THE ESTIMATES FOR THE GREEN FUNCTION IN LIPSCHITZ DOMAINS FOR THE SYMMETRIC STABLE PROCESSES ${ }^{-}$

BY
TOMASZ JAKUBOWSKI* (Wroclaw)

Abstract

We give sharp global estimates for the Green function, Martin kernel and Poisson kernel in Lipschitz domains for symmetric α-stable processes. We give some applications of the estimates.

Key words and phrases: Green function, Lipschitz domain, Poisson kernel, boundary Harnack principle.

1. INTRODUCTION

Potential theory for symmetric α-stable processes has been intensively studied in recent years (see e.g. [3], [6], [14]). In particular, sharp estimates for the Green function and the Poisson kernel for bounded smooth domains with $C^{1,1}$ boundary have been obtained ([12], [19]). For example, let $G_{D}(x, y)$ be the Green function of a bounded $C^{1,1}$ domain $D \subset \boldsymbol{R}^{d}(d \geqslant 2)$ for the symmetric α-stable process. Let x_{0} be a fixed point in D. Define

$$
\phi(x)=\min \left(G_{D}\left(x_{0}, x\right), \mathscr{C}_{d, \alpha}\left(r_{0} / 4\right)^{\alpha-d}\right)
$$

There are constants c_{1}, c_{2} depending only on D, α such that ([12], [19])

$$
c_{1}^{-1}[\operatorname{dist}(x, \partial D)]^{\alpha / 2}(x) \leqslant \phi(x) \leqslant c_{1}[\operatorname{dist}(x, \partial D)]^{\alpha / 2}(x), \quad x \in D,
$$

and, for $x, y \in D$, we have

$$
c_{2}^{-1} \min \left(|x-y|^{\alpha-d}, \frac{\phi(x) \phi(y)}{|x-y|^{d}}\right) \leqslant G_{D}(x, y) \leqslant c_{2} \min \left(|x-y|^{\alpha-d}, \frac{\phi(x) \phi(y)}{|x-y|^{d}}\right),
$$

[^0]where $\mathscr{C}_{d, \alpha}$ is given by (5) below and r_{0} is the localization radius of the domain (see Section 2 for definitions). From this result and the Ikeda-Watanabe formula similar estimates for the Poisson kernel of $C^{1,1}$ domains have been obtained in [12]. Later, in [5], similar estimates have been obtained for the classical Green function in Lipschitz domains. Analogous estimates have been obtained in [11] for α-stable censored processes in $C^{1,1}$ domains.

The purpose of the present paper is to give similar estimates for the Green function, the Poisson kernel and the Martin kernel for symmetric α-stable processes in bounded Lipschitz domains. The main tool in obtaining these results is the boundary Harnack principle (BHP) for α-harmonic functions ([3], cf. also [7], [21]). Our main results are the following (for the notation see Section 2).

Theorem 1. There is a constant $C_{1}=C_{1}(\underline{D}, \alpha)$ such that for every $x, y \in D$ we have

$$
\begin{equation*}
C_{1}^{-1} \frac{\phi(x) \phi(y)}{\phi^{2}(A)}|x-y|^{\alpha-d} \leqslant G(x, y) \leqslant C_{1} \frac{\phi(x) \phi(y)}{\phi^{2}(A)}|x-y|^{\alpha-d} \tag{1}
\end{equation*}
$$

where $A \in \mathscr{B}(x, y)$. In fact, (1) holds with $C_{1}=C_{1}(d, \lambda, \alpha)$ provided $\delta(x) \vee \delta(y) \vee|x-y| \leqslant r_{0} / 32$.

Theorem 2. There is a constant $C_{2}=C_{2}(\underline{D}, \alpha)$ such that for every $x \in D$ and $y \in \operatorname{int}\left(D^{c}\right)$ we have
(2) $C_{2}^{-1} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}(A) \delta^{\alpha}(y)(1+\delta(y))^{\alpha}}|x-y|^{\alpha^{-d}} \leqslant P(x, y)$

$$
\leqslant C_{2} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}(A) \delta^{\alpha}(y)(1+\delta(y))^{\alpha}}|x-y|^{\alpha-d}
$$

where $y^{\prime} \in \mathscr{A}_{\delta(y)}(S), A \in \mathscr{B}\left(x, y^{\prime}\right)$ and $S \in \partial D$ is any point such that $|y-S|=\delta(y)$.
Theorem 3. There is a constant $C_{3}=C_{3}(\underline{D}, \alpha)$ such that for every $x \in D$, $Q \in \partial D$ we have

$$
\begin{equation*}
C_{3}^{-1} \frac{\phi(x)}{\phi^{2}(A)}|x-Q|^{\alpha-d} \leqslant K(x, Q) \leqslant C_{3} \frac{\phi(x)}{\phi^{2}(A)}|x-Q|^{\alpha-d} \tag{3}
\end{equation*}
$$

where $A \in \mathscr{A}_{|x-\varrho|}(Q)$. In fact, (3) holds with $C_{3}=C_{3}(d, \lambda, \alpha)$ provided $|x-Q| \leqslant r_{0} / 32$.

The above results show that the boundary behaviour of the Green function, the Poisson kernel and the Martin kernel can be expressed in terms of $\phi(x)$. This role of $\phi(x)$ stems from the boundary Harnack principle. We note here that unlike in $C^{1,1}$ domains, the boundary behaviour of $\phi(x)$ for bounded Lipschitz domains strongly depends on the local shape of the boundary (see Lemma 8) and estimates (1)-(3) are much more difficult than their counterparts for $C^{1,1}$ domains.

Our proofs of Theorems 1 and 3 follow closely the arguments of [5], with appropriate adjustments and simplifications. However, the estimates for the Poisson kernel for α-stable symmetric processes are new with no counterpart in [5]. We remark here that the problem of estimating the Poisson kernel is qualitatively different from that of estimating the Martin kernel (see, e.g., [16]). Our estimate for $P_{D}(x, y)$ is a consequence of the Ikeda-Watanabe formula and the estimate for the Green function (1).

The work is organized as follows. Section 2 sets up the notation and collects basic facts and definitions for further use. In Section 3 we prove estimates for the Green function. Section 4 deals with the Poisson kernel and the Martin kernel. In Section 5 we give applications of the main results: simple proofs of "3G Theorem" and the estimates for the Green function and Poisson kernel in $C^{1,1}$ domains ([12], [19]).

2. PRELIMINARIES

In this section we introduce basic notation and present without proofs some standard facts needed in this work. Most of the material is adopted from [1], [3] and [19].
2.1. Basic notation and terminology. For natural number $d \geqslant 1$, we denote by \boldsymbol{R}^{d} the d-dimensional Euclidean space with norm $|\cdot|$. We put $N=\{0,1,2, \ldots\}$. We write $D^{c}, \bar{D}, \operatorname{int}(D)$ and ∂D for its complement, closure, interior and boundary, respectively. For $D \subset \boldsymbol{R}^{d}, x \in \boldsymbol{R}^{d}, r>0$, we put

$$
\begin{gathered}
B(x, r)=\left\{y \in \mathbb{R}^{d}:|x-y|<r\right\}, \quad \operatorname{diam}(D)=\sup \{|x-y|: x, y \in D\}, \\
\operatorname{dist}(D, x)=\inf \{|x-y|: y \in D\}, \quad \delta_{D}(x)=\operatorname{dist}(x, \partial D) .
\end{gathered}
$$

We write, as usual, $a \wedge b=\min \{a, b\}$ and $a \vee b=\max \{a, b\}$. Let $m(D)$ be the d-dimensional Lebesgue measure of $D \subset \boldsymbol{R}^{d}$. Assume that $\mathscr{B}\left(\boldsymbol{R}^{d}\right)$ denotes the Borel σ-field of \boldsymbol{R}^{d}, and $f \in \mathscr{B}\left(\mathbb{R}^{d}\right)$ means that the function f is Borel measurable. The notation $c=c(\alpha, \beta, \gamma)$ means that the constant c depends only on α, β, γ. Constants are always strictly positive and finite.
2.2. Definitions and properties of sets. For the rest of the paper we assume that $d \geqslant 2$. A set $D \subset \boldsymbol{R}^{d}$ is called a domain if it is open and nonempty.

A bounded domain $D \subset \mathbb{R}^{d}$ is called a Lipschitz domain with Lipschitz character $\left(r_{0}, \lambda\right), r_{0}>0, \lambda>0$, if for every $Q \in \partial D$ there exists a function $\Gamma_{\boldsymbol{Q}}: \boldsymbol{R}^{\boldsymbol{d}-1} \rightarrow \boldsymbol{R}$ satisfying the Lipschitz condition $\left|\Gamma_{Q}(a)-\Gamma_{\underline{Q}}(b)\right| \leqslant \lambda|a-b|$ for $a, b \in \boldsymbol{R}^{d-1}$, and an orthonormal coordinate system $C S_{Q}$ such that if $y=\left(y_{\mathrm{I}}, y_{2}, \ldots, y_{d}\right)$ in $C S_{Q}$ coordinates, then

$$
B\left(Q, r_{0}\right) \cap D=B\left(Q, r_{0}\right) \cap\left\{y: y_{d}>\Gamma_{Q}\left(y_{1}, y_{2}, \ldots, y_{d-1}\right)\right\} .
$$

The constant r_{0} is called the localization radius and the constant λ the Lipschitz constant. Note that we do not assume connectedness of D in this definition. One can choose r_{0} so small that distance between connected components of disconnected Lipschitz domain with localization radius r_{0} is not less than r_{0}.

It is not difficult to check that a ball $B(0, r)$ is a Lipschitz domain with Lipschitz character ($r, \sqrt{3}$).

For the rest of the paper, unless it is stated otherwise, the domain D is Lipschitz with Lipschitz character $\left(r_{0}, \lambda\right)$. We denote by $\theta=\operatorname{diam}(D)$ the diameter of D, and by $\delta(x)=\delta_{D}(x)$ the distance between $x \in R^{d}$ and the boundary of D. It can be proved that the set $\left\{x \in D: \delta(x) \geqslant r_{0} / 2\right\}$ is nonempty (or with less work, one can take r_{0} so small that this set is not empty). We choose one of its elements as a reference point and denote it by x_{0}. We also fix a point $x_{1} \in D$ such that $\left|x_{0}-x_{1}\right|=r_{0} / 4$ (cf. [5]). The dependence of constants on D which is only through $d, \lambda, r_{0}, \theta$ will be marked in this paper by the symbol \underline{D}, e.g. $C(\underline{D})=C\left(d, \lambda, r_{0}, \theta\right)$. Let $\kappa=1 /\left(2 \sqrt{1+\lambda^{2}}\right)$ and $Q \in \partial D$. For $t \in\left(0, r_{0} / 32\right]$ we define

$$
\mathscr{A}_{t}(Q)=\{A \in D: B(A, \kappa t) \subset D \cap B(Q, t)\} .
$$

The set $\mathscr{A}_{t}(Q)$ is nonempty (see [15], Lemma 6.6). For $t>r_{0} / 32$ we put $\mathscr{A}_{t}(Q)=\left\{x_{1}\right\}$.

