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b INTRODUCTION 

Potential theory for symmetric a-stable processes has been intensively 
studied in recent years (see e.g. [3], [6], [14]). In particular, sharp estimates for 
the Green function and the Poisson kernel for bounded smooth domains with 
C1sl boundary have been obtained ([12], [19]). For example, let GD(x, y) be 
the Green function of a bounded C1sl domain D c Rd (d 2 2) for the symmetric 
a-stable process. Let x, be a fixed point in D. Define 

There are constants c,, c, depending only on D, a such that ([12], [19]) 

and, for x, Y E  D, we have 
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where Vd,. is given by (5) below and r ,  is the localization radius of the domain 
(see Section 2 for definitions). From this result and the Ikeda-Watanabe for- 
mula similar estimates for the Poisson kernel of Cis1 domains have been ob- 
tained in [12]. Later, in [5 ] ,  similar estimates have been obtained for the 
classical Green function in Lipschitz domains. Analogous estimates have been 
obtained in [ll] for a-stable censored processes in C17l domains. 

The purpose of the present paper is to give similar estimates for the Green 
function, the Poisson kernel and the Martin kernel for symmetric a-stable 
processes in bounded Lipschitz domains. The main tool in abtaining these 
results is the boundary Harnack principle (BHP) for u-harmonic functions ([3], 
cf. also [?I, [zl]). Our main results are the following (for the notation see 
Section 2). 

THEOREM 1. There is a constant C1 = C1 (D, - a) such that for every x, y E D 
we have 

where A E ( x ,  y). I n  fact, (1) holds with C1 = Cl ( d ,  A, a) provided 
6 ( x ) v  6Cy) v Ix-yl < ro/32. 

THEOREM 2. There is a constant C2 = CZ @, a) such that for every x ED 
and y ~ i n t  (Dc) we have 

where y ' ~  ds(,,)(S), AE a ( x ,  y') and S E t3D is any point such that ly - SI = 6 (y). 

THEOREM 3. There is a constant C3 = C3 @, a) such that for every x E D, 
QE 8D we have 

where A E ~ ~ , - ~ ~  (Q). I n  fact, (3) holds with C3 = C, ( d ,  A,  a) provided 
Ix - QI d ro/32. 

The above results show that the boundary behaviour of the Green func- 
tion, the Poisson kernel and the Martin kernel can be expressed in terms of 
# (x).  This role of r#~ (x) s tem from the boundary Harnack principle. We note 
here that unlike in C1*l domains, the boundary behaviour of 4 (x) for bounded 
Lipschitz domains strongly depends on the local shape of the boundary (see 
Lemma 8) and estimates (1)-(3) are much more *cult than their counterparts 
for C1y1 domains. 
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Our proofs of Theorems 1 and 3 follow closely the arguments of 151, with 
appropriate adjustments and simplifications. However, the estimates for the 
Poisson kernel for a-stable symmetric processes are new with no counterpart 
in [5 ] .  We remark here that the problem of estimating the Poisson kernel is 
qualitatively different from that of estimating the Martin kernel (see, e.g., [16]). 
Our estimate for P D ( x ,  y) is a consequence of the Ikeda-Watanabe formula 
and the estimate for the Green function (I). 

The work is organized as follows. Section 2 sets up the notation and 
collects basic facts and definitions for further use. In Section 3 we prove es- 
timates for the Green function. Section 4 deals with the Poisson kernel and the 
Martin kernel. In Section 5 we give applications of the main results: simple 
proofs of "3G Theorem" and the estimates for the Green functibn and Poisson 
kernel in C1s1 domiins ([12], 1191). 

In this section we introduce basic notation and present without proofs 
some standard facts needed in this work. Most of the material is adopted from 
C ~ I ,  DI and ~ 1 9 1 .  

2.1. Basic notation and terminology. For natural number d 2 1, we denote 
by Rd the d-dimensional Euclidean space with norm I - I .  We put N = (0, 1,2, . . .). 
We write Dc, D, int(D) and dD for its complement, closure, interior and 
boundary, respectively. For D c Rd, X E R ~ ,  r > 0, we put 

We write, as usual, a A b = min (a, b} and a v b = max (a ,  b}. Let m(D) be the 
d-dimensional Lebesgue measure of D c Rd. Assume that &?(Rd) denotes the 
Borel a-field of Rd, and f E 93 (Rd) means that the function f is Borel measura- 
ble. The notation c = c(a, 8,  y) means that the constant c depends only on 
a, 8,  y. Constants are always strictly positive and finite. 

2.2. Definitions and properties of sets. For the rest of the paper we assume 
that d 2 2. A set D c Rd is called a domain if it is open and nonempty. 

A bounded domain D c Rd is called a Lipschitz domain with Lipschitz 
character (ro, A), rr, > 0, A >  0, if for every QE ai l  there exists a function 
r Q -  - Rd-I + R satisfying the Lipschitz condition Ire (a)-rQ (b)l < I [a-  bl for 
a, b€Rd-', and an orthonormal coordinate system CS, such that if 
Y = ( Y ~ ,  yz, . . . , yd) in CS, coordinates, then 
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The constant ro is called the Eocalization radius and the constant 1 the Lipschitz 
constant. Note that we do not assume connectedness of D in this definition. 
One can choose ro so small that distance between connected components of 
disconnected Lipschitz domain with localization radius ro is not less than ro. 

