PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 22, Fasc. 2 (2002), pp. 419-4d1

THE ESTIMATES FOR THE GREEN FUNCTION
IN LIPSCHITZ DOMAINS
FOR THE SYMMETRIC STABLE PROCESSES

BY
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Abstract. We give sharp global estimates for the Green function,
Martin kernel and Poisson kernel in Lipschitz domains for symmetric
o-stable processes. We give some applications of the estimates.
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1. INTRODUCTION

Potential theory for symmetric a-stable processes has been intensively
studied in recent years (see e.g. [3], [6], [14]). In particular, sharp estimates for
the Green function and the Poisson kernel for bounded smooth domains with
C*! boundary have been obtained ([12], [19]). For example, let G, (x, y) be
the Green function of a bounded C**! domain D = R? (d > 2) for the symmetric
a-stable process. Let xo be a fixed point in D. Define

¢ (x) = min (Gp (xo, X), €u,a (ro/4)a_d)-
There are constants c,, ¢, depending only on D, a such that ([12], [19])
ci ! [dist (x, 6D)]*?(x) < ¢ (x) < ¢, [dist(x, 6D)]**(x), xeD,
and, for x, ye D, we have

¢ min (|x—y|“-", M) < Golx, < &3 min<|x—y|“-“,

¢(x)¢(y))
|x—yl* ’

x— y*
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where €, is given by (5) below and r, is the localization radius of the domain
(see Section 2 for definitions). From this result and the Ikeda—Watanabe for-
mula similar estimates for the Poisson kernel of C*'! domains have been ob-
tained in [12]. Later, in [5], similar estimates have been obtained for the
classical Green function in Lipschitz domains. Analogous estimates have been
obtained in [11] for a-stable censored processes in C!'! domains.

The purpose of the present paper is to give similar estimates for the Green
function, the Poisson kernel and the Martin kernel for symmetric «-stable
processes in bounded Lipschitz domains. The main tool in obtaining these
results is the boundary Harnack principle (BHP) for a-harmonic functions ([3],
cf. also [7], [21]). Our main results are the following (for the notation see
Section 2). ’

THEOREM 1. There is a constant C; = C(D, a) such that for every x, ye D
we have

12(x)e0) ¢(x)¢ ()
¢*(4) ¢*(4)

where Aec®B(x,y). In fact, (1) holds with C,=C,(d, A, a) provided
o) voy) Vv [x—y| <ro/32.

THEOREM 2. There is a constant C, = C,(D, «) such that for every xeD
and yeint(D) we have

¢ (x)¢ ()
* (A () (1+3 )Y

(1) Cy Ix—y* < Gx,y) < C,y |x—yI*~4,

@ ¢! =y < Px, y).
<y, BOIBD)
¢*(4)5* ) (1 +6 ()
where y' € o 5,)(S), A€ % (x, y') and Se 0D is any point such that |y—S| = 3(y).

THEOREM 3. There is a constant C3 = C3(D, o) such that for every xeD,
Qe dD we have

-1 () ¢ (x) -
(3) C3 ! ¢2(A) ¢2(A)|x_Q| da
where Aest|,_g(Q). In fact, (3) holds with C3= C;(d, A, ®) provided
lx—Ql < ro/32.

The above results show that the boundary behaviour of the Green func-
tion, the Poisson kernel and the Martin kernel can be expressed in terms of
¢ (x). This role of ¢(x) stems from the boundary Harnack principle. We note
here that unlike in C**! domains, the boundary behaviour of ¢ (x) for bounded
Lipschitz domains strongly depends on the local shape of the boundary (see
Lemma 8) and estimates (1)~(3) are much more difficult than their counterparts
for C*! domains.

lx—J’Ia—d,

Ix—QI*™* < K(x, Q) < Cs
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OQur proofs of Theorems 1 and 3 follow closely the arguments of [5], with
appropriate adjustments and simplifications. However, the estimates for the
Poisson kernel for a-stable symmetric processes are new with no counterpart
in [5]. We remark here that the problem of estimating the Poisson kernel is
qualitatively different from that of estimating the Martin kernel (see, e.g., [16]).
Our estimate for Pp(x, y) is a consequence of the Ikeda—Watanabe formula
and the estimate for the Green function (1).