For any $x, y \in D$ we put $r=r(x, y)=\delta(x) \vee \delta(y) \vee|x-y|$. For $r \leqslant r_{0} / 32$ let

$$
\mathscr{B}(x, y)=\{A \in D: B(A, \kappa r) \subset D \cap B(x, 3 r) \cap B(y, 3 r)\} .
$$

If $r>r_{0} / 32$ we put $\mathscr{B}(x, y)=\left\{x_{1}\right\}$. The set $\mathscr{B}(x, y)$ is nonempty (see [5]). Of course, by symmetry, $\mathscr{B}(x, y)=\mathscr{B}(y, x)$.
2.3. Symmetric α-stable Lévy motion. We denote by (X_{t}, P^{x}) the standard rotation invariant ("symmetric") α-stable, \boldsymbol{R}^{d}-valued, Lévy process (i.e. homogeneous with independent increments), with index of stability $\alpha \in(0,2)$ and the characteristic function of the form

$$
E^{0} \exp \left(i \xi X_{t}\right)=\exp \left(-t|\xi|^{\alpha}\right), \quad \xi \in \boldsymbol{R}^{d}, t \geqslant 0 .
$$

As usual, E^{x} denotes the expectation with respect to the distribution P^{x} of the process starting from $x \in \boldsymbol{R}^{d}$. We always assume that sample paths of X_{t} are right continuous and have left limits almost surely. $\left(X_{t}, P^{x}\right)$ is a Markov process with transition probabilities given by $P_{t}(x, D)=P^{x}\left(X_{t} \in D\right)=\mu_{t}(D-x)$, where μ_{t} is the distribution of X_{t} with respect to P^{0}, and is strong Markov with respect to the so-called "standard filtration" $\left(\mathscr{F}_{t}, \mathscr{F}\right)$ and quasi-left-continuous on $[0, \infty)$ (see [1]). We have $P^{x}\left(X_{t} \in D\right)=\int_{D} p(t, x, y) d y$, where $p(t, x, y)$ is the transition function of X_{t}.

For an open set $D \subset \boldsymbol{R}^{d}$, we define a Markov time $\tau_{D}=\inf \left\{t \geqslant 0: X_{t} \in D^{c}\right\}$, the first exit time from D. If $m(D)<\infty$, then $P^{x}\left\{\tau_{D}<\infty\right\}=1, x \in \boldsymbol{R}^{d}$. In this
case the P^{x} distribution of $X_{\tau_{D}}$ is a probability measure on D^{c}, called α-harmonic measure (in x with respect to D) and denoted by ω_{D}^{x}. If ω_{D}^{x} is absolutely continuous with respect to the Lebesgue measure on D^{c}, then the corresponding density function $P_{D}(x, y), x \in D, y \in R^{d}$, is called the Poisson kernel (we put $P_{D}(x, y)=0$ for $\left.x, y \in D\right)$. For Lipschitz domains the α-harmonic measure ω_{D}^{x} is concentrated on $\operatorname{int}\left(D^{c}\right)$ and is absolutely continuous with respect to the Lebesgue measure on D^{c}. The Poisson kernel $P_{D}(x, y)$ is jointly continuous in $(x, y) \in D \times \operatorname{int}\left(D^{c}\right)$ (see [3], Lemma 6).

For $D=B(0, r), r>0$, and $x \in B(0, r)$, the Poisson kernel $P_{B(0, r)}=P_{r}$ is given explicitly by the formula

$$
\begin{equation*}
P_{r}(x, y)=C_{\alpha}^{d}\left[\frac{r^{2}-|x|^{2}}{|y|^{2}-r^{2}}\right]^{\alpha / 2} \frac{1}{|x-y|^{d}} \quad \text { for }|y|>r \tag{4}
\end{equation*}
$$

with $C_{\alpha}^{d}=\Gamma(d / 2) \pi^{-d / 2-1} \sin (\pi \alpha / 2)$, and equals 0 for $|y| \leqslant r$ (see [2]).
2.4. Riesz potentials and α-harmonicity. For any $x, y \in \boldsymbol{R}^{d}$, we define potential density or the Riesz kernel $u(\cdot, \cdot)$ by

$$
u(x, y)=\int_{0}^{\infty} p(t, x, y) d t
$$

$u(x, y)$ is given explicitly by the formula (see [1])

$$
u(x, y)=\mathscr{C}_{d, \alpha}|x-y|^{\alpha-d}
$$

where

$$
\begin{equation*}
\mathscr{C}_{d, \gamma}=\frac{\Gamma((d-\gamma) / 2)}{2^{\gamma} \pi^{d / 2}|\Gamma(\gamma / 2)|} \tag{5}
\end{equation*}
$$

For any nonnegative $f \in \mathscr{B}\left(\boldsymbol{R}^{d}\right)$ we define the potential operator U_{α} of the process X_{t} by

$$
U_{\alpha} f(x)=E^{x} \int_{0}^{\infty} f\left(X_{t}\right) d t, \quad x \in R^{d}
$$

It follows that

$$
U_{\alpha} f(x)=\int_{\mathbf{R}^{\alpha}} u(x, y) f(y) d y
$$

For any nonnegative $f \in \mathscr{B}\left(\boldsymbol{R}^{d}\right)$ we define

$$
G_{D} f(x)=E^{x} \int_{0}^{\tau_{D}} f\left(X_{t}\right) d t, \quad x \in R^{d}
$$

G_{D} is called the Green operator for D. We define $G_{D}(\cdot, \cdot)$, the Green function for D, by

$$
G_{D}(x, y)=u(x, y)-E^{x}\left\{\tau_{D}<\infty ; u\left(X\left(\tau_{D}\right), y\right)\right\}, \quad x, y \in \mathbb{R}^{d}, x \neq y
$$

We put $G_{D}(x, x)=\infty$ if $x \in D$ and $G_{D}(x, x)=0$ when $x \in D^{c}$. For any nonnegative $f \in \mathscr{B}\left(\mathbb{R}^{d}\right)$, we have

$$
G_{D} f(x)=\int_{\mathbf{R}^{d}} G_{D}(x, y) f(y) d y
$$

It is well known that $G_{D}(x, y)>0$ on $D \times D, G_{D}(\cdot, \cdot)$ is symmetric and $G_{D}(x, y)=0$ if x or y belongs to D^{c}.

The following Ikeda-Watanabe formula expressing the Poisson kernel $P_{D}(x, y)$ in terms of Green function is known (see [17]): .-

$$
\begin{equation*}
P_{D}(x, y)=\mathscr{C}_{d,-\alpha} \int_{D} \frac{G_{D}(x, z)}{|z-y|^{d+\alpha}} d z, \quad x \in D, y \in \operatorname{int}\left(D^{c}\right) \tag{6}
\end{equation*}
$$

where $\mathscr{C}_{d,-\alpha}$ is given by (5).
Definition 4. Let $u \in \mathscr{B}\left(\mathbb{R}^{d}\right)$. We say that u is α-harmonic in an open set $D \subset \boldsymbol{R}^{\boldsymbol{d}}$ if

$$
u(x)=E^{x} u\left(X\left(\tau_{U}\right)\right), \quad x \in U
$$

for every bounded open set U satisfying $\bar{U} \subset D$. We say that u is regular α-harmonic in D if

$$
u(x)=E^{x} u\left(X\left(\tau_{D}\right)\right), \quad x \in D
$$

By the strong Markov property of $\left\{X_{t}\right\}$, regular α-harmonic functions are α-harmonic.

As the consequence of the definitions presented above, for any $y \in D$ and $r>0$ the Green function $G_{D}(\cdot, y)$ is α-harmonic on $D \backslash\{y\}$ and regular α-harmonic on $D \backslash B(y, r)$. Moreover, if D_{1} and D_{2} are domains and $D_{1} \subset D_{2}$, then $G_{D_{1}}(x, y) \leqslant G_{D_{2}}(x, y)$ for $x, y \in D_{1}$ (see [19] for more details).

Now we introduce the Martin kernel $K_{D}(x, Q)$ for bounded Lipschitz domains ([4], Lemma 6; see also [20]). For every $Q \in \partial D$ and $x \in D$ we define

$$
\begin{equation*}
K_{D}(x, Q)=\lim _{D \sqsupset \xi \rightarrow Q} \frac{G_{D}(x, \xi)}{G_{D}\left(x_{0}, \xi\right)} \tag{7}
\end{equation*}
$$

The mapping $(x, Q) \mapsto K_{D}(x, Q)$ is continuous on $D \times \partial D$. For every $Q \in \partial D$ the function $K_{D}(\cdot, Q)$ is α-harmonic in D with $K_{D}\left(x_{0}, Q\right)=1$. If $Q, S \in \partial D$ and $Q \neq S$, then $K_{D}(x, Q) \rightarrow 0$ as $x \rightarrow S$.

We will denote by $G(x, y), P(x, y)$ and $K(x, y)$ the Green function, the Poisson kernel and the Martin kernel for D, respectively.
2.5. Properties of α-harmonic functions. In this section we collect some results of [3] needed in the sequel.

Lemma 5 (Harnack inequality). Let $x, y \in \mathbb{R}^{d}, s>0$ and $k \in N$ satisfy $|x-y| \leqslant 2^{k}$ s. Let u be a function which is nonnegative in \boldsymbol{R}^{d} and α-harmonic in
$B(x, s) \cup B(y, s)$. Then

$$
\begin{equation*}
M_{1}^{-1} 2^{-k(d+\alpha)} u(x) \leqslant u(y) \leqslant M_{1} 2^{k(d+\alpha)} u(x) \tag{8}
\end{equation*}
$$

with $M_{1}=M_{1}(d, \alpha)$.
The next lemma is a version of Lemma 13 in [3].
Lemma 6 (BHP). Let $Z \in \partial D$ and $\rho \in\left(0, r_{0}\right]$. Assume that functions u, v are nonnegative in R^{d} and positive, regular α-harmonic in $D \cap B(Z, \rho)$. If u and v vanish on $D^{c} \cap B(Z, \rho)$, then with a constant $M_{2}=M_{2}(d, \lambda, \alpha)$ the following holds:

$$
\begin{equation*}
M_{2}^{-1} \frac{u(x)}{v(x)} \leqslant \frac{u(y)}{v(y)} \leqslant M_{2} \frac{u(x)}{v(x)} \tag{9}
\end{equation*}
$$

for $x, y \in D \cap B(Z, \rho / 2)$.
The next two results are versions of Lemmas 4 and 5 from [3].
Lemma 7 (Carleson estimate). There exists a constant $M_{3}=M_{3}(d, \alpha, \lambda)$ such that, for all $Q \in \partial D$ and $s \in\left(0, r_{0} / 32\right)$, and functions u nonnegative in R^{d}, regular α-harmonic in $D \cap B(Q, 2 s)$ and satisfying $u(x)=0$ on $D^{c} \cap B(Q, 2 s)$, we have

$$
\begin{equation*}
u(x) \leqslant M_{3} u(A), \quad x \in D \cap B(Q, s), \tag{10}
\end{equation*}
$$

where $A \in \mathscr{A}_{s}(Q)$.
Lemma 8. There exist constants $\gamma=\gamma(d, \alpha, \lambda)<\alpha$ and $M_{4}=M_{4}(d, \alpha, \lambda)$ such that for all $Q \in \partial D$ and $t \in\left(0, r_{0} / 32\right]$, and functions u nonnegative in \boldsymbol{R}^{d}, α-harmonic in $D \cap B(Q, t)$, we have

$$
\begin{equation*}
u\left(A_{1}\right) \geqslant M_{4}\left(\left|A_{1}-Q\right| / t\right)^{y} u\left(A_{2}\right), \quad s \in(0, t) \tag{11}
\end{equation*}
$$

where $A_{1} \in \mathscr{A}_{s}(Q)$, and $A_{2} \in \mathscr{A}_{t}(Q)$.
For the rest of the paper we fix the constant γ in Lemma 8.