It is not difficult to check that a ball B(0, r) is a Lipschitz domain with 
Lipschitz character (r , $1. 

For the rest of the paper, unless it is stated otherwise, the domain D is 
Lipschitz with Lipschitz character (r,, I). We denote by 19 = diam (D) the diam- 
eter of D, and by 6 (x) = JD (x) the distanoe between x E Rd and the boundary 
of D. It can be proved that the set {x E D: 6 (x) 3 ro/2) is nonempty (or with 
less work, one can take ro so small that this set is not empty). We choose one of 
its elements as a reference point and denote it by xo. We alsd fix a point x1 E D  
such that Ixo-x,j = ro/4 (cf. [5]). The dependence of constants on D which is 
only through d, R ,  r,, 8 will be marked in this paper by the symbol Q e.g. 
C(DJ = C ( d ,  I, r,, 0). Let rc = 1/(2 Js) and Q aD. For t ~ ( 0 ,  r0/32] we 
define 

d,(Q) = ( A E D :  B(A, rct) c D n B ( Q ,  t)). 

The set d,(Q) is nonempty (see [15] ,  Lemma 6.6). For t > ro/32 we put 
d*(Q) = {XI). 

For any x,  ED we put r = r ( x ,  y) = 6(x) v B(y)v Ix-yl. For r<ro/32 
let 

g ( x ,  y) = (AED: B(A, ~ r ) c  D n B ( x ,  3r)nBCy, 3r)). 

If r > ro/32 we put g ( x ,  y) = {xl}. The set a ( x ,  y) is nonempty (see [5]). Of 
course, by symmetry, a ( x ,  y) = B(y, x). 

2.3. Symmetric a-stable IKvy motion. We denote by (Xi, P")e standard 
rotation invariant ("symmetricy') a-stable, Rd-valued, Ltvy process (i.e. homo- 
geneous with independent increments), with index of stability a ~ ( 0 ,  2) and the 
characteristic function of the form 

Eoexp(itXJ = exp(-t lily, { E R ~ ,  t 2 0. 

As usual, Ex denotes the expectation with respect to the distribution Px of 
the process starting from x €Rd. We always assume that sample paths of X, are 
right continuous and have left Iimits almost surely. (X,, P")s a Markov pro- 
cess with transition probabilities given by Pi (x, D) = Px (X, ED) = p, (D - x), 
where p, is the distribution of X, with respect to Po, and is strong Markov with 
respect to the so-called "standard filtration" (%, 9) and quasi-left-continuous 
on [O, m) (see [I]). We have Px (X, E D) = 1, p (t, x, y) dy, where p (t, x, y) is 
the transition function of X,. 

For an open set D c Rd, we define a Markov time r~ = inf( t  2 0: Xt~DC},  
the Jirst exit time from D. If m (D) < m, then Px {zD < m} = 1, x E Rd. In this 
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case the P" distribution of X,, is a probability measure on Dc, called a-har- 
monk measure (in x with respect to D) and denoted by w;. If wZ, is absolutely 
continuous with respect to the Lebesgue measure on DC, then the correspon- 
ding density function P, ( x ,  y), x ED, y E Rd, is called the Poisson kernel (we put 
PD(x,  y) = 0 for x, Y E  D). For Lipschitz domains the or-harmonic measure 
wg is concentrated on int (03 and is absolutely continuous with respect to the 
Lebesgue measure on Dr. The Poisson kernel PD(x, y) is jointly continuous in 
( x ,  yj ED x int (IF) (see [3 J, Lemma 6). 

For D = B(0 ,  r), r > 0, and x ~ B ( 0 ,  r), the Poisson kernel PqO,r) = Pr is 
given explicitly by the formula 

for JyJ > r, - 

with C,d = r(d/2) n-di2-1 sin(sla/2), and equals 0 for lyl G r (see [Z]). 

2.4. Riesz potentials and a-hermoniclty. For any x, y E Rd, we define poten- 
tial density or the Riesz kernel u(. ,  .) by 

41 

u(xl Y )  = j ~ ( t ,  x5 yjdt. 
0 

u ( x ,  y) is given explicitly by the formula (see [I]) 

where 

For any nonnegative f E B(Rd) we define the potentiaI operator Ua of the 
process X, by 

It  follows that 

For any nonnegative f E L?% (Rd) we define 

GD is called the Green operator for D. We define GD(., a), the Green function for 
D, by 
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We put GD (x, x) = co if XED and GD(x, x) = 0 when x E DC. For any non- 
negative f EB (Itd), we have 

G ~ f  (x) = y ) f  ~ Y ) ~ Y -  
Rd 

It is well known that GD (x, y) > 0 on D x D, GD (., a )  is symmetric and 
G,(X, y) = 0 if x or y belongs to DC. 

The following Ikeda-Watanabe formula expressing the Poisson kernel 
PD(x, y) in terms of Green function is known (see [17]): - 

where %',,+-, is given by (5). 

DEFINITION 4. Let u (Ed).  We say that u is a-harmonic in an open set 
D C R ~ ~ ~  

for every bounded open set U satisfying tf c D .  We say that u is regular 
u-harmonic in D if 

By the strong Markov property of {X,), regular u-harmonic functions are 
u-harmonic. 