The work is organized as follows. Section 2 sets up the notation and
collects basic facts and definitions for further use. In Section 3 we prove es-
timates for the Green function. Section 4 deals with the Poisson kernel and the
Martin kernel. In Section 5 we give applications of the main results: simple
proofs of “3G Theorem” and the estimates for the Green function and Poisson
kernel in C':! domains ([12], [19]).

2. PRELIMINARIES

In this section we introduce basic notation and present without proofs
some standard facts needed in this work. Most of the material is adopted from
[1], [3] and [19].

2.1. Basic notation.and terminology. For natural number d > 1, we denote
by R? the d-dimensional Euclidean space with norm |-|. We put N = {0, 1, 2, ...}.
We write D¢, D, int(D) and 6D for its complement, closure, interior and
boundary, respectively. For D = R%, xeR?, r >0, we put

B(x,r) = {yeR% [x—yl <1}, diam(D)=sup{lx—}I: x, yeD},
dist(D, x) = inf{|[x—y|: yeD}, dp(x) = dist(x, dD).

We write, as usual, a A b = min {a, b} and a v b = max {a, b}. Let m(D) be the
d-dimensional Lebesgue measure of D — RY. Assume that #(R%) denotes the
Borel o-field of R?, and f € % (R%) means that the function f is Borel measura-
ble. The notation ¢ = c(x, , y) means that the constant ¢ depends only on
a, B, v. Constants are always strictly positive and finite.

2.2. Definitions and properties of sets. For the rest of the paper we assume
that d > 2. A set D c R? is called a domain if it is open and nonempty.

A bounded domain D<R? is called a Lipschitz domain with Lipschitz
character (ry, 4), 7o >0, 4 >0, if for every QedD there exists a function
Tp: RP~!' - R satisfying the Lipschitz condition |I'g(a)— I (b)| < Ala—b] for
a,beR*"!, and an orthonormal coordinate system CS, such that if
y =1, ¥z, ..., ya) in CSy coordinates, then

B(Q, ro)nD = B(Q, ro)nn {y= ya > Lo(ys, Yga oo Ya—1)}-
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The constant ry is called the localization radius and the constant A the Lipschitz
constant. Note that we do not assume connectedness of D in this definition.
One can choose r, so small that distance between connected components of
disconnected Lipschitz domain with localization radius r, is not less than 7.

It is not difficult to check that a ball B(0, r) is a Lipschitz domain with
Lipschitz character (r, \/3).

For the rest of the paper, unless it is stated otherwise, the domain D is
Lipschitz with Lipschitz character (ry, ). We denote by § = diam (D) the diam-
eter of D, and by 8(x) = &p(x) the distance between xeR? and the boundary
of D. It can be proved that the set {xeD: d(x) > ro/2} is nonempty (or with
less work, one can take r, so small that this set is not empty). We choose one of
its elements as a reference point and denote it by x,. We also fix a point x, €D
such that |xq—x;| = r¢/4 (cf. [5]). The dependence of constants on D which is
only through d, 1, ry, 0 will be marked in this paper by the symbol D, e.g.
C(D)=C(d, 4,19, 0). Let k = 1/(2./1+1%) and Qe dD. For te(0, ro/32] we
define

,(Q)={AeD: B(4, kt)c DnB(Q, 1)}

The set «7,(Q) is nonempty (see [15], Lemma 6.6). For t > ry/32 we put
,(Q) = {xl}' ‘
For any x, yeD we put r =r(x,y) =9d(x) v 3(y) v |[x—y|. For r <ry/32
let '
% (x,y)={AeD: B(4, k)= DnB(x, 3rnB(y, 3r)}.

If r > ro/32 we put & (x, y) = {x;}. The set #(x, y) is nonempty (see [5]). Of
course, by symmetry, #(x, y) = #(y, x).

2.3. Symmetric a-stable Lévy motion. We denote by (X, P¥) the standard
rotation invariant (“symmetric”) a-stable, R%-valued, Lévy process (i.. homo-
geneous with independent increments), with index of stability ae(0, 2) and the
characteristic function of the form

E%exp(itX,) = exp(—t|&®), ¢eR%, t=0.

As usual, E* denotes the expectation with respect to the distribution P* of