3. ESTIMATES FOR THE GREEN FUNCTION

In this section we prove Theorem 1. At first we will need an auxiliary lemma.
Lemma 9. Let $N>0$ and $x, y \in D$ satisfy $|x-y| \leqslant N s$, where $s=\delta(x) \wedge \delta(y)$. Let u be a function nonnegative in \boldsymbol{R}^{d} and α-harmonic in $B(x, s) \cup B(y, s)$. Then

$$
\begin{equation*}
\tilde{M}_{1}^{-1} u(x) \leqslant u(y) \leqslant \tilde{M}_{1} u(x) \tag{12}
\end{equation*}
$$

with $\tilde{M}_{1}=\tilde{M}_{1}(d, \alpha, N)$.
Proof. Let $k \in N$ be such that $2^{k-1}<N+1 \leqslant 2^{k}$. Since u is α-harmonic in $B(x, s) \cup B(y, s)$ and $|x-y|<2^{k} s$, by Lemma 5 we obtain

$$
\left(M_{1} 2^{k(d+\alpha)}\right)^{-1} u(x) \leqslant u(y) \leqslant M_{1} 2^{k(d+\alpha)} u(x) .
$$

Therefore (12) holds with $\tilde{M}_{1}=M_{1}(2(N+1))^{d+\alpha}$..

We will also need the following estimates for the Green function of the ball (see [19] for $d \geqslant 3$ and [12] for $d \geqslant 2$). The estimates are consequences of an explicit formula for the function (see [2]).

Proposition 10. There exists a constant $M_{5}=M_{5}(d, \alpha)$ such that

$$
\begin{aligned}
M_{5}^{-1}\left[\frac{1}{|x-y|^{d-\alpha}} \wedge \frac{\delta_{B_{r}}^{\alpha / 2}(x) \delta_{B_{r}}^{\alpha / 2}(y)}{|x-y|^{d}}\right] & \leqslant G_{B_{r}}(x, y) \\
& \leqslant M_{5}\left[\frac{1}{|x-y|^{d-\alpha}} \wedge \frac{\delta_{B_{r}}^{\alpha / 2}(x) \delta_{B_{r}}^{\alpha / 2}(y)}{|x-y|^{d}}\right]
\end{aligned}
$$

where $B_{r}=B(a, r), a \in \boldsymbol{R}^{d}, x, y \in B_{r}$.
Lemma 11. Let $N>0$ and $x, y \in D$ satisfy $|x-y| \leqslant N[\delta(x) \wedge \delta(y)]$. Then

$$
\begin{equation*}
C_{4}^{-1}|x-y|^{\alpha-d} \leqslant G(x, y) \leqslant C_{4}|x-y|^{\alpha-d} \tag{13}
\end{equation*}
$$

with $C_{4}=C_{4}(d, \alpha, N)$.
Proof. The right-hand inequality is obvious because $G(x, y) \leqslant u(x, y)=$ $\mathscr{C}_{d, \alpha}|x-y|^{\alpha-d}$. Let $s=\delta(x) \wedge \delta(y)$. We now prove the left-hand side of (13).

We first assume that $|x-y| \leqslant s / 2$. We clearly have $\delta_{B}(y) \geqslant s / 2$, where $B=B(x, s)$. By Proposition 10 we obtain

$$
M_{5}^{-1}\left[\frac{1}{|x-y|^{d-\alpha}} \wedge \frac{\delta_{B}^{\alpha / 2}(x) \delta_{B}^{\alpha / 2}(y)}{|x-y|^{d}}\right] \leqslant G_{B}(x, y) \leqslant G(x, y),
$$

where M_{5} is the constant from Proposition 10. Since $\delta_{B}(y) \geqslant|x-y|$ and $\delta_{B}(x) \geqslant|x-y|$, we get

$$
\begin{equation*}
M_{5}^{-1} \frac{1}{|x-y|^{d-\alpha}} \leqslant G(x, y) . \tag{14}
\end{equation*}
$$

Thus (13) holds with $C_{4}=C_{4}(d, \alpha)=M_{5} \vee \mathscr{C}_{d, \alpha}$.
Now assume that $|x-y|>s / 2$. Let y_{0} be a point such that $\left|x-y_{0}\right|<s / 4$. From Lemma 9 and (14) we obtain $G(x, y) \geqslant c_{1} G\left(x, y_{0}\right) \geqslant c_{2}|x-y|^{\alpha-d}$, which gives the lower bound in (13).

Lemma 11 yields that there exists a constant $M_{6}=M_{6}(d, \alpha)$ such that

$$
\begin{equation*}
g(z) \geqslant M_{6} r_{0}^{\alpha-d}, \quad z \in B\left(x_{0}, 2 r_{0} / 5\right) . \tag{15}
\end{equation*}
$$

To simplify the notation we will write

$$
g(x)=G\left(x_{0}, x\right) \quad \text { and } \quad \phi(x)=G\left(x_{0}, x\right) \wedge\left[\mathscr{C}_{d, \alpha}\left(r_{0} / 4\right)^{\alpha-d}\right]
$$

see the Introduction. We recall that $G(x, y) \leqslant u(x, y)=\mathscr{C}_{d, \alpha}|x-y|^{\alpha-d}$. In particular, $G\left(x_{0}, x\right) \leqslant u\left(x_{0}, x\right) \leqslant \mathscr{C}_{d, \alpha}\left(r_{0} / 4\right)^{\alpha-d}$ if $\left|x-x_{0}\right| \geqslant r_{0} / 4$. Thus, for $\left|x-x_{0}\right| \geqslant r_{0} / 4$, $\phi(x)=g(x)$. Note that $\delta\left(x_{1}\right) \geqslant r_{0} / 4$.

First we prove the estimate for Green function assuming that x and y are not close to x_{0}.

Lemma 12. There is a constant $C_{5}=C_{5}(\underline{D}, \alpha)$ such that if $x, y \in D \backslash B\left(x_{0}, r_{0} / 3\right)$ and $A \in \mathscr{B}(x, y)$, then

$$
\begin{equation*}
C_{5}^{-1} \frac{g(x) g(y)}{g^{2}(A)}|x-y|^{\alpha-d} \leqslant G(x, y) \leqslant C_{5} \frac{g(x) g(y)}{g^{2}(A)}|x-y|^{\alpha-d} . \tag{16}
\end{equation*}
$$

In fact, (16) holds with $C_{5}=C_{5}(d, \lambda, \alpha)$ provided $\delta(x) \vee \delta(y) \vee|x-y| \leqslant r_{0} / 32$.
Proof. The proof of this lemma is the same as the proof of an analogous lemma in [5] with appropriate adjustments, so we omit most of the details. To give the reader the idea of proof we will only prove (16) under the assumption

$$
5 \delta(x)<5 \delta(y)<|x-y| \quad \text { and } \quad r \leqslant r_{0} / 32,
$$

where $r=r(x, y)=\delta(x) \vee \delta(y) \vee|x-y|$ (cf. [5]). To simplify the notation we will write ρ_{0} for $r_{0} / 32$. Let Q and S be points such that $|x-Q|=\delta(x)$ and $|y-S|=\delta(y)$. We have $r=|x-y|$ and

$$
|Q-S| \geqslant|x-y|-\delta(x)-\delta(y)>|x-y|-|x-y| / 5-|x-y| / 5=3 r / 5
$$

We choose $E \in \mathscr{A}_{r / 5}(Q)$ and $F \in \mathscr{A}_{r / 5}(S)$. By Lemma 6 (with $\rho=2 r / 5$, $Z=S$) applied to the functions $G(x, \cdot), g(\cdot)$ we obtain

$$
\begin{equation*}
c_{1}^{-1} \frac{G(x, F)}{g(x) g(F)} \leqslant \frac{G(x, y)}{g(x) g(y)} \leqslant c_{1} \frac{G(x, F)}{g(x) g(F)} \tag{17}
\end{equation*}
$$

with $c_{1}=c_{1}(d, \lambda, \alpha)$. Similarly, applying Lemma 6 to functions $G(\cdot, F), g(\cdot)$ (taking $\rho=2 r / 5, Z=Q$), we get

$$
\begin{equation*}
c_{1}^{-1} \frac{G(E, F)}{g(E) g(F)} \leqslant \frac{G(x, F)}{g(x) g(F)} \leqslant c_{1} \frac{G(E, F)}{g(E) g(F)} . \tag{18}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
c_{1}^{-2} \frac{G(E, F)}{g(E) g(F)} \leqslant \frac{G(x, y)}{g(x) g(y)} \leqslant c_{1}^{2} \frac{G(E, F)}{g(E) g(F)} . \tag{19}
\end{equation*}
$$

Since $\delta(E), \delta(F) \geqslant \kappa r / 5, \delta(A) \geqslant \kappa r$ and $|x-y| / 5<|E-F|<9|x-y| / 5<5|x-y|$, we have

$$
\begin{gathered}
|E-F|<9 r / 5 \leqslant(9 / \kappa)[\delta(E) \wedge \delta(F)], \\
|E-A| \leqslant|E-Q|+|Q-A|<r+4 r \leqslant(25 / \kappa)[\delta(E) \wedge \delta(A)], \\
|F-A| \leqslant|F-S|+|S-A|<r+4 r \leqslant(25 / \kappa)[\delta(F) \wedge \delta(A)] .
\end{gathered}
$$

Hence, by Lemmas 9 and 11, we obtain

$$
\begin{gathered}
c_{3}^{-1}|E-F|^{\alpha-d} \leqslant G(E, F) \leqslant c_{3}|E-F|^{\alpha-d}, \\
c_{4}^{-1} g(E) \leqslant g(A) \leqslant c_{4} g(E), \quad c_{4}^{-1} g(F) \leqslant g(A) \leqslant c_{5} g(F) .
\end{gathered}
$$

Therefore we obtain (16) with $C_{5}=C_{5}(d, \lambda, \alpha)$. The proof is complete.