As the consequence of the definitions presented above, for any Y E  D and 
r > 0 the Green function GD(*, y) is u-harmonic on D\{y) and regular a-har- 
monic on D\BCy, r). Moreover, if Dl and D ,  are domains and Dl c D,, then 
GD,(x, y) 6 GD,(x, y) for x, y€Dl (see [I91 for more details). 

Now we introduce the Martin kernel KD(x, Q) for bounded Lipschitz 
domains ([4], Lemma 6; see also 1201). For every Q E 8D and x E D we d e h e  

The mapping (x, Q) H KD (x, Q) is continuous on D x aD. For every Q E 8D the 
function KD (-, Q) is u-harmonic in D with KD (x,, Q) = 1.  If Q, S E aD and 
Q # S,  then KD(x, Q)+O as x+S. 

We will denote by G (x, y), P (x, y) and K (x, y) the Green function, the 
Poisson kernel and the Martin kernel for D, respectively. 

2.5. Roperties d a-harmonic fmctions. In this section we collect some 
results of [3] needed in the sequel. 

LEMMA 5 (Harnack inequality). Let x, y E Rd, s > 0 and k~ N satisfy 
Ix-yl < 2ks. Let u be afulaction which is nonnegative in Rd and a-harmonic in 
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B(x ,  s ) u B b ,  s). Then 

with MI = Ml (1, a). 

The next lemma is a version of Lemma 13 in [3], 

LEMMA 6 (BHP). Let Z E ~ D  and p ~ ( 0 ,  ro]. Assume thatfirnctions u, v are 
nonnegative in Rd and positive, reguhr a-harmonic in D n BIZ,  p). If u and v van- 
ish on D c n B ( Z ,  p), then with a constant M ,  = M,(d ,  1, a) the following holds: 

- 

for X ,  y E D n B ( Z ,  p/2). 

The next two results are versions of Lemmas 4 and 5 from [3]. 

LEMMA 7 (Carleson estimate). There exists a constant M 3  = M3 ( d ,  a, A) 
such that, for all Q E dD arad s E (0, rd323, and functions u nonnegative in Rd, regular 
a-harmonic in D nB(Q, 2s) and satisfying u(x)  = 0 on D" n B (Q, 24, we have 

(10) U(X) < M3u(A),  x € D n B ( Q ,  s), 

where A E dS (Q).  

LEMMA 8. There exist constants y = y ( d ,  a, A) < a and M4 = M4(d, a,  A) 
such that for all Q E ~ D  and t ~ ( 0 ,  r,/32], and functions u nonnegative in Rd, 
a-harmonic in D n B ( Q ,  t), we have 

where A1 E ds (Q), and A2 E att (Q). 

For the rest of the paper we fix the constant y in Lemma 8. 

3. IESTIlMATES FOR THE GREEN FUNCTION 

In this section we prove Theorem I. At first we will need an auxiliary lemma 

LEMMA 9. Let N > 0 a d  x ,  y E D satisfy jx- yl < Ns, where s = G (x) A S(y). 
Let u be a function nonnegatiue in Rd and a-harmonic in B ( x ,  s) u B (y, s). Then 

(12) A7;1u(x) < u b )  < A71u(x) 

with = A?, (d,  a, N). 
P r o  of. Let k E N be such that 2k-1 < N + 1 < 2k. Since u is a-harmonic in 

B(x ,  s ) u  B(y, s) and Ix- yl < 2ks, b y  Lemma 5 we obtain 

Therefore (12) holds with &fl = MI (2 (N+ l))d+a. H 

15 - PAMS 22.2 
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We will also need the following estimates for the Green function of the ball 
(see [I91 for d 2 3 and [12] for d 2 2). The estimates are consequences of an 
explicit formula for the function (see [2]). 

PROPOSITION 10. There exists a constant M5 = M 5  (d ,  a) such that 

1 
iwr l [  I x - Y ~ ~ - ~  

1 
A 

Ix-- yld 
3 

where 3, = B(a,  r ) ,  a € R d ,  x, 

LEMMA 11. Let N > 0 and x ,   ED satisfy Ix-yl < ~ [ - 6 ( x )  A 6 ( ~ l l .  Then 

(13) Cil  Ix- ylaPd < G ( x ,  y )  < C4 I ~ - y l ~ - ~  

with C, = C, [d ,  m, N).  

P r  o of. The right-hand inequality is obvious because G ( x ,  y) < u ( x ,  y) = 

wd,a I x - Y ~ ' - ~  . Let s = d(x) A 6 (y) .  We now prove the left-hand side of (13). 
We first assume that Ix-yl < s/2. We clearly have BB(y) 2 s/2, where 

B = B ( x ,  s). By Proposition 10 we obtain 

where M s  is the constant from Proposition 10. Since GB(y) 2 lx-yl and 
6, ( x )  2 Ix- yl, we get 

Thus (13) holds with C4 = C4(d,  a) = M s  v (igd,.. 

