -p)sin(Bx) 
r ( l - P ) r ( l + P ) c z  8 ~ ~ 2  

to , 

which completes the proof of (ii) in view of Borovkov [13], p. 180, and Lem- 
ma 2, p. 173. cl 

Note that the Laplace transform of Sf is equal to 
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where EX and EU are expectations with respect to the law of the process 
(X (t), t 2 0) and the r.v. U. That is, 

(3.5) P+(s) = Fz(lOgP(s)-l). 

Moreover, if v < + m, then v = ET-EZEU = rnl,T-ml,z rnlqu. Thus, if the 
following condition is satisfied: 

6) v < + and ~ I , T  > ~ I , U  m1.z~ - 

then a stability condition S ( t )  + - ai a.e. as t -+ +m holds. 
We assume that the heavier random variable out of variables U and Z has 

a regularly varying distribution. Thus 

and if mz < a, (a, < a,), then Z (U) is heavier than U (2). In particular, if U or 
Z has a regularly varying distribution, then one of the following two conditions 
holds: 

for slowly varying functions I,($ and IZ ( x ) ,  respectively. Using the Kararnata- 
Tauberian Theorem we can prove the following theorem (see also Asmussen 
et al. [a], Schmidli [34], Stam [35] and GrandelI [20] for related results). 

THEOREM 3.2. Assume that condition (A) and at least one of the conditions 
(Z) or (U) holds. 

(i) If 1 1 uz < ixU and (Z), (S) hold, then 

(ii) If 1 < au < a, and 0, (S) hold, then 

where 
1 1 

(3.9) C2 = - m1.z 
au- 1 ~ l , T - m l * U ~ l * z .  
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(ii) if aa = uu, lz(x) = Iu(x) and (U), (Z), (S) hold, then 

where C3 = C1 + CZ. 
(iv) Assume that T fuG1Es (3.2) for 0 < 8 < 1. Then 

where 
- 

sin (/In) mT5 cl ' " c4=-- J yB-I (1 +y) - ' IZdy  
bx C2 0 

when (Z) holds and lZ(x)  = cl, f i  < M E  < uU; and 

when (U) holds and lU(x) = CI, B < CIU < a ~ .  

Proof. We prove (i). The statements (iiHiv) can be proved in a very 
similar way. To prove (i), by Theorem 3.1 it sfl1ce.s to show that 

(3.14) P ( S +  > x) -- mTfU lz (x) x-"=. 

Letk=[az]andl=[a,jifuU< +aoandtakeanyE>kifaU= +oo.Wewill 
write q (s) = O1 ( f  (s)) if lims,o g ( s ) f  (s) = 1. At the beginning we consider the 
case when Z > k. By the Karamata-Tauberian Theorem 2.1 we have 

and by the Kingman-Taylor expansion of the Laplace transform we obtain 

Hence by (3.5) we have 
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Note that for x > 0 such that Ix-11 < 1 

+ m ( - l y  
log ( l / x )  = C - (X - ly. 

i = l  i 

Hence 

Consequently, (3.15)-(3.17) under the assumption k < I imply - 

Thus 

which completes the proof in the first case in view of (3.14) and the Karama- 
ta-Tauberian Theorem 2.1. If k = E, by Thorisson [3q, Theorem 3.1, one can 
consider two modified risk models in which claim sizes U(l) and V2) have regular- 
ly varying distributions and fhlfli U[ll < U < U2) with aZ < aU(~) < aU < aU(~), 
r n l , ~ ( 2 )  = W I ~ , ~ + E ,  ml,cr(i) = rnlPu-& for E > 0 and 1 = [aucl)] = [au] = [auc~,]. 
Then, by Thorisson [37], Theorem 3.1, 

where S+,(l) and S+,(2) are r.v. S +  defined in modified models. Note that 
asyrnptotics in (3.14) depends on U only through its mean. Thus letting E + 0 
we prove (3.14) in general if we show it assuming that the r.v. U has a regularly 
varying distribution. Under this assumption the assertion of (i) follows by sirni- 
lar considerations to those in the previous case by taking 

instead of (3.16). 