Let us remark here that the above argument is less technical than that of [5]. This is due to the fact that the BHP for our stable processes (Lemma 6 above) has less stringent assumptions regarding the domain where the function needs to be harmonic as compared to the BHP for the classical harmonic functions.

The proof of Theorem 1 is based on Lemmas 5, 6, 11 and 12, and is analogous to the one from [5], so we omit the details.

4. THE POISSON AND THE MARTIN KERNEL

4.1. The Poisson kernel. In this section we will deal with the Poisson kernel - the density function of α-harmonic measure ω_{D}^{x} (see Section 2). Before we prove Theorem 2, we will need some estimates for the function $\phi(x)$.

Let us recall that for $x \in D \backslash B\left(x_{0}, r_{0} / 4\right)$ we have $\phi(x)=g(x)$, where $g(x)=G\left(x_{0}, x\right)$; and $g(x)$ is an α-harmonic function in $D \backslash\left\{x_{0}\right\}$. Therefore, although $\phi(x)$ is not α-harmonic in $D \backslash B\left(x_{0}, r_{0} / 4\right)$, it is equal to an α-harmonic function on this set. This simple observation yields useful estimates of the function $\phi(x)$. We also recall that $\gamma=\gamma(d, \lambda, \alpha)<\alpha$ is the constant from Lemma 8.

By the Harnack inequality there exists a constant $C_{6}=C_{6}(\underline{D}, \alpha, N)$ such that

$$
\begin{equation*}
\phi(x) \geqslant C_{6} \tag{20}
\end{equation*}
$$

for all $x \in D$ satisfying $\delta(x) \geqslant N$.
Lemma 13. Let $x, z_{1}, z_{2}, z \in D$ and $r_{i}=\delta(x) \vee \delta\left(z_{i}\right) \vee\left|x-z_{i}\right|$ for $i=1,2$. Let N be a constant satisfying $r_{1} \leqslant N r_{2}$ or $\left|x-z_{1}\right| \leqslant N\left|x-z_{2}\right|$. Let $A \in \mathscr{B}(x, z)$, $A_{1} \in \mathscr{B}\left(x, z_{1}\right)$, and $A_{2} \in \mathscr{B}\left(x, z_{2}\right)$. Then

$$
\begin{gather*}
\phi\left(A_{1}\right) \leqslant C_{7} \phi\left(A_{2}\right) \tag{21}\\
\phi(x) \leqslant C_{8} \phi(A) \tag{22}\\
\phi(x) \geqslant C_{9} \delta(x)^{\gamma} \tag{23}
\end{gather*}
$$

where $C_{7}=C_{7}(\underline{D}, \alpha, N), C_{8}=C_{8}(\underline{D}, \alpha)$, and $C_{9}=C_{9}(\underline{D}, \alpha)$.
Proof. We may and do assume that $N \geqslant 1$. If $N r_{2}>r_{0} / 32$, then from (20) we get (21).

Therefore we may and do assume that $r_{1} \leqslant N r_{2} \leqslant r_{0} / 32$. Let $z_{1}^{\prime} \in \mathscr{A}_{r_{1}}(Q)$ and $z_{2}^{\prime} \in \mathscr{A}_{N r_{2}}(Q)$, where $Q \in \partial D$ is a point such that $|x-Q| \doteq \delta(x)$. We have

$$
\begin{gathered}
\left|z_{1}^{\prime}-A_{1}\right|<5 r_{1} \leqslant \frac{5}{\kappa}\left[\delta\left(z_{1}^{\prime}\right) \wedge \delta\left(A_{1}\right)\right], \\
\left|z_{2}^{\prime}-A_{2}\right| \leqslant(N+4) r_{2} \leqslant \frac{N+4}{\kappa N}\left[\delta\left(z_{2}^{\prime}\right) \wedge \delta\left(A_{2}\right)\right] .
\end{gathered}
$$

Applying Lemma 9 we have

$$
\phi\left(A_{1}\right) \leqslant c_{2} \phi\left(z_{1}^{\prime}\right), \quad \phi\left(z_{2}^{\prime}\right) \leqslant c_{2} \phi\left(A_{2}\right)
$$

with $c_{2}=c_{2}(d, \lambda, \alpha, N)$. In fact, we apply Lemma 9 to the domain $D_{0}=$ $D \backslash \overline{B\left(x_{0}, r_{0} / 4\right)}$ and the function g. According to the remarks at the beginning of this section the results for the function ϕ follow. In the sequel we will simply pass over similar discussions. By Lemma 7 we have $\phi\left(z_{1}^{\prime}\right) \leqslant c_{3} \phi\left(z_{2}^{\prime}\right)$ with $c_{3}=c_{3}(d, \lambda, \alpha)$. Therefore we obtain (21) with $C_{7}=c_{2}^{2} c_{3}$.

Note that $\left|x-z_{1}\right|<N\left|x-z_{2}\right|$ implies $r_{1} \leqslant 2(N+1) r_{2}$. Therefore the proof of (21) is completed.

To prove (22) note that if $\delta(z) \leqslant r_{0} / 32$, then $z \in \mathscr{B}(z, z)$. Since $\delta(x) \vee \delta(z) \vee|x-z| \geqslant \delta(z)$, by (21) we get (22). The case $\delta(z)>r_{0} / 32$ follows from (20).

Now we will prove (23). If $\delta(x) \geqslant r_{0} / 64$, then (20) yields (23). If $\delta(x)<r_{0} / 64$, then $x \in \mathscr{A}_{2 \delta(x)}(Q)$, where $Q \in \partial D$ is a point satisfying $|x-Q|=\delta(x)$. Let $z_{0} \in \mathscr{A}_{r_{0} / 32}(Q)$. Lemma 8 applied to x and z_{0} and (20) yield (23).

Lemma 14. There exists a constant $C_{11}=C_{11}(\underline{D}, \alpha)$ such that for all $Q \in \partial D$ and $t>0$ we have

$$
\begin{equation*}
\phi\left(A_{1}\right) \geqslant C_{11} \frac{\left|A_{1}-Q\right|^{\gamma}}{t^{\gamma}} \phi\left(A_{2}\right), \quad s \in(0, t) \tag{24}
\end{equation*}
$$

where $A_{1} \in \mathscr{A}_{s}(Q), A_{2} \in \mathscr{A}_{t}(Q)$.
Proof. If $t \leqslant r_{0} / 32$, then (24) holds by Lemma 8. Assume that $t>r_{0} / 32$. Then $A_{2}=x_{1}$.

For $s<r_{0} / 32$ let $z^{\prime} \in \mathscr{A}_{r_{0} / 32}(Q)$. By (20) we get $\phi\left(z^{\prime}\right) \geqslant c_{1} \phi\left(A_{2}\right)$, where $c_{1}=c_{1}(\underline{D}, \alpha)$. From Lemma 8 we obtain

$$
\phi\left(A_{1}\right) \geqslant c_{2}\left(\frac{\left|A_{1}-Q\right|}{r_{0} / 32}\right)^{\gamma} \phi\left(z^{\prime}\right) \geqslant c_{1} c_{2}\left(\frac{\left|A_{1}-Q\right|}{t}\right)^{\gamma} \phi\left(A_{2}\right),
$$

where $c_{2}=c_{2}(d, \lambda, \alpha)$. If $s \geqslant r_{0} / 32$, then (24) obviously holds.
Lemma 15. There exists a constant $C_{12}=C_{12}(\underline{D}, \alpha)$ such that for all $x, z_{1}, z_{2} \in D$ satisfying $\left|x-z_{1}\right| \leqslant\left|x-z_{2}\right|$ we have

$$
\begin{equation*}
\phi\left(A_{1}\right) \geqslant C_{12} \frac{\left|x-z_{1}\right|^{\gamma}}{\left|x-z_{2}\right|^{\gamma}} \phi\left(A_{2}\right), \tag{25}
\end{equation*}
$$

where $A_{1} \in \mathscr{B}\left(x, z_{1}\right), A_{2} \in \mathscr{B}\left(x, z_{2}\right)$.
Proof. Let $r_{1}=\delta(x) \vee \delta\left(z_{1}\right) \vee\left|x-z_{1}\right|$ and $r_{2}=\delta(x) \vee \delta\left(z_{2}\right) \vee\left|x-z_{2}\right|$. Let $Q \in \partial D$ be a point such that $|x-Q|=\delta(x)$.

If $r_{1}>r_{0} / 32$, then by (20) we have $\phi\left(A_{1}\right) \geqslant c_{1} \phi\left(A_{2}\right)$, where $c_{1}=c_{1}(\underline{D}, \alpha)$. Since $\left|x-z_{1}\right| \leqslant\left|x-z_{2}\right|$, (25) holds.

Assume that $r_{1} \leqslant r_{0} / 32$ and $r_{2}>r_{0} / 32$. Then $A_{2}=x_{1}$. If $\left|x-z_{2}\right|>r_{0} / 64$, then by (23) we have $\phi\left(A_{1}\right) \geqslant c_{2}\left(r_{1} \kappa\right)^{\gamma} \geqslant c_{2} \kappa^{\gamma}\left|x-z_{1}\right|^{\gamma}$, where $c_{2}=c_{2}(\underline{D}, \alpha)$. Hence (25) holds because the function ϕ is bounded from above. If $\left|x-z_{2}\right| \leqslant r_{0} / 64$, then $\delta(x)>r_{0} / 64$ (because $\left|x-z_{2}\right|+\delta(x) \geqslant r_{2}>r_{0} / 32$). Hence, by (20) and (22), we have $\phi\left(A_{1}\right) \geqslant c_{3} \phi(x) \geqslant c_{4}$, where $c_{3}=c_{3}(\underline{D}, \alpha)$ and $c_{4}=c_{4}(\underline{D}, \alpha)$. Using the condition $\left|x-z_{1}\right| \leqslant\left|x-z_{2}\right|$, we obtain (25).