Now assume that Ix - yl > 42. Let yo be a point such that Ix- yol < s/4. 
From Lemma 9 and (14) we obtain G ( x ,  y) 2 c1 G ( x ,  yo) 2 c2 [ x -  yla-d, which 
gives the lower bound in (13). H 

Lemma 11 yields that there exists a constant M6 = h f 6 ( d ,  a) such that 

To simplify the notation we will write 

s (4 = G ( xo ,  x )  and 4 (4 = G ( xo ,  x )  A (r0/4)" - dl , 
see the Introduction. We recall that G ( x ,  y) < u(x ,  y) = gd,or I X  -yIaPd. In particu- 
lar, G (x,, x) < u (x,, x)  G gdda (1-,/4)"-~ if ] X  - xOI 2 ro/4. Thus, for Ix - xol 2 ro/4, 
t$ ( x )  = g (x). Note that 6 ( x l )  2 ro/4. 

First we prove the estimate for Green function assuming that x and y are 
not close to x,. 
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ErmMA 12. There is a constant C5 = Cg (_D, a) such that $x, y E D\B(xo, rd3) 
and A E ~ ( X ,  y), then 

In fact, (16) holds with C5 = C5 ( d ,  A, a) provided 6 (x )  v S (JJ) v Ix - yl < ro/32. 

Pro of. The proof of this lemma is the same as the proof of an analogous 
lemma in [5j with appropriate adjustments, so we omit most of the details. To 
give the reader the idea of proof we will only prove (16) under the_assumption 

56(~)<56(y)<Ix-yl  and r<r0/32, 

where r = r (x, y) = 6 (x) v 6(y) v Ix- yl (cf. [5]). To simplify the notation we 
will write p, for r,/32, Let Q and S be points such that Ix-QI = S(x) and 
ly -SI = S (y). We have r = Ix - yl and 

We choose E E dr15 (Q)  and F E sitrl5 (3. By Lemma 6 (with p = 2r/5, 
Z = S) applied to the functions G (x, .), g ( .) we obtain 

with c, = c ,  (d, A, a). Similarly, applying Lemma 6 to functions G ( - , F), g ( . ) 
(taking p = 2r/5, Z = Q), we get 

Thus we have 

SinceS(E), 6 ( F )  2 ur/5,d(A) 2 mandlx-y1/5 < IE-FI < 9Ix-y1/5 < 5Ix-yl, 
we have 

I1 -FI < 9r/5 < (9/u) [S (E) A 6 SF)], 

IE-AI < IE-QI+IQ-A1 < r+4r < (25/~)[6(E) A 6(A)], 

IF-A1 i IF-SI+IS-At < r+4r < (25/u)[S(F) A r\(A)]. 

Hence, by Lemmas 9 and 11, we obtain 

c;' lE-F]"-d < G(E, F) < c3 IE-FIa-d, 

c T ~ ~ ( E ) ~ ~ I A ) G ~ ~ ~ ( E ) ,  cT1g(F)d9(A)<c5g(F). 

Therefore we obtain (16) with C5 = C5 (d, A,  IX). The proof is complete. rn 
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Let us remark here that the above argument is less technical than that 
of [ 5 ] .  This is due to the fact that the BHP for our stable processes (Lemma 6 
above) has less stringent assumptions regarding the domain where the func- 
tion needs to be harmonic as compared to the BHP for the classical harmonic 
funftions, ' 

The proof of Theorem 1 is based on Lemmas 5, 6, 11 and 12, and is 
analogous to the one from [5], so we omit the details. 

4 THE POHSmN A N D  TWE MARTIN KERNEL ~ 

4.1. The Poistma kemd. In this section we will deal with the Poisson kernel 
- the density function of a-harmonic measure wg (see Section 2). Before we 
prove Theorem 2, we will need some estimates for the function &(x). 

Let us recall that for x E D\B (xo, r0/4) we have # (x) = g (x), where 
g(x) = G (x,, x); and g (x) is an a-harmonic function in D\{x,}. Therefore, 
although # (x)  is not a-harmonic in D\B(x,, ro/4), it is equal to an a-harmonic 
function on this set. This simple observation yields useful estimates of the 
function q5(x). We also recall that y = y(d, A, a) < a is the constant from 
Lemma 8. 

By the Harnack inequality there exists a constant C6 = C6 (g, a, N) such 
that 

for all x E D satisfying S (x) 2 N. 

LEMMA 13. Let x, z,, z,, ZED and ri = S(x)v6(zi)vIx-zil for i = 1, 2. 
Let N be a constant satisfying r1 d Nr2 or Ix- zll < N lx -z21. Let A E L?8 (x, z), 
A, E (x, zl), and A,  EL?^ (x, z2). Then 

(21) ~ ( A I )  G C7 4(Az), 

(22) 4 (4 G C8 # ( 4 ,  

(23) # ( 4  2 c9 6 (xIY, 

where C7 = C7 (_D, a, N), C8 = C8 (e, a), and Cg = C9 (o, a). 

P r o  of. We may and do assume that N 2 1. If Nr, > ro/32, then from (20) 
we get (21). 