Re m a r k 3.1. Similar results can be also obtained in the so-called delay- 
ed case, when To > 0. Let us put Sb = ~~~~) Ui  and-2, = I ( x  (t)) dt.  If 
P(SJ > x) = ~ ( E ~ ( x ) x - " ~ + ~ ) ,  then the ruin probability $o(u) in the delayed 
case is asymptotically equivalent to the ruin probability $(u) in the so-called 
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zero-delayed case (when To = 0). That is, 

This is the case when the claim size U has the regularly varying distribution 
given in condition 0 and there exists a 6 > 0 such that E exp {6Zo) < + co . See 
Asmussen et al. [8], Corollary 3.2, for other relations between $(u) and t,ho(u). 

COROLLARY 3.1. if conditions (B), (U) and (S) are fuEfiEEed, then 

(3.19) +(u) N CZ I U ( ~ ) ~ - a u f  l ,  - 

where C2 is given in (3.9). 

4. SEMI-MARKOV MODEL 

Let (T,,)J=q be the renewal process. That is, T,+, - T, are i.i.d. r.v.'s. On the 
time interval [T,, T, + ,) the process {X (t), t 2 0) is equal to a positive r.v. A,. 
Random variables {A,):=? are i.i.d. and independent of (T,)i=ml. Moreover, let 
;l (x) = x. Thus Z = TA, where A is a generic r.v. A , .  We can change the dis- 
tributions of T and A in such a way that we can get all possible cases (iHiv) in 
the main Theorem 3.2 (see G-randell [20], Schmidli [34]). In particular, we can 
consider the Ammeter [3] model when T = 1. Then obviously condition (A) 
holds. From Theorem 3.2 (i) we obtain the following theorem. 

THEOREM 4.1. Assume that there exists a 6 > 0 such that E exp (GU) < + m 
and 

for the slowly varying function Ed (x) and ad > 1. If rnl,,rnl,, < 1, then we have 
the following asymptotics: 

Hence one can get the regularly varying asymptotics of the ruin probabili- 
ty $(u) even when the claim sizes U are light-tailed. 

5. DIFFUSION PROCESSES 

On a probability space (% [0, + m), F, (9f) ,20,  PX) let us consider a ca- 
nonical diffusion process (X(t), t 2 0), where {9B),B, is a natural filtration 
and 9 = u,, SF. The process {X(t), t 2 0) has the following extended gene- 
rator: 
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for f tsVZ(R), Assume that there exists a constant L such that 

and that there exists, for each constant C > 0, a constant LC such that 

(52) la2(x)-a2 ( Y ) I  + Ib(x)-b(y)l < LC Ix-yI for 1x1 < C and lyl 6 C. 

Further on, we will consider only the recurrent diffusion process { X ( t ) ,  t 2 0) .  
That is, any possible state is reached from any other state with probability 1. 
Let X ( 0 )  = 0 and To = 0. In this paper we consider two kinds ofregeneration 
moments: T, = n (n E N) and 

where 

In this case Z = J: i ( X  (s)) ds, where T = TI. 

5.1. Reflected Brownian motion and A (x) = x. Assume that the claim size 
U has the regularly varying distribution given in condition (U). Let 
(B( t ) ,  t 2 0) be a Brownian motion starting at B(0)  = 0. Set sCy) = (- and 

Thus S(x) is a "saw-tooth" function with S(x) = 1x1 for -I < x < 1 and 
with a period 2. Assume that A(x) = x. Then the intensity process 
(X ( t)  = S(B (t)), t 2 O] is a reflected Brownian motion with boundaries 0 and 1. 
The regeneration moments are defined by (5.3). Note that 

(5.5) Eg eaT = E! exp {6Tf) E t  exp {aso) = (Et  exp  SO))^, 

where 

T' = inf(t 2 0: IB(t)- l]  = I} 

and Ef  is the expectation with respect to PB when the Brownian motion 
(B(t), t 2 0) starts at x. The time So is defined in (5.4). By WentzellC381, p. 259, 
we have 

Thus 

Moreover, by Wentzell [38] ,  p. 265, we have the following lemma. 
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LEW 5.1. Ifz is an exit time by a diffusion process from a compact set 
D and Ez < M < + m, then 

S dM 
Esd% 1 +- E z < l + -  for 0 6 6  ~ A 4 - l .  