Now we assume that $r_{1}, r_{2} \leqslant r_{0} / 32$. Let $z_{1}^{\prime} \in \mathscr{A}_{r_{1}}(Q)$ and $z_{2}^{\prime} \in \mathscr{A}_{r_{2}}(Q)$. Since $\left|A_{i}-z_{i}^{\prime}\right|<(5 / \kappa)\left[\delta\left(A_{i}\right) \wedge \delta\left(z_{i}^{\prime}\right)\right]$ for $i=1,2$, we obtain by Lemma 9

$$
c_{5} \phi\left(A_{1}\right) \geqslant \phi\left(z_{1}^{\prime}\right), \quad c_{5} \phi\left(z_{2}^{\prime}\right) \geqslant \phi\left(A_{2}\right),
$$

where $c_{5}=c_{5}(\underline{D}, \alpha)$. If $r_{1} \geqslant r_{2}$, then by Lemma 7 we have $c_{6} \phi\left(z_{1}^{\prime}\right) \geqslant \phi\left(z_{2}^{\prime}\right)$, where $c_{6}=c_{6}(d, \lambda, \alpha)$. Therefore (25) holds with $C_{12}=c_{5}^{-2} c_{6}^{-1}$. Let $r_{1}<r_{2}$. By Lemma 8 we have

$$
\phi\left(z_{1}^{\prime}\right) \geqslant c_{7}\left(\frac{\left|z_{1}^{\prime}-Q\right|}{r_{2}}\right)^{\gamma} \phi\left(z_{2}^{\prime}\right) \geqslant c_{7} \kappa^{\gamma}\left(\frac{r_{1}}{r_{2}}\right)^{\gamma} \phi\left(z_{2}^{\prime}\right)
$$

where $c_{7}=c_{7}(d, \lambda, \alpha)$. Note that $\delta\left(z_{2}\right) \leqslant 2\left(\delta(x) \vee\left|x-z_{2}\right|\right)$, and hence $r_{2} \leqslant 2\left(r_{1} \vee\left|x-z_{2}\right|\right)$. If $r_{1} \geqslant\left|x-z_{2}\right|$, then $r_{1} / r_{2} \geqslant 1 / 2 \geqslant\left|x-z_{1}\right| /\left(2\left|x-z_{2}\right|\right)$. If $r_{1}<\left|x-z_{2}\right|$, then $r_{2} \leqslant 2\left|x-z_{2}\right|$, and since $r_{1} \geqslant\left|x-z_{1}\right|$, we again get $r_{1} / r_{2} \geqslant\left|x-z_{1}\right| /\left(2\left|x-z_{2}\right|\right)$. Using this we obtain (25) with $C_{12}=c_{5}^{-2} c_{7}(\kappa / 2)^{\gamma}$.

The following lemma is crucial in our considerations. Its proof depends on the fact that the constant γ in Lemma 8 is smaller than α.

Lemma 16. Let $y \in \operatorname{int}\left(D^{c}\right)$ and $S \in \partial D$ be a point such that $\delta(y)=|y-S|$. Let $t \geqslant \delta(y)$. Then for $G=B(S, t) \cap D$ and $y^{\prime} \in \mathscr{A}_{\delta(y)}(S)$ we have

$$
\begin{equation*}
C_{13}^{-1} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{d}} \leqslant \int_{G} \frac{\phi(z)}{|y-z|^{d+\alpha}} d z \leqslant C_{13} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{d}} \tag{26}
\end{equation*}
$$

with $C_{13}=C_{13}(\underline{D}, \alpha)$.
Proof. For all $z \in D$ let $z^{\prime} \in \mathscr{A}_{|y-z|}(S)$. From Lemma 7 it follows easily that

$$
\begin{equation*}
\phi\left(z^{\prime}\right) \geqslant c_{1} \phi(z) \tag{27}
\end{equation*}
$$

where $c_{1}=c_{1}(\underline{D}, \alpha)$.
Assume that $\delta(y) \leqslant r_{0} / 32$. By Lemma 14 there exists $c_{2}=c_{2}(\underline{D}, \alpha)$ such that for $z \in D$ we have

$$
\begin{equation*}
\phi\left(y^{\prime}\right) \geqslant c_{2}\left(\frac{\left|y^{\prime}-S\right|}{|y-z|}\right)^{\gamma} \phi\left(z^{\prime}\right) \geqslant c_{1} c_{2}\left(\frac{\kappa \delta(y)}{|y-z|}\right)^{\gamma} \phi(z) . \tag{28}
\end{equation*}
$$

Hence we obtain

$$
\begin{aligned}
& \int_{G} \frac{\phi(z)}{|y-z|^{d+\alpha}} d z \leqslant \int_{G} c_{1}^{-1} c_{2}^{-1} \frac{\phi\left(y^{\prime}\right)|y-z|^{\gamma}}{|y-z|^{d+\alpha}(\kappa \delta(y))^{\gamma}} d z \\
& \leqslant c_{1}^{-1} c_{2}^{-1} \frac{\left(1+r_{0} / 32\right)^{d}}{(1+\delta(y))^{d}} \int_{B(y, \delta(y))^{c}} \frac{\phi\left(y^{\prime}\right)}{|y-z|^{d+\alpha-\gamma}(\kappa \delta(y))^{\gamma}} d z \leqslant c_{3} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{d}},
\end{aligned}
$$

where $c_{3}=c_{3}(\underline{D}, \alpha)$.
Let us put $B=B\left(y^{\prime}, \kappa \delta(y) / 2\right)$. Note that $B \subset G$ and for every $z \in B$ we have $\left|y^{\prime}-z\right|<\delta\left(y^{\prime}\right) \wedge \delta(z)$. Hence, by Lemma 9, we have

$$
\phi(z) \geqslant c_{4} \phi\left(y^{\prime}\right),
$$

where $c_{4}=c_{4}(d, \alpha)$. Using this we obtain

$$
\begin{aligned}
\int_{G} \frac{\phi(z)}{|y-z|^{d+\alpha}} d z & \geqslant \int_{B} \frac{\phi(z)}{|y-z|^{d+\alpha}} d z \geqslant \int_{B} \frac{c_{4} \phi\left(y^{\prime}\right)}{|y-z|^{d+\alpha}} d z \\
& \geqslant \frac{c_{4} \phi\left(y^{\prime}\right)}{(2 \delta(y))^{d+\alpha}} m(B) \geqslant c_{5} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{d}},
\end{aligned}
$$

where $c_{5}=c_{5}(\underline{D}, \alpha)$. Taking $C_{13}=c_{3} \vee c_{5}^{-1}$ we obtain (26).
Now assume that $\delta(y)>r_{0} / 32$. From (22) and the fact $\int_{D} G_{D}(x, z) d z=$ $E^{x}\left\{\tau_{D}\right\}$ we have

$$
c_{8}^{-1} \leqslant c_{7} \int_{G} \delta(z)^{\gamma} d z \leqslant \int_{G} \phi(z) d z \leqslant c_{6} E^{x_{0}}\left\{\tau_{D}\right\} \leqslant c_{8}
$$

where c_{6}, c_{7}, c_{8} depend only on \underline{D} and α. From the last inequality we easily obtain (26).

Lemma 17. There exists a constant $C_{14}=C_{14}(\underline{D}, \alpha)$ such that

$$
\begin{equation*}
C_{14}^{-1} \phi(x) \leqslant E^{x}\left\{\tau_{D}\right\} \leqslant C_{14} \phi(x), \quad x \in D . \tag{29}
\end{equation*}
$$

Proof. Let $B=B\left(z_{0}, 1\right)$ be such that $\delta\left(z_{0}\right)=\theta+1$. Consider the function $f(x)=P^{x}\left\{X_{\tau_{D}} \in B\right\}$. Clearly, this function is α-harmonic in D. From the Ikeda -Watanabe formula (6) and the fact that $E^{x}\left\{\tau_{D}\right\}=\int_{D} G_{D}(x, y) d y$ there exists a constant $c_{1}=c_{1}(d, \theta, \alpha)$ such that

$$
c_{1}^{-1} E^{x}\left\{\tau_{D}\right\} \leqslant f(x) \leqslant c_{1} E^{x}\left\{\tau_{D}\right\} .
$$

The rest is the consequence of Lemma 6 applied to functions $f(\cdot)$ and $G\left(x_{0}, \cdot\right)$. a
Proof of Theorem 2. In this proof we will use the convention that all constants depend only on \underline{D} and α (unless it is stated otherwise). For every $z_{1}, z_{2} \in D$ we denote by $A_{z_{1}, z_{2}}$ any point belonging to the set $\mathscr{B}\left(z_{1}, z_{2}\right)$. For the rest of the proof we put

$$
r_{1}=r_{1}(x, z)=\delta(x) \vee \delta(z) \vee|x-z|, \quad r_{2}=r_{2}\left(x, y^{\prime}\right)=\delta(x) \vee \delta\left(y^{\prime}\right) \vee\left|x-y^{\prime}\right| .
$$

To shorten the notation we will write $\rho_{0}=r_{0} / 32$. By Theorem 1 and (6) we have

$$
\begin{align*}
\mathscr{C}_{d,-\alpha} C_{1}^{-1} \int_{D} \frac{\phi(x) \phi(z)}{\phi^{2}\left(A_{x, z}\right)|x-z|^{d-\alpha}|z-y|^{d+\alpha}} d z \leqslant P(x, y) \tag{30}\\
\leqslant \mathscr{C}_{d,-\alpha} C_{1} \int_{D} \frac{\phi(x) \phi(z)}{\phi^{2}\left(A_{x, z}\right)|x-z|^{d-\alpha}|z-y|^{d+\alpha}} d z
\end{align*}
$$

where $C_{1}=C_{1}(\underline{D}, \alpha)$. Our task will be to estimate the above integral. We will consider 3 cases:
(a) $|x-y| \geqslant 5 \delta(y)$ and $\delta(y) \leqslant r_{0} / 32$;
(b) $|x-y|<5 \delta(y) \leqslant 5 r_{0} / 32$;
(c) $\delta(y)>r_{0} / 32$.

Case (a). $|x-y| \geqslant 5 \delta(y)$ and $\delta(y) \leqslant r_{0} / 32$.
Note that $\left|x-y^{\prime}\right| \leqslant|x-y|+\delta(y)+\left|y^{\prime}-S\right|<2|x-y|$ and $\left|x-y^{\prime}\right| \geqslant|x-y|-$ $\delta(y)-|y-S|>3|x-y| / 5$. Hence we get

$$
3|x-y| / 5<\left|x-y^{\prime}\right|<2|x-y| .
$$

Let us consider the following sets:

$$
\begin{gathered}
B_{1}=B(y,|x-y| / 2) \cap D, \quad B_{2}=B(x,|x-y| / 2) \cap D, \\
B_{3}=D \backslash\left(B_{1} \cup B_{2}\right) .
\end{gathered}
$$

Let us put

$$
I_{i}=\int_{B_{i}} \frac{\phi(x) \phi(z)}{\phi^{2}\left(A_{x, z}\right)|x-z|^{d-\alpha}|z-y|^{d+\alpha}} d z \quad \text { for } i=1,2,3 .
$$

We first estimate I_{1}. For $z_{1}, z_{2} \in B_{1}$ we have $\left|x-z_{1}\right| \geqslant|x-y| / 2 \geqslant\left|x-z_{2}\right| / 3$. By the reason of symmetry, $\left|x-z_{2}\right| / 3 \leqslant\left|x-z_{1}\right| \leqslant 3\left|x-z_{2}\right|$. Since $y^{\prime} \in B_{1}$, by (21) (taking $z_{1}=z$ and $z_{2}=y^{\prime}$) there exists a constant c_{1} such that

$$
\begin{equation*}
c_{1}^{-1} \phi\left(A_{x, y^{\prime}}\right) \leqslant \phi\left(A_{x, z}\right) \leqslant c_{1} \phi\left(A_{x, y^{\prime}}\right), \quad z \in B_{1} . \tag{31}
\end{equation*}
$$

By Lemma 16 there exists a constant c_{2} satisfying

$$
\begin{equation*}
c_{2}^{-1} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{\alpha}} \leqslant \int_{B_{1}} \frac{\phi(z) d z}{|y-z|^{d+\alpha}} \leqslant c_{2} \frac{\phi\left(y^{\prime}\right)}{\delta(y)^{\alpha}(1+\delta(y))^{\alpha}} . \tag{32}
\end{equation*}
$$

Moreover, for $z \in B_{1}$ we have $|x-y| / 2 \leqslant|x-y| \leqslant 2|x-y|$. Using this, (31) and (32) we obtain

$$
\begin{align*}
m_{1}^{-1} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}} & \leqslant I_{1} \tag{33}\\
& \leqslant m_{1} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}}
\end{align*}
$$

where $m_{1}=c_{1}^{2} c_{2} 2^{d-\alpha}$.