Therefore we may and do assume that rl < Nr, < ro/32. Let z; ~ d , ,  (Q) 
and z', E dNr, (Q), where Q E aD is a point such that Ix - QI = S (x). We have 



Estimates for the Green function 429 

Applying Lemma 9 we have 

with c2 = c2 ( d ,  1, a, N). In fact, we apply Lemma 9 to the domain Do = 

D\B(xo, ro/4) and the function 8. According to the remarks at the beginning 
of this section the results for the function q5 follow. In the sequel we will simply 
pass over similar discussions. By Lemma 7 we have # (2;) < c j  # (za) with 
c3 = c3 ( d ,  A, a). Therefore we obtain (21) with C7 = C$ c3. 

Note that Ix -zll < N Ix-z,l implies r ,  G 2 (Nf 1) r,. Therefo~e the proof 
of (21) is completed. 

To prove (22) note that if 6 (2) < ro/32, then z ~g (z ,  z). Since 
6 ( x )  v 6 (2) v Ix - 21 2 6 (z), by (21) we get (22). The case 6 (z) > ro/32 follows 
from (20). 

Now we will prove (23), If S(x )  2 ro/64, then (20) yields (23). If 
6 (x)  < ro/64, then x ~ d ~ ~ ( ~ )  (Q), where Q E 8D is a point satisfying 
Ix - Q1 = S (x). Let zo E d,,,,, (Q). Lemma 8 applied to x and z, and (20) yield 
(23). rn 

LEMMA 14. There exists a constant Cl l  = C I l  (D, a) such that for all - 
Q E ~ D  and t > 0  we have 

where A I E ~ ~ I Q ) ,  A z ~ d t ( Q 1 .  
Proof. If t < ro/32, then (24) holds by Lemma 8. Assume that t > ro/32. 

Then A2 = x l .  
For s < ~,/32 let z' E da4,,/32 (Q). By (20) we get 4 (2') 2 c1 #J (A,), where 

c, = c ,  (g ,  a). From Lemma 8 we obtain 

where c2 = c,(d, A, a). If s 2 r0/32, then (24) obviously holds. H 

LEMMA 15. There exists a constant C12 = C12 (g,  a) such that for all 
X ,  z l ,  z2 ED satisfying Ix-zll < Ix-zzl we have 

where Al E ~ ( x ,  z l) ,  A2€&?(x, z2). 

Proof. Let r ,  = 6 ( x )  v G(zl) v Ix-zll and r, = S ( X )  v 6(z2) v Ix-zzl. 
Let Q E  aD be a point such that Ix-QI = 6 (x). 

If rl > ro/32, then b y  (20) we have # ( A 1 )  2 c1 4 (A,), where c1 = el (_D, a). 
Since Ix -zll < Ix-z2[, (25) holds. 
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Assume that r, < r$32 and r2 > ro/32. Then A2 = x l .  I f  Ix-zzl > ro/64, 
then by (23) we have # (A1)  3 c2 (rl K ) ~  2 c2 rcY Ix- zllY, where cz = cz (_D, a). 
Hence (25) holds because the function I$ is bounded from above. If 
Ix -zzl < r,/64, then 6 ( x )  > r,/64 (because Ix - z2[ + 6 (x) 2 r2 > ro/32). 
Hence, by (20) and (22), we have #(A,) 2 c, 4 (x)  2 c4, where c, = c ,  (_D, or) 
and e4 = c4(_D, a). Using the condition Ix-zll d Ix-z,l, we obtain (25). 

Now we assume that ri , rz 4 r$32. Let z\ E d,, (Q) and z', E d,, (Q). Since 
IAi - $1 < (5/lc) [S (Ai) A S ($)I for i = 1, 2, we obtain b y  Lemma 9 

where c5 = c5 (_D, a). I f  ri 2 r2, then b y  Lemma 7 we have c, # (z',) >, # (z',), 
where c, = c, (d ,  A ,  a). Therefore (25) holds with C l ,  = cY2 c i l .  Let rl c r 2 .  
By Lemma 8 we have 

where c7 = c7 (d,  A, tl). Note that 6 (z2) < 2 (6 ( x )  v Ix - z,l), and hence 
r, < 2(r1 v Ix-zzl). I f  rl 2 Ix-zzl, then r1/r2 2 1/2 2 Ix-zll/(2 Ix-z21). If 
ri < lx-zzl, then rz 6 21x-z21, and since rl 3 lx-zit, we again get 
rl/r, 2 Ix-z11/(21x-z,l). Using this we obtain (25) with C12 = ~ ; ~ c ~ ( r c / 2 ) ~ .  ra 

The following lemma is crucial in our considerations. Its proof depends on 
the fact that the constant y in Lemma 8 is smaller than a. 

LEMMA 16. Let y ~ i n t  (Dc) and SE 8D be a point such that 6 Cy)  = ly -SI. 
Let t 2 6 (y). Then for G = B (S ,  t )  n D  and yf ~ d ~ ( ~ )  (S)  we have 

with Cl3 = cI3(Ey a). 