1-6M 1 -SM 

Thus, by Lemma 5.1 and (54, (5.0, there exists a 6 > 0 such that 

Note also that 0 < X ( t )  G 1, and hence condition (B) is fulfilled: 
T 

(5.9) EX o 4? = E:exp{G!X(t)dt) < E:eaT < +?. 
0 

If (S) and (U) hold, then from Corollary 3.1 we obtain 

where Cz is given in (3.9). To calculate C2 explicitly we find by the Markov 
property and the symmetry of the Brownian motion that 

Summarizing we have the following theorem. 

THEOREM 5.1. Assum that the claim size U has the regularly varying dis- 
tribution (U) with au > 1 and EU < 2. Moreover, let the intensity process 
{ X ( t ) ,  t 2 0) be the reflecting Brownian motion reflecting at barriers 0  and 1. 
Then 

5.2. Brownian motion and A(x) = e-~l"I. Assume that the claim size U 
has the regularly varying distribution (U) with index au > 4 and 1, (x) = cl 
for some constant e l .  Let the governing process {X ( t)  = 3 (t), t 2 0) be 
the Brownian motion starting at B(0)  = 0 and R(x) = ~ - Y I " I .  That is, 
{exp(-y IB(t)l), t 2 0) is the intensity Markov process. The regeneration mo- 
ments are defined by (5.3). Then, by symmetry and the Markov property of the 
Brownian motion, we have 

where 
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and So is defined in (5.4). Note that E t S o  = 1 and Ef = + co. Hence 

(5.10) E t T =  +co. 

Moreover, by Karatzas and Shreve [24], p. 96, 

Thus orT = $. Note that 
- 

E t  edZ = Ef exp {6Z ,) E t  exp {dZz), 

w h m  2, = ji e-ylB('~l dt  and Z, = j: e-dB(''l dt. Moreover, by (5.6) and Lern- 
ma 5.1, 

(5.12) Ez exp { 6 Z 2 )  < E: exp (6So)  < + 03 

for some 6 > 0. Let T(R) = inf { t  3 0: 3 ( t )  = R, 3 (0) = 1). Then, by the 
Monotone Convergence Theorem, 

f A T(R) 

Ef exg (5Z1) = lim E: exp (8 1 e-''IB(')l d t )  . 
R -  + m 0 

Thus from the Feynmm-Kac formula (see also Chung and Zhao [14), Theo- 
rem 9.22) we infer that for sufficiently small S > 0 the following holds: 

(5.13) E: exp (6Z1) = 
J O  (2 (-/Y Ja)) < + m, 

Jo ( 2  (*/Y)) 

where J , ( x )  is the Bessel function of the first kind. Then condition (B) follows 
from (5.12) and (5.13). From Theorem 3.2 (iv) and Lemma 3.1 we have the 
following theorem. 

THEOREM 5.2. Assume that the claim size U has the reguIarIy varying dis- 
tribution (U) with index a, > and lU (x )  = cl for some constant c , .  Then 

5.3. OrnsteiwUsilenbeck process and L (x) = x2 + k. Let (X (t), t 2 0) be 
a one-parameter Ornstein-Uhlenbeck process with a parameter b such that 
X(0) = 0. That is, { X ( t ) ,  t 2 0) is the diffusion process with the extended gene- 
rator 

where f €g2(R). The regeneration moments are defined in (5.3). We take 
A(x) = x2 + k for k 2 0.  Hence the intensity process {X2 ( t )+ k, t 2 0) is still 

13 - PAMS 222 
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the Markov process (see the discussion in Lawrance [27], pp. 225-228). We 
prove that condition (B) holds, that is 

for some 6 > 0. Then under (U) and (S), by Corollary 3.1, we have 

(5.16) $ ( u )  C2zU(tl)~-=U+1, 
- 

where C2 is given in (3.9). 
The method of calculating the functional (5.15) consists in changing proba- 

bility so that the quadratic functional disappears and the remaining problem is 
to compute m.g.f.'s of some hitting and exit time. We introduce the following 
exponential change of measure: 

where 

is an exponential martingale (see Stroock [36], Theorem 4.6, and Rogers 
- and Williams [32], Theorem 27.1). The second equality follows by integration- 

-by-parts for semimartingales. By Stroock [36], Theorem 4.4, and Parthasar- 
athy [31], Theorem 4.2, there exists a unique probability measure Q on 
(% [0, + m), F, {Ff)t,o) fulfilling (5.17). Moreover, by Yor [39], Leblanc et 
al. 1281 and Palmowski and Rolski [30] on the new probability space, the 
process {X(t), t 2 0) is the Ornstein-Uhlenbeck process with parameter K. 