We now estimate I_{2} from above. Let $z \in B_{2}$. We have $|y-z| \geqslant|x-y| / 2$. Using this and (21), we have

$$
\begin{equation*}
I_{2} \leqslant c_{3} \int_{B_{2}} \frac{\phi(x) 2^{d+\alpha}}{\phi\left(A_{x, z}\right)|x-z|^{d-\alpha}|x-y|^{d+\alpha}} d z \tag{34}
\end{equation*}
$$

Suppose $z \in B_{2}$. Since $|x-z|<\left|x-y^{\prime}\right|<2|x-y|$, by Lemma 15 we have

$$
\phi\left(A_{x, z}\right) \geqslant c_{4}\left[\frac{|x-z|}{|x-y|}\right]^{\gamma} \phi\left(A_{x, y}\right) .
$$

Consequently, we get

$$
\begin{align*}
\int_{B_{2}} \frac{d z}{\phi\left(A_{x, z}\right)|x-z|^{d-\alpha}} & \leqslant c_{4}^{-1} \int_{B_{2}} \frac{|x-y|^{\gamma}}{\phi\left(A_{x, y^{\prime}}\right)|x-z|^{\gamma}|x-z|^{d-\alpha}} d z \tag{35}\\
& \leqslant c_{4}^{-1} c_{5} \frac{|x-y|^{\gamma}}{\phi\left(A_{x, y^{\prime}}\right)}|x-y|^{\alpha-\gamma}=c_{4}^{-1} c_{5} \frac{|x-y|^{\alpha}}{\phi\left(A_{x, y^{\prime}}\right)} .
\end{align*}
$$

Note that by assumption (a) and Lemma 15 we obtain

$$
\phi\left(A_{y^{\prime}, y^{\prime \prime}}\right) \geqslant c_{6}\left[\frac{\delta(y)}{\left|x-y^{\prime}\right|}\right]^{\gamma} \phi\left(A_{x, y^{\prime}}\right) \geqslant c_{6} 2^{-\alpha}\left[\frac{\delta(y)}{|x-y|}\right]^{\alpha} \phi\left(A_{x, y^{\prime}}\right),
$$

where $y^{\prime \prime}$ is a point such that $\delta\left(y^{\prime \prime}\right)=\left|y^{\prime}-y^{\prime \prime}\right|=\delta\left(y^{\prime}\right) / 2$. Since $\phi\left(A_{y^{\prime}, y^{\prime \prime}}\right) \leqslant$ $c_{7} \phi\left(y^{\prime}\right)$ (by Lemma 9), we have

$$
\phi\left(y^{\prime}\right) \geqslant c_{6} c_{7}^{-1} 2^{-\alpha}\left[\frac{\delta(y)}{|x-y|}\right]^{\alpha} \phi\left(A_{x, y^{\prime}}\right)
$$

Hence

$$
1 \leqslant \frac{c_{7} 2^{\alpha} \phi\left(y^{\prime}\right)|x-y|^{\alpha}}{c_{6} \phi\left(A_{x, y^{\prime}}\right) \delta(y)^{\alpha}} .
$$

Applying this and (35) to (34) we obtain

$$
\begin{equation*}
I_{2} \leqslant m_{2} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}}, \tag{36}
\end{equation*}
$$

where $m_{2}=c_{3} c_{4}^{-1} c_{5} c_{6}^{-1} c_{7} 2^{d+2 \alpha}\left(1+\rho_{0}\right)^{\alpha}$.
Now we estimate I_{3} from above. Note that for $z \in B_{3}$ it follows that $|x-z| \geqslant|x-y| / 2$ and $|x-z| \geqslant\left|x-y^{\prime}\right| / 3$. By (21) we have $c_{8} \phi\left(A_{x, z}\right) \geqslant \phi\left(A_{x, y}\right)$. Using this and Lemma 16 we get

$$
I_{3} \leqslant c_{8}^{2} 2^{d-\alpha} \int_{B_{3}} \frac{\phi(x) \phi(z)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha}|z-y|^{d+\alpha}} d z
$$

$$
\begin{aligned}
& \leqslant c_{8}^{2} 2^{d-\alpha} \frac{\phi(x)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha}} \int_{D} \frac{\phi(z) d z}{|z-y|^{d+\alpha}} \\
& \leqslant c_{9} c_{8}^{2} 2^{d-\alpha} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{d}} .
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
I_{3} \leqslant m_{3} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \mid \delta(y)^{\alpha}(1+\delta(y))^{\alpha}}, \tag{37}
\end{equation*}
$$

where $m_{3}=c_{8}^{2} c_{9} 2^{d-\alpha}$.
Using (33), (36) and (37) we obtain

$$
\begin{aligned}
& m_{1}^{-1} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}} \leqslant I_{1}+I_{2}+I_{3} \\
& \leqslant\left(m_{1}+m_{2}+m_{3}\right) \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}}
\end{aligned}
$$

Applying this to (30) we obtain (2).
Case b. $|x-y| \leqslant 5 \delta(y) \leqslant 5 r_{0} / 32$.
Note that in this case $\delta(x)<|x-y| \leqslant 5 \delta(y)$. Since $\delta(y) \leqslant \rho_{0}$, we have $\delta\left(y^{\prime}\right) \geqslant(\kappa / 5) \delta(x)$.

By (22) there exists a constant c_{10} such that $\phi\left(y^{\prime}\right) \leqslant c_{10} \phi\left(A_{x, y^{\prime}}\right)$. Note that $\left|x-y^{\prime}\right| \leqslant|x-y|+\left|y-y^{\prime}\right| \leqslant 7 \delta(y) \leqslant(7 / \kappa) \delta\left(y^{\prime}\right)$. Hence $\delta\left(y^{\prime}\right) \geqslant(\kappa / 7) r_{2}$. If $r_{2}>\rho_{0}$, we have $\delta\left(y^{\prime}\right)>(\kappa / 7) \rho_{0}$, and by (20) we obtain

$$
\begin{equation*}
c_{11}^{-1} \phi\left(y^{\prime}\right) \leqslant \phi\left(A_{x, y^{\prime}}\right) \leqslant c_{11} \phi\left(y^{\prime}\right) \tag{38}
\end{equation*}
$$

If $r_{2} \leqslant \rho_{0}$, we have $\left|y^{\prime}-A_{x, y^{\prime}}\right| \leqslant 3 r_{2} \leqslant(21 / \kappa)\left[\delta\left(A_{x, y^{\prime}}\right) \wedge \delta\left(y^{\prime}\right)\right]$ and (38) now follows from Lemma 9.

Let us put

$$
B_{4}=B(y, 3|x-y|) \cap D, \quad B_{5}=D \backslash B_{4}, \quad B_{6}=B(S, \delta(y)) \cap D .
$$

We will consider the integrals

$$
I_{i}=\int_{B_{i}} \frac{\phi(x) \phi(z)}{\phi^{2}\left(A_{x, z}\right)|x-z|^{d-\alpha}|z-y|^{d+\alpha}} d z \quad \text { for } i=4,5,6 .
$$

We first estimate I_{4} from above. Suppose $z \in B_{4}$. Let $z_{1} \in D$ be such that $4|x-y|<\left|x-z_{1}\right|<5|x-y|$. We have $|x-z|<\left|x-z_{1}\right|$ and $\left|x-y^{\prime}\right|<\left|x-z_{1}\right|$. Applying Lemma 15 to the points x, z, z_{1} and (21) to the points x, y^{\prime}, z_{1} we obtain

$$
\begin{equation*}
\phi\left(A_{x, z}\right) \geqslant c_{12}\left(\frac{|x-z|}{\left|x-z_{1}\right|}\right)^{\gamma} \phi\left(A_{x, z_{1}}\right) \geqslant c_{13}\left(\frac{|x-z|}{|x-y|}\right)^{\gamma} \phi\left(A_{x, y^{\prime}}\right) . \tag{39}
\end{equation*}
$$

By (22) we have

$$
\begin{equation*}
c_{14} \phi\left(A_{x, z}\right) \geqslant \phi(z) . \tag{40}
\end{equation*}
$$

By assumption (b) we have $|y-z| \geqslant \delta(y) \geqslant|x-y| / 5$. Therefore, using (38)-(40) we get

$$
\begin{aligned}
I_{4} & \leqslant c_{14} \int_{B_{4}} \frac{\phi(x)}{\phi\left(A_{x, z}\right)|x-z|^{d-\alpha}|y-z|^{d+\alpha}} d z \\
& \leqslant c_{13}^{-1} c_{14} \int_{B_{4}} \frac{\phi(x)|x-y|^{y}}{\phi\left(A_{x, y^{\prime}}\right)|x-z|^{d-\alpha+\gamma}|y-z|^{d+\alpha}} d z \\
& \leqslant c_{11} c_{13}^{-1} c_{14} c_{15} \frac{\phi(x) \phi\left(y^{\prime}\right)|x-y|^{\alpha}}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d+\alpha}} \\
& \leqslant m_{4} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}},
\end{aligned}
$$

where $m_{4}=c_{11} c_{13}^{-1} c_{14} c_{15}\left(1+\rho_{0}\right)^{\alpha}$.
We now estimate I_{5} from above. Suppose that $z \in B_{5}$. We have $|x-z|>|x-y| \quad$ and $2|x-z|>\left|x-y^{\prime}\right|$. Hence, by (21) we obtain $\phi\left(A_{x, y^{\prime}}\right) \leqslant c_{16} \phi\left(A_{x, z}\right)$. Since $\alpha<d$ and $B_{5} \subset D$, by Lemma 16 we get

$$
\begin{aligned}
I_{5} & \leqslant c_{16}^{2} \frac{\phi(x)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha}} \int_{B_{5}} \frac{\phi(z) d z}{|y-z|^{d+\alpha}} \\
& \leqslant m_{5} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}}
\end{aligned}
$$