Proof. For all Z E D  let z ' ~ d ~ ~ - ~ ~  (S). From Lemma 7 it follows easily that 

where c,  = e l@,  ol). 
Assume that S (y) < r0/32. By Lemma 14 there exists c2 = c2 (E ,  or) such 

that for z E D  we have 
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Hence we obtain 

where c3 = CJ (_D, a). 
Let us put B = B(yl, ic6 (y)/2). Note that B c G and for every Z E B  we 

have [y'-zl < 6(y3 A a(z). Hence, by Lemma 9, we have - 

where c, = c4 (d, a). Using this we obtain 

where c, = c 5 ( D ,  01). Taking C13 = c3 v cC1 we obtain (26). 
Now assume that 6 ( y )  > ~,/32. From (22) and the fact j, GD (x, z) dz = 

Ex {zD) we have 

c i l  < ~ , J 6 ( z ) ~ d z d  l#(z)dz < c6EX0{zD] < c s ,  
G G 

where c,,  c7, c8 depend only on D and a. From the last inequality we easily 
obtain (26). B 

LEMMA 17. There exists a constant C14 = CI4 @, a) such that 

(29) c,-,' #(x) < F(rD) < C146(~) ,  XED. 
P r o  o f. Let B = B (z, , 1) be such that 6 (z,) = 8 + 1. Consider the function 

f (x) = Px {X,, E B). Clearly, this function is or-harmonic in D. From the Ikeda 
-Watanabe formula (6) and the fact that Ex (z,) = J, GD (x, y) dy there exists 
a constant c1 = cl(d, 13, a) such that 

c [ Ex {TD) d f (x) d EX { T D ) .  

The rest is the consequence of Lemma 6 applied to functions f ( - )  and G(xo, .). 

Proof of Theorem 2. In this proof we will use the convention that all 
constants depend only on _D and a (unless it is stated otherwise). For every 
z , ,  z, E D we denote by A,,,,, any point belonging to the set (z,, 2,). For the 
rest of the proof we put 
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To shorten the notation we will write p, = r0/32. By Theorem 1 and (6) we have 

where C1 = C1 (D,  a). Our task will be to estimate the above integral. We will 
consider 3 cases: 

(a) lx - yl 2 56 (y) and S Cy) < r0/32; - 

I (b) Ix-yl < 5dly) < 5ro/32; 
(c) S(y)>r,/32. . 
Case (a). Ix-yl 2 56 (y) and 6 (y) 6 r0/32. 
Note that fx-y'l G Ix-y(+6(y)+lyf-SI < 2Ix- yI and Ix-y'l 2 Ix-yl- 

G Cy) - ly - SI > 3 [x - y1/5. Hence we get 

Let us consider the following sets: 

3 1  = 3(y,  Ix-yl/2)nD, B2 = B(x,  Ix-yl/2)nD, 

I B3 = D\(Bl u Bz) .  
I 
I Let us put 

Ii= j 4 (x) 9 (z) 
,+mdz for i = l , 2 ,  3. 

Bi 4' (Ax,z) Ix -zld-a Iz  -Y/ 

We first estikate Il. For zl ,  Z,E B1 we have Ix-zll 2 Ix-y)/2 2 )x-z2)/3. By 
the reason of symmetry, Ix -z2(/3 < Ix-zll < 3 Ix-zzl. Since y' E Bl , by (21) 
(taking zl = z and 2, = y') there exists a constant cl such that 

(31) 4 A ,  4 A , )  < # ( A )  z E B1. 

By Lemma 16 there exists a constant c, satisfying 

Moreover, for z E B1 we have Ix- y1/2 < Ix - yl d 2 [x - yl. Using this, (31) and 
(32) we obtain 

~ where rnl = ci c, 2d-a. 
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We now estimate I 2  from above. Let ZE B2. We have J y  -zl g Ix-y1/2. 
Using this and (21), we have 

# (x )  Zd+" 

B2 # ( A X , Z ) I x - z j d - a  I x - Y I  
Suppose Z E B ~ .  Since Ix-zl < Ix- y'l < 2 1x- yl, by Lemma 15 we have 

Consequently, we get 

Note that by assumption (a) and Lemma 15 we obtain 

where y" is a point such that S ('y") = ly'-y"l = 6Cy')/2. Since # (A,,,,,,) < 
C, # (y f )  (by Lemma 9), we have 

Hence 

Applying this and (35) to (34) we obtain 

where m2 = c3 c; c, c; c ,  2d+2a(1 +po)a. 
Now we estimate I3 fiom above. Note that for Z E B ~  it follows that 

Ix - zl 2 Ix - y1/2 and Ix - zl 2 Ix - y11/3. B y  (21) we have c, # ( A , , )  2 #J (A,,yc). 
Using this and Lemma 16 we get 
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Hence we get 

where rn3 = c i  c9 2d-a. 
Using (33), (36) and (37) we obtain 

Applying this to (30) we obtain (2). 

Case b. Ix -yl < 56 (y) < 5r0/32. 
Note that in this case 6 (x) < Ix - yl < 58 (y). Since 6 (y) < p,, we have 

6 W )  2 (45)  6 (x) . 
By (22) there exists a constant clo such that 4 (y') < cl, # (A,,,). Note that 

Ix - y'l < Ix - yl + ly - y'l d 7S b )  < (7/u) S (y'). Hence 6 (y') 2 (lc/7) r , .  If r2 > p,, 
we have 6(y1) > (u/7)p0, and by (20) we obtain 

(38) ~2 # b f )  < 4 (Ax,y,) < ~ 1 1 4  (~'1. 

If r2 < po, we have ly'- A,,y.I < 3r2 < (21/u) [6 (A,,,,) A 6 (y')] and (38) now fol- 
lows from Lemma 9. 