Denote by E: the expectation with respect to the measure Q. Let K = 

for 6 < b2/2. Then by the Optional Sampling Theorem we have 

, T 

(5.20) E t  eaZ = Eg exp (81 x2 (t) dt + SkT) 
0 
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Let 6 = (6 - K + 26k)/2. Note that the following monotone convergence holds: 

Thus it suffices to find 8 > 0 such that 

From the Markov property and the symmetry of the Ornstein-Uhlenbeck 
process we have 

where So is exit time from the interval [- 1, 11 and = inf ( t  3 0:  X ( t )  = 0 
and X(O) = 1). Note that now the parameters of the process ( X ( t ) ,  t 2 0 )  
under the new probability measure Q depend on 6, and hence also on $. For 
this case we state few lemmas. Firstly, we generalize Lemma 5.1 in the following 
way. 

UMMA 5.2. Consider a fmnily of dgusion processes (Xw (t), t 2 0) paramet- 
rized by w 2 0 starting at X(O) = x,. If 2,  is an exit time by a dzfision 
(X,(t), t 2 0)  f om a compact set D and Ez;zw G M for alI 0 < w < wo < M - l ,  
then 

E:; exp {wt,) 6 1 + wOM f o r O < w $ w O .  
1-woM 

Remark 5.1. Assume that {X,(t), t 2 0 )  has the following extended 
generator: 

for f E Gf2 (R), where functions a,+. (x)  and b,  (x) fuEU (5.1) and (5.2). I f  there 
exists w, > 0 such that 

i d  inf a, (x )  > 0 and sup sup I b ($1 d B < + co 
WGWOXED w < wo XED 

for some constant B, then by Lemma 5.2 and Wentzell [38], p. 258, 
Ef;  exp (wT,) is uniformly bounded for 0 < w < wo . 

LEMMA 5.3. Let { X ,  (t), t 2 03 be the family of diffusion processes paramet- 
rized by w starting at X(0)  = x,  and let 

Hly = i d { t  2 0: XW(t )  = z) 

be a hitting time. If there exists wo > 0 such that E2K 6 M for all 
0 < w < w,, < M - l  and some M,  then E:; exp {wHly} is also uniformly bounded 
for O<w<wo.  
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P r o  of. Without loss of generality we can assume that x, > z for 
0 < w < wo. By the Monotone Convergence Theorem, 

B:; exp {wHT} = lim E:; exp {WHY A T w  (R) ) ,  
R- + m 

where 
T w ( R ) = i n f ( t  20: X,(t) = R ) .  

Note that E:; HE A Tw (R) 4 E$; 6 M for all 0 < w < wo.  Thus, by Lem- 
ma 5.2, 

- 

Mwo e 4  exp {wH,") = lim E:: exp { w K  A (R)) 4 I + --,,, < + m .  
R+ + m 

By Remark 5.1 and (5.21) there exists a0 > 0 such that for all 0 < 6 < a0 
(5.24) E: exp ($so) < + co . 
Moreover, if there exists 6 ,  > 0 such that 

for given M and all 0 < 6 < do, then by Lemma 5.3 and (5.21), (5.231, (5.24) the 
condition (5.22) holds. We calculate E? using the Laplace transform method. 
Denote by D-,(x) a parabolic cylinder function given by 

(5.25) D- ,  (x) = exp { -x2/4) 2-,'' f i  

Moreover, let 

and 

From Borodin and Salminen [12], p. 429, we have the following lemma. 

LEMMA 5.4. Let (X(t), t 2 0) be the Ornstein-Uhlenbeck process with the 
extended generator (5.14) and let 

Hz = inf{t 2 0: X(t) = 2). 
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Then 

exp {(x2 b)/2j 0 -, ( - for x 4 z, 
exp (kWI2) D - ( - @zl 

La= (3) = E: exp { - sH,} = 

exp ((x2 b)/2} D - ,,b (@XI 
for z < x 

exp ((z2 b)/2} D -, (a4 
and 

+ & ( z s ( z ) - x ) )  for x g r ,  

b-I ~JG(xs2(x&)-zs2(z@))-(sl (.,/%I-sl (z@)) 

+ &(x-z)] for x 2 Z. 