We now estimate I_{6} from below. Suppose that $z \in B(S, \delta(y)) \cap D$. Note that $|x-z|<3|x-y|$. Moreover, $r_{1} \leqslant 4 \kappa^{-1} r_{2}$. Indeed, $\delta(z)<\kappa^{-1} \delta\left(y^{\prime}\right)$ and

$$
|x-z| \leqslant\left|x-y^{\prime}\right|+\left|y^{\prime}-z\right|<\left|x-y^{\prime}\right|+2 \kappa^{-1} \delta\left(y^{\prime}\right) \leqslant 4 \kappa^{-1}\left[\left|x-y^{\prime}\right| \vee \delta\left(y^{\prime}\right)\right] .
$$

Hence

$$
\delta(x) \vee \delta(z) \vee|x-z| \leqslant 4 \kappa^{-1}\left(\delta(x) \vee \delta\left(y^{\prime}\right) \vee\left|x-y^{\prime}\right|\right) .
$$

Therefore, by Lemma 13 we have $c_{17} \phi\left(A_{x, z}\right) \leqslant \phi\left(A_{x, y^{\prime}}\right)$. Using this, by Lemma 16 , we obtain

$$
\begin{aligned}
I_{6} & \geqslant c_{17}^{2} 3^{\alpha-d} \frac{\phi(x)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha}} \int_{B_{6}} \frac{\phi(z) d z}{|y-z|^{d+\alpha}} \\
& \geqslant c_{17}^{2} c_{18} 3^{\alpha-d} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{d}} \\
& \geqslant m_{6} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}} .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
m_{6} \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}} & \leqslant I_{6} \leqslant I_{4}+I_{5} \\
& \leqslant\left(m_{4}+m_{5}\right) \frac{\phi(x) \phi\left(y^{\prime}\right)}{\phi^{2}\left(A_{x, y^{\prime}}\right)|x-y|^{d-\alpha} \delta(y)^{\alpha}(1+\delta(y))^{\alpha}} .
\end{aligned}
$$

Applying this to (30) we obtain (2).
Case (c). $\delta(y)>r_{0} / 32$.
From the Ikeda-Watanabe formula we infer that

$$
c_{19}^{-1} \frac{E^{x}\left\{\tau_{D}\right\}}{\delta(y)^{d+\alpha}} \leqslant P(x, y) \leqslant c_{19} \frac{E^{x}\left\{\tau_{D}\right\}}{\delta(y)^{d+\alpha}},
$$

and (2) follows from Lemma 17.
The estimates of the Martin kernel follow easily from the estimates for the Green function (Theorem 1). Since the proof is analogous to the one from [5], we will omit it.

5. APPLICATIONS

In this section we present some applications of the results obtained in this work, which simplifies proofs of some well-known results. The first one is the following "3G Theorem" (cf. [6] and [15]).

Theorem 18 ("3G Theorem"). There exists a constant $C_{14}=C_{14}(\underline{D}, \alpha)$ such that for every $x, y, z \in D$ we have

$$
\begin{equation*}
\frac{G(x, y) G(y, z)}{G(x, z)} \leqslant C_{14} \frac{|x-y|^{\alpha-d}|y-z|^{\alpha-d}}{|x-z|^{\alpha-d}} \tag{41}
\end{equation*}
$$

Proof. The proof follows [5]. Let $x, y, z \in D$ and $R \in \mathscr{B}(x, y), S \in \mathscr{B}(y, z)$ and $T \in \mathscr{B}(x, z)$. By Theorem 1 we have

$$
\frac{G(x, y) G(y, z)}{G(x, z)} \leqslant C_{1}^{3} \frac{|x-y|^{\alpha-d}|y-z|^{\alpha-d}}{|x-z|^{\alpha-d}} W^{2}
$$

where

$$
W=\frac{\phi(y) \phi(T)}{\phi(R) \phi(S)} .
$$

We only need to show that W is bounded. By (22) there exists a constant $c_{1}=c_{1}(\underline{D}, \alpha)$ such that $\phi(y) \leqslant c_{1} \phi(R)$ and $\phi(y) \leqslant c_{1} \phi(S)$. Note that $|x-z| \leqslant|x-y|+|y-z| \leqslant 2(|x-y| \vee|y-z|)$. Hence by (21) there exists a constant $c_{2}=c_{2}(\underline{D}, \alpha)$ such that either $\phi(T) \leqslant c_{2} \phi(R)$ or $\phi(T) \leqslant c_{2} \phi(S)$. Therefore $W \leqslant c_{1} c_{2}$. Taking $C_{14}=C_{1}^{3} c_{1}^{2} c_{2}^{2}$ we obtain (41).

We conclude this work with short proofs of the well-known estimates for the Green function and the Poisson kernel for bounded $C^{1,1}$ domains (Theorems 21 and 22) first proved in [12], [13] and [19].

A function $F: \mathbb{R}^{\boldsymbol{d - 1}} \rightarrow \mathbb{R}$ is called $C^{1,1}$ if it has first derivative F^{\prime} and there exists a constant η such that for all $x, y \in \boldsymbol{R}^{d-1}$ we have $\left|F^{\prime}(x)-F^{\prime}(y)\right| \leqslant \eta|x-y|$. A domain $D \subset \mathbb{R}^{d}$ is called a $C^{1,1}$ domain with constants $\eta, r_{0}>0$ if for every $Q \in \partial D$ there exists a $C^{1,1}$ function $F_{Q}: \boldsymbol{R}^{d-1} \rightarrow \boldsymbol{R}$ (with $C^{\mathbf{1 , 1}}$ constant η), an orthonormal coordinate system $C S_{Q}$ and a constant $r_{0}=r_{0}(D)$ such that if $y=\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ in $C S_{Q}$ coordinates, then

$$
B\left(Q, r_{0}\right) \cap D=B\left(Q, r_{0}\right) \cap\left\{y: y_{d}>F_{Q}\left(y_{1}, y_{2}, \ldots, y_{d-1}\right)\right\} .
$$

Clearly, every (bounded) $C^{1,1}$ domain is Lipschitz. $C^{1,1}$ domains have the following property ([22]):

There exists a constant s_{0} such that for every $x \in D$ satisfying $\delta(x)<s_{0}$ there exist two balls B_{x}^{1} and B_{x}^{2} of radius s_{0} such that $B_{x}^{1} \subset D, B_{x}^{2} \subset \operatorname{int}\left(D^{c}\right)$ and $\partial B_{x}^{1} \cap \partial B_{x}^{2}=\left\{x^{*}\right\}$, where $x^{*} \in \partial D$ is a point satisfying $\delta(x)=\left|x-x^{*}\right|$. The constant s_{0} depends on d, η, r_{0}, where r_{0} and η are constants defining the $C^{1,1}$ domain.

In what follows we assume that our (bounded) Lipschitz domain D with Lipschitz character $\left(r_{0}, \lambda\right)$ is also a $C^{1,1}$ domain with constants r_{0} and η. When writing $c=c(\underline{D})$, we mean $c=c\left(d, r_{0}, \lambda, \theta\right)$, as usual. We first need the following auxiliary results based on the explicit formula for the Green function of the complement of the ball [2].

Lemma 19. For any $s>0$ there exists a constant $M_{8}=M_{8}(d, \alpha, s)$ such that for every ball $B=B(a, s) \subset R^{d}$ we have

$$
\begin{equation*}
G_{B^{c}}(x, y) \leqslant M_{8}|y-a|^{\alpha / 2} \frac{\delta_{B}(x)^{\alpha / 2}}{|x-y|^{d-\alpha / 2}}, \quad x, y \in B^{c} . \tag{42}
\end{equation*}
$$

The proof of this lemma can be found in [12] (Lemma 2.5).
Lemma 20. There exists a constant $C_{15}=C_{15}\left(\underline{D}, s_{0}, \alpha\right)$ such that

$$
\begin{equation*}
C_{15}^{-1} \delta^{a / 2}(x) \leqslant E^{x}\left\{\tau_{D}\right\} \leqslant C_{15} \delta^{\alpha / 2}(x) \tag{43}
\end{equation*}
$$

for all $x \in D$.
Proof. It is well known (see, e.g., (2.10) in [10], or [8]) that there exists a constant $M_{9}=M_{9}(d, \alpha)$ such that for any $s>0$ we have

$$
\begin{equation*}
E^{x}\left\{\tau_{B(0, s)}\right\}=M_{9}\left(s^{2}-|x|^{2}\right)^{\alpha / 2}, \quad x \in B(0, s) . \tag{44}
\end{equation*}
$$

First assume that $\delta(x) \geqslant s_{0}$. Note that

$$
E^{0}\left\{\tau_{B\left(0, s_{0}\right)}\right\}=E^{x}\left\{\tau_{B\left(x, s_{0}\right)}\right\} \leqslant E^{x}\left\{\tau_{D}\right\} \leqslant E^{x}\left\{\tau_{B(x, \theta)}\right\}=E^{0}\left\{\tau_{B(0, \theta)}\right\}
$$

Hence (43) holds clearly because $\delta(x)$ is also bounded by ${ }^{\circ}$ two constants: $s_{0} \leqslant \delta(x) \leqslant \theta$.