Let us put 

We will consider the integrals 

Ii= 9 ( 4  4 (-4 for i = 4, 5 ,6 .  
Bi #2 I x - z \ d - a  I z - Y ~  

We first estimate I ,  from above. Suppose Z E  B4. Let zl E D  be such that 
4 1x- yl < Ix - zl[ < 5 Ix - yl. We have Ix-zl < Ix-zll and Ix-yfl < lx -zll. 
Applying Lemma 15 to the points x ,  z, zl and (21) to the points x ,  y', z, we 
obtain 
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By (22) we have 

By assumption (b) we have ly-zl 2 S C y )  3 Ix-y1/5. Therefore, using (38H40) 
we get 

where m4 = cll CT: c14 (1 -tpO)a. 
We now estimate I, from above. Suppose that ZEB, .  We have 

Ix - zl > Ix - yl and 2 Ix - z] > Ix - y'l. Hence, by (21) we obtain 
4 (A,,,,) 6 c16 $ (A,,,). Since u < d and 3, c D, by Lemma 16 we get 

We now estimate I6 from below. Suppose that z E B(S ,  G (y)) n D .  Note 
that Ix-zl < 3Ix-yl. Moreover, r, < 4rc-'r2. Indeed, S(z) < ~ - l G ( y ' )  and 

Hence 

Therefore, by Lemma 13 we have c17 4 (A,,,) < #(A, ,* ) .  Using this, by Lem- 
ma 16, we obtain 
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Therefore we get 

Applying this to (30) we obtain (2). 

C a s e (c). S ly) > ro/32. - 
From the Ikeda-Watanabe formula we infer that 

and (2) follows from Lemma 17. ra 

The estimates of the Martin kernel follow easily from the estimates for the 
Green function (Theorem 1). Since the proof is analogous to the one from [ 5 ] ,  
we will omit it. 

5. APPLICATIONS 

In this section we present some applications of the results obtained in this 
work, which simplifies proofs of some well-known results. The first one is the 
following "3G Theorem" (cf. [6] and [15]). 

THEOREM 18 r3G Theorem"). There exists a constant CI4 = Cl4(E, ct) 

such that for every x ,  y, z E D we have 

Proof. The proof follows 151. Let x ,  y, Z E D  and R E ~ ( x ,  y), S ~ g ( y ,  Z) 
and T €93 (x, z). By Theorem 1 we have 

where 

We only need to show that W is bounded. By (22) there exists a constant 
c ,  = c, (D, a) such that # (j) < cl # (R) and 4 Cy) < c1 + (S). Note that 
Ix-zl < Ix - yl + ly- zl < 2 (lx -yl v Iy -zl). Hence by (21) there exists a con- 
stant c, = c2 (E, a) such that either + (T) < c2 # (R) or + (T) < c2 4 (S). There- 
fore W < c ,  cz. Taking C14 = C: C: C: we obtain (41). H 
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We conclude this work with short proofs of the well-known estimates for 
the Green function and the Poisson kernel for bounded cl*l domains (Theo- 
rems 21 and 22) first proved in [12],  El31 and 1191. 

A function F: Rd- l  4 R is called C1ll if it has first derivative F' and there 
exists a constant r j  such that for all x, y E Rd-I we have IF' (x) -F' (y)l < q Ix - yl. 
A domain D  c @ is called a C1tl domain with constants q ,  ro > 0 if for every 
Q E ~ D  there exists a C1pl function P,: P-l + R (with c',' constant q), an 
orthonormal coordinate system CSQ and a constant r ,  = r , (D) such that if 
y = (y l ,  y z ,  . , ., ya) in CS, coordinates, then - 

BIQ, r o ) n ~  = B(Q, rO)n{y: yd > F Q ( Y ~ ,  YZ, .. ., Y ~ - I ) ) -  

Clearly, every (bounded) C1ll domain is Lipschitz. C1il domains have the 
following property ( [22]):  

There exists a constant so such that for every X E D  satisfying S(x)  < so 
there exist two balls 3; and B$ of radius so such that B: c D, 3: c iut (D3 and 
dB: n 33; = {x*), where xs E aD is a point satisfying 6 (x) = tx - x*]. The con- 
stant so depends on d ,  q ,  ro, where ro and y are constants defining the c1>l 
domain. 

In what follows we assume that our (bounded) Lipschitz domain D with 
Lipschitz character (r,, A) is also a C1.l domain with constants ro and q .  When 
writing c = c (g ) ,  we mean c = c ( d ,  ro, 1, O), as usual. We first need the fol- 
lowing auxiliary results based on the explicit formula for the Green function of 
the complement of the ball 121. 

LEMMA 19. For any s > 0 there exists a constant M8 = M8 (d ,  a ,  S )  such 
that for every ball B = B (a,  s) c Rd we have 

The proof of this lemma can be found in 1121 (Lemma 2.5). 

LEMMA 20. There exists a constant C15  = C l 5 ( F ,  SO, a)  such that 

(43) C;: daI2 (x )  < EX { z ~ )  < c15 aaI2 (x) 
for all X E D .  