From Lemma 5.4 we obtain 

for S < (3b2)/8 (then K < b/2). Thus by (5.20) and (5.22) the condition (5.15) is 
fulfilled, and hence the asymptotics (5.16) holds. 

To calculate the constant C, in (5.16) explicitly we have to compute 
ml,= and rnl,~. Note that 

(5.29) mlVT = E ~ T  = E ~ s ~ + E ~ T  
By Lemma 5.4 we have 

(5.30) Eff = b-'[&s,(@)-sl(fi)+fi]. 

We calculate EtSo using the Laplace transform method. Let us put 

By Borodin and Salminen [12], p. 434, we have the following lemma. 

LEMMA 5.5. Let {X(t), t 2 0) be the Omstein-UhIenbeck process with the 
extended gemrator (5.14) and 

Ha,= = inf {t 2 0: X ( t )  # (a, z)) . 
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Then for a < X < 

(s) = E: exp { - sH,.,} = 
S{s/b, z&b, xJ2b)-t~(s/b, x J 2 b ,  aJ2b)  

S(s/b, z f i ,  a,/%) 

and 

where 

Lemma 5,5 gives 

By (5.29H5.31) we have 
r 

To calculate rnl,z we change the measure by (5.17) using the martingale 

f - b  
(5.33) M(t)=exp 

for t = ,/=. Then we get 
T 

E(s) = E;exp{-sj(x2(t)+k)dt) 
0 

= Efexp{-s"~) = ~ ~ e x ~ { - $ ~ ~ } ~ f e x ~ { - s " f ' ) ,  

where s" = (lc - b + 2sk)/2 and under the probability measure Q the process 
{X(t), t > 0) is the Omstein-Uhlenbeck process with parameter t. From Lem- 
mas 5.5 and 5.4 we obtain 

and 

E: exp { -&So) = 
S($/f, a ,  O)+S($/i?, 0, -a) 

S(3/fY a ,  -&i 
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Thus 

Summarizing, from (5.16) we have the following theorem. 

THEORHM 5.3. Assume that ( X 2 ( t ) + k ,  t 2 0) is the intensity process for 
k 2 0 and for the OrnsteiA,Jhlenbeek process {X ( t ) ,  t 2 0) with parameter 
b starting at X(0) = 0. If the chim size U has the regularly varying-distribution 
(U) and < 2b/(1+2bk), than 

5.4. Ornstei~WMenlbeclr process md A(x) = (x+pI2 .  Let { X ( t ) ,  t 2 0) be 
the Ornstein-Uhlenbeck process with parameter b starting at X(0) = 0. We 
define the regeneration moments by (5.3). We take A ( x )  = (x+pI2.  Hence the 
intensity process {(X ( t )  + p ) 2 ,  t 2 0) is non-Markovian. We prove condition 
(B) as in the previous section. Then, by Corollary 3.1 under conditions (U) and 
(S), the asyrnptotics (3.19) hold. We introduce the exponential change of the 
measure (5.17), where 

By the Cameron-Martin-Girsanov Theorem under the new probability mea- 
sure Q the process ( X ( t ) ,  e 2 0) is the Brownian motion. Hence 

T 

E: edz = ~g M-' (T) exp (6 1 ( X  (t) + P ) ~  a t )  
0 

where x = ,/- and @ = (2p6)/u2. k t  

Then 

We change again the measure in the following way: 
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where 

Then under the probability measure Q" the process { X ( t ) ,  t 2 0) is the Om- 
stein-Uhlenbeck process with parameter rc. We have 

where 

s"= b/2-rc/2+p6@+6p2 > 0. 