Now assume that $\delta(x)<s_{0}$. We have $E^{x}\left\{\tau_{B_{x}}\right\} \leqslant E^{x}\left\{\tau_{D}\right\}$. From (44) it follows that there exists a constant $c_{1}=c_{1}\left(d, s_{0}, \alpha\right)$ such that $E^{x}\left\{\tau_{B_{x}^{x}}\right\} \geqslant c_{1} \delta_{B_{x}^{\alpha}}^{\alpha / 2}(x)=c_{1} \delta^{\alpha / 2}(x)$. Hence we obtain the left-hand side of (43). Let x^{\prime} be the center of the ball B_{x}^{2}. Note that $\delta_{\left(B_{x}^{2}\right)}(x)=\delta(x)$. By Lemma 19, for any $y \in D$ we get

$$
G(x, y) \leqslant G_{\left(B_{x}^{2}\right)}(x, y) \leqslant c_{2}\left|y-x^{\prime}\right|^{\alpha / 2} \frac{\delta^{\alpha / 2}(x)}{|x-y|^{d-\alpha / 2}}
$$

where $c_{2}=c_{2}\left(d, \alpha, s_{0}\right)$. Therefore

$$
\begin{aligned}
E^{x}\left\{\tau_{D}\right\} & =\int_{D} G(x, y) d y \leqslant \int_{D} c_{2}\left|y-x^{\prime}\right|^{\alpha / 2} \frac{\delta^{\alpha / 2}(x)}{|x-y|^{d-\alpha / 2}} d y \\
& \leqslant \int_{D} c_{2}\left|s_{0}+\theta\right|^{\alpha / 2} \frac{\delta^{\alpha / 2}(x)}{|x-y|^{d-\alpha / 2}} d y \leqslant c_{3} \delta^{\alpha / 2}(x)
\end{aligned}
$$

where $c_{3}=c_{3}\left(\underline{D}, s_{0}, \alpha\right)$. This completes the proof.
In connection to the fact that $E^{x}\left\{\tau_{D}\right\}$ is comparable to $G\left(x_{0}, x\right)$ at the boundary of D we remark here that it is known that for every $Q \in \partial D$ the limit

$$
\lim _{D \ni y \rightarrow Q} \frac{G\left(x_{0}, y\right)}{\delta(y)^{\alpha / 2}}
$$

exists and is a positive number (see [9] for the proof).
Theorem 21. There exists a constant $C_{16}=C_{16}\left(\underline{D}, s_{0}, \alpha\right)$ such that

$$
\begin{align*}
C_{16}^{-1}\left(1 \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}}\right)|x-y|^{\alpha-d} & \leqslant G(x, y) \tag{45}\\
& \leqslant C_{16}\left(1 \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}}\right)|x-y|^{\alpha-d}
\end{align*}
$$

Proof. By Lemmas 17 and 20 there exists a constant $c_{1}=c_{1}\left(\underline{D}, s_{0}, \alpha\right)$ such that

$$
\begin{equation*}
c_{1}^{-1} \delta^{\alpha / 2}(x) \leqslant \phi(x) \leqslant c_{1} \delta^{\alpha / 2}(x), \quad x \in D . \tag{46}
\end{equation*}
$$

By Theorem 1 and (46) we get for $c_{2}=c_{2}(\underline{D}, \alpha)$

$$
c_{2}^{-1} W|x-y|^{\alpha-d} \leqslant G(x, y) \leqslant c_{2} W|x-y|^{\alpha-d}, \quad x, y \in D,
$$

where

$$
\begin{equation*}
W=\frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{[\delta(x) \vee \delta(y) \vee|x-y|]^{\alpha}}=\left(\frac{\delta(y)}{\delta(x)}\right)^{\alpha / 2} \wedge\left(\frac{\delta(x)}{\delta(y)}\right)^{\alpha / 2} \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}} \tag{47}
\end{equation*}
$$

Since $(\delta(x) / \delta(y)) \wedge(\delta(y) / \delta(x)) \leqslant 1$, we get

$$
W \leqslant 1 \wedge\left[\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)|x-y|^{-\alpha}\right] .
$$

Therefore the right-hand side of (45) holds with $C_{16}=c_{2}$.
To estimate W from below, we assume first that $\delta(y)<\delta(x) / 3$. Then $|x-y| \geqslant \delta(x)-\delta(y)>2 \delta(x) / 3$. Hence

$$
\delta(x) \delta(y) /|x-y|^{2}<9 \delta(y) /(4 \delta(x))<1
$$

Therefore we get

$$
\begin{aligned}
1 \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}} & =\frac{(9 \delta(y))^{\alpha / 2}}{(4 \delta(x))^{\alpha / 2}} \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}} \\
& \leqslant\left(\frac{9}{4}\right)^{\alpha / 2}\left[\frac{\delta^{\alpha / 2}(y)}{\delta^{\alpha / 2}(x)} \wedge \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y)}{|x-y|^{\alpha}}\right]<3 W .
\end{aligned}
$$

The case $\delta(x)<\delta(y) / 3$ is analogous to the previous one.
If $\delta(y) / 3 \leqslant \delta(x) \leqslant 3 \delta(y)$, then $\delta(y) / \delta(x) \geqslant 1 / 3$ and $\delta(x) / \delta(y) \geqslant 1 / 3$. Hence $1 \wedge\left(\delta^{\alpha / 2}(x) \delta^{\alpha / 2}(y) /|x-y|^{\alpha}\right)<3 W$.

Therefore we obtain (45) with $C_{16}=3 c_{2}$.
We will now give a short proof of the estimates for the Poisson kernel for bounded $C^{\mathbf{1 , 1}}$ domains (see [12]).

Theorem 22. There exists a constant $C_{17}=C_{17}\left(\underline{D}, s_{0}, \alpha\right)$ such that

$$
\begin{align*}
C_{17}^{-1} \frac{\delta^{\alpha / 2}(x)}{|x-y|^{d} \delta^{\alpha / 2}(y)(1+\delta(y))^{\alpha / 2}} & \leqslant P(x, y) \tag{48}\\
& \leqslant C_{17} \frac{\delta^{\alpha / 2}(x)}{|x-y|^{d} \delta^{\alpha / 2}(y)(1+\delta(y))^{\alpha / 2}},
\end{align*}
$$

where $x \in D$ and $y \in \operatorname{int}\left(D^{c}\right)$.
Proof. By Lemmas 17 and 20 there exists a constant $c_{1}=c_{1}\left(\underline{D}, s_{0}, \alpha\right)$ such that

$$
\begin{equation*}
c_{1}^{-1} \delta^{\alpha / 2}(x) \leqslant \phi(x) \leqslant c_{1} \delta^{\alpha / 2}(x), \quad x \in D . \tag{49}
\end{equation*}
$$

Let $x \in D, y \in \operatorname{int}\left(D^{c}\right), y^{\prime} \in \mathscr{A}_{\delta}(y)(S)$, where $S \in \partial D$ is a point such that $|y-S|=\delta(y)$. Let $s=\delta(x) \vee \delta\left(y^{\prime}\right) \vee\left|x-y^{\prime}\right|$. By Theorem 2 and (49) we have (50) $c_{2}^{-1} \frac{\delta^{\alpha / 2}(x) \delta^{\alpha / 2}\left(y^{\prime}\right)}{\delta^{\alpha}(A)|x-y|^{d-\alpha} \delta^{\alpha}(y)(1+\delta(y))^{\alpha}} \leqslant P(x, y)$

$$
\leqslant \frac{c_{2} \delta^{\alpha / 2}(x) \delta^{\alpha / 2}\left(y^{\prime}\right)}{\delta^{\alpha}(A)|x-y|^{d-\alpha} \delta^{\alpha}(y)(1+\delta(y))^{\alpha}},
$$

where $A \in \mathscr{B}\left(x, y^{\prime}\right)$ and $c_{2}=c_{2}\left(\underline{D}, s_{0}, \alpha\right)$.

First assume that $\delta(y) \leqslant r_{0} / 32$. Note that $\kappa \delta(y) \leqslant \delta\left(y^{\prime}\right) \leqslant \delta(y)$. Hence there exists a constant $c_{3}=c_{3}(\lambda)$ such that

$$
\begin{equation*}
c_{3}^{-1} \delta(y) \leqslant \delta\left(y^{\prime}\right) \leqslant c_{3} \delta(y) \tag{51}
\end{equation*}
$$

It suffices to prove that there exists a constant $c_{4}=c_{4}(\lambda)$ such that

$$
\begin{equation*}
c_{4}^{-1}|x-y| \leqslant \delta(A) \leqslant c_{4}|x-y| \tag{52}
\end{equation*}
$$

Indeed, $|x-y| \leqslant\left|x-y^{\prime}\right|+\left|y-y^{\prime}\right| \leqslant\left|x-y^{\prime}\right|+2 \delta(y) \leqslant 3 c_{3} s \leqslant\left(3 c_{3} / \kappa\right) \delta(A)$. Moreover, $|x-y| \geqslant \delta(x) \vee \delta(y)$ and $\left|x-y^{\prime}\right| \leqslant|x-y|+2 \delta(y) \leqslant 3|x=y|$, and hence $|x-y| \geqslant s / 3>\delta(A) / 12$. Therefore (52) holds. Applying (51) and (52) to (50) we obtain (48).

Now assume that $\delta(y)>r_{0} / 32$. We have $y^{\prime}=x_{1}=A$. There exist constants $c_{5}=c_{5}\left(\theta, r_{0}\right)$ and $c_{6}=c_{6}\left(\theta, r_{0}\right)$ such that

$$
c_{5}^{-1}|x-y| \leqslant \delta(y) \leqslant c_{5}|x-y|, \quad c_{6}^{-1} \delta(y) \leqslant \delta(y)+1 \leqslant c_{6} \delta(y)
$$

for all $x \in D$. These two inequalities and (50) yield (48).
Acknowledgements. I wish to express my thanks to Dr. Tadeusz Kulczycki for introducing me into the subject, many stimulating comments and his help in preparing this paper. I thank also Dr. Krzysztof Bogdan for numerous helpful remarks.

REFERENCES

[1] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Springer, New York 1968.
[2] R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable process, Trans. Amer. Math. Soc. 99 (1961), pp. 540-554.
[3] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), pp. 43-80.
[4] K. Bogdan, Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), pp. 227-243.
[5] K. Bogdan, Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl. 243 (2000), pp. 326-337.
[6] K. Bogdan and T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1) (1999), pp. 53-92.
[7] K. Bogdan and T. Byczkowski, Probabilistic proof of the boundary Harnack principle for α-harmonic functions, Potential Anal. 11 (1999), pp. 135-156.
[8] K. Bogdan and T. Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist. 20 (2) (2000), pp. 293-335.
[9] K. Bogdan and B. Dyda, Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains, preprint.
[10] K. Burdzy and T. Kulczycki, Stable processes have thorns, Ann. Probab. (2002).
[11] Z.-Q. Chen and P. Kim, Green function estimate for censored stable processes, Probab. Theory Related Fields (2002).
[12] Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable process, Math. Ann. 312 (3) (1998), pp. 465-501.
[13] Z.-Q. Chen and R. Song, A note on the Green function estimates for symmetric stable processes, preprint.
[14] Z.-Q. Chen and R. Song, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1998), pp. 267-294.
[15] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer, New York 1995.
[16] B. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (3) (1977), pp. 275-288.
[17] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), pp. 79-95.
[18] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, in: Studies in Partial Differential Equations, W. Littman (Ed.), Vol. 23, Studies in Mathematics, Math. Assoc. of America, Washington, DC, 1982, pp. 1-68.
[19] T. Kulczycki, Properties of Green function of symmetric stable process, Probab. Math. Statist. 17 (2) (1997), pp. 339-364.
[20] K. Michalik and K. Samotij, Martin representation for α-harmonic functions, Probab. Math. Statist. 20 (1) (2000), pp. 75-91.
[21] R. Song and J. M. W u, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (1999), pp. 403-427.
[22] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl. 116 (1986), pp. 309-334.

Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: jakubow@ulam.im.pwr.wroc.pl

Received on 17.6.2002;
revised version on 14.11.2002

[^0]: * Institute of Mathematics, Wroclaw University of Technology. Partially supported by KBN Grant 2P03A 04122 and RTN Harmonic Analysis and Related Problems contract HPRN-CT-2001-00273-HARP.