Proof. It is well known (see, e.g., (2.10) in [ l o ] ,  or [ 8 ] )  that there exists 
a constant M9 = M,(d,  a) such that for any s > 0 we have 

F&st assume that 6 ( x )  2 so. Note that 

Hence (43) holds clearly because 6 ( x )  is also bounded by 'two constants: 
SO < 6 ( x )  < 8.  
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Now assume that S(x)  < so. We have F{Z~;} G E x ( ~ D ) .  From (44) 
it follows that there exists a constant cl = c l (d ,  so, ol) such that 
Ex {re)  > c1 ( x )  = cl 8=i2 (x). Hence we obtain the left-hand side of (43). Let 
x' be the center of the ball 3:. Note that B(B5)c (x) = S (x). By Lemma 19, for any 
y s D  we get 

5"'2 ( x )  
G ( x ,  Y )  6 G(B:)c ( X I  Y )  d C2 IY - x'IaI2 l X -  Yld-a/2'  

where c2 = c2 ( d ,  a ,  so). Therefore 
- 

where c3 = c 3 ( D ,  - so, a). This completes the proof. rm 

In connection to the fact that Ex {t,] is comparable to G (xo , x)  at the 
boundary of D we remark here that it is known that for every Q E ~ D  the limit 

lim G(x0,  Y) 
~ Y + Q  '3 (yIai2 

exists and is a positive number (see [9] for the proof). 

THEOREM 21. There exists a constant CI6 = CI6 (D, - so, a) such that 

( 6"12 (x)  6'1' b)) 
(45) C z  1 A Ix-YI"-~ < G(x ,  y) 

Ix-YI" 

( 6"" (x)  dQI2 0) 
d c16 1 A I X  - ~ 1 " - ~ .  

Ix-ul" 

P r o  of. By Lemmas 17 and 20 there exists a constant c ,  = cl (D, so, a) 
such that 

By Theorem 1 and (46) we get for c2 = c 2 ( g ,  a) 

C z l  W l ~ - y l " - ~  < G(x ,  y )  < C 2  W I X - ~ ~ " - ~ ,  X, y € D ,  

where 
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Since (6 (x)/d Cy)) A (6 (y)/6 (x)) < 1, we get 

w < 1 A [da" (X) 6"'") I X  -yl -"I, 
Therefore the right-hand side of (45) holds with CI6 = c2. 

To estimate W from below, we assume first that 6 (y) < S (x)/3. Then 
Ix - yl 3 6 (x) - S (y) > 26 (x)/3. Hence 

Therefore we get - 

1 A 
6'12 (x) Iy) - (96 Cy)y/' 6'1' (x) 6'/' fy) 

- A 
Ix - yIa (46 (x))"lZ Ix-Yla 

a/2 SUI2 (y) 6a/2 (x) Sa/2 (y) .(:) [mA lx-yda ] < 3 W  

The case 6 ( x )  < 6b)/3 is analogous to the previous one. 
If 6 Cv)/3 < S (x) < 36 (y), then 6 Iy)/6 (x) c )  113 and 6 (x)/6 Cy) 2 113. Hence 

I 1 A (aat2 (x) 6"" (Y)/~X - yla) < 3w 
Therefore we obtain (45) with CI6 = 3c2. rn 

We will now give a short proof of the estimates for the Poisson kernel for 
bounded C1sl domains (see [12]), 

THEOREM 22. There exists a constant C17 = C17 (g, SO, a) such that 

6"12 (x) 
(48) c;: 

Ix - ytd SU12 (y) (1 + 6 (y)y2 
G P(x, Y )  

6"12 (x) 
G C17 

~x - y l d  daI2 (y) (1 + 6 (Y))"/~' 

where x E D and y E int (Dc). 

Proof.  By Lemmas 17 and 20 there exists a constant c, = c,(L), so, a) 
such that 

Let XED, y ~ i n t  (Dc), yf~da(y)(S'), where S E ~ D  is a point such that 
ly -SI = S b). Let s = 6 (x) v 6 Cy') v Ix - y'l. By Theorem 2 and (49) we have 

(50) czl 
saj2 ((X dUI2 (y') 

6"(A) Ix - yld-a 6' (y) (1 + 6 01))' 
G P(x, Y) 

c2 sa/2 (x) saj2 (y') 
G sa (A) I X  - y ld -a  da (Y)(I + 6 (Y))OI' 

where A E (X , y') and c2 = c2 (_D, so, a). 
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First assume that S b) 6 ro/32. Note that rcJ Cy) < 6 Cy') < 6 Cy). Hence 
there exists a constant c3 = c3(R) such that 

(51) c i l  S l y )  < 6b') 6 cgab). 

It suffices to prove that there exists a constant c4 = c4(;l) such that 

Indeed, Ix - yl < Ix - y'l + ly- y'l < Ix - y'I + 2s ( y )  =S 3cs s 6 (3c3/u)  S (A), More- 
over, Ix-yl 2 6(x) v 6 (y) and Ix-y'l < Ix-y1+26Cy) < 3 Ix-yl, and hence 
Ix-yl 3 s/3 > 6(A)/12. Therefore (52)  holds. Applying (51)  and (52)  to (50)  we 
obtain (48)- 

Now assume that 6 ( y )  > ro/32. We have y' = x, = A: There exist con- 
stants c, = c ,  (8, r,) and c6 = c, (0, r,) such that 

for all X E D .  These two inequalities and (50) yield (48). 
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