Note that 

Let us put 

By the Markov property 

E!?, exp {8F} = EG exp (FG) [Eg i- exp {gTo} -0  (X (50) = - 6 - 1) 

+ ~ 4 , ~ e x p ( g ~ } . ~ ( X ( ~ ~ )  = -p+l)] 

< E P ~  exp IF'S,} ( ~ e ~ -  exp (glP,} + E ~ F +  1 exp {$%I). 
By Remark 5.1 and (5.37) there exists do > 0 such that  ex^ (8%) is uniform- 
ly bounded for all 0 < 6 < do. Thus to prove (B) it suffices by Lemma 5.3 and 
(5.37) to find 60 > 0 such that E @ ~ ,  and EgF+, are uniformly bounded 
for all 0 < S < 60. Lemma 5.4 gives 

for all S c (3b2)/8 A b2/(8 Ipl) (then Ip"l 6 1 and b 2 K 2 b/2). We now calculate 
needed for obtaining the constant C2 in (3.19) explicitly. The constant 

m l , ~  is given in (5.32). Note that the Laplace transform of Z equals 
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where under the measure Q" the process {X(E), t 2 0) is the Ornstein-Uhlen- 
beck process with parameter R = ,/-. Moreover, Po = -(Zps)/? and 

s" = f/2-b/2-psp",+sp2 > 0 

for sufficiently small s. From Lemmas 5.5 and 5.4 we have 
- - w 

EQ,-,  exp (-STo} = 
exp {P"; ~ 1 2 1  D -PO J 2 3  

e x p { ~ o + l ) 2 C / 2 ~ ~ - ~ ~ ( - ~ ~ + ~ ) ~ ~ '  

Let us put 

and 

By Borodin and Salminen [12] the following holds: - - Q"(x(s",) = -@,-I) = 1-Q(X(So) = -p"O+l) 

Note that 

and 
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Hence 

d x - s z  d -  - 
(5.38) MI,, = --(Eo e )Is=*+ = --(E!?Foexp (-s5,))1,,,+ ds ds 

- d - - 
-- -(E%,-,-l exp {-s"T,))I,=,+ +-(E!?,-,+lexp (-s"T,))I,=,+ 

2 ds ds 

Summarizing we have the following theorem. 

THEOREM 5.4. Assume that {(X(t)+p)', t 2 0) is the intensity process for 
P E R  and fur the Ornstein-Uhlenbeck process { X ( t ) ,  t 2 0) with parameter b 
starting at X ( 0 )  = 0. I f  the claim size U has the regularZy varying distribu- 
tion (U) and ( S )  holds, then 

where m l , ~  and m,,, are given in (5.32) and (5.38), respectively. 

5.5. Splitting Brownian bridges and A(x) = 1x1. We construct the govern- 
ing process { X ( t ) ,  t 3 0 )  b y  splitting independent Brownian bridges defined 
on the interval [a, a+ l] (n  E N). That is, let ( Z ( t ) ,  t E LO, I ] )  be a Brow- 
nian bridge (see Karatzas and Shreve [24], p. 358, for construction of the 
Brownian bridge). Define the sequence (Z,(t)), n = 1, 2, . . ., of independent 
copies of Z (t). Then X (t) = 2, (a + t )  if t E [n, a + 11. Hence T, = n are moments 
of regeneration and T = 1. Let A (x )  = 1x1. Thus on each interval [n, n+ I f  the 
intensity process is the reflecting Brownian bridge. By Karatzas and Shreve 
~241,  P. 360, 

Thus 

1 1 1 

(5.40) 2 = j ]X ( t ) ~  dt = U Z  ( t ) ~  dt S I B  ( t)  - t~ ( l ) ~  dt . 
0 0 0 

Note that 

1 

(5.41) z G I(  SUP IB(t)l+tlB(l)[)dt < 2 sup IB(t)l. 
0 O < t < l  O < t $ l  
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Hence 

by Adler [2] and Karatzas and Shreve [24], p. 96. Thus condition (B) is 
fulfilled. Moreover, by the Fubbini Theorem, 

1 - 

m1,z = J (E 1B (tl- tB (111) dt 
0 

Taking the substitution y2:= 1 - t  we get 

where 

Elliptic F (2, k) = 
0 J v j m d y  

is the incomplete integral of the first kind and EllipticK (k) = Elliptic F (1, k) is 
the complete elliptic integral of the first kind (see Abramowitz and Stegun [I], 
Chapter 17). By Corollary 3.1 we have the following theorem. 

THEOREM 5.5. Assume that the intensity process is constructed b y  splitting 
rejecting Brownian Bridges. If the claim size U has the regularly varying dis- 
tribution (U) with au > 1 and rnl,zml,u < 1, then 

where is given in (5.42). 
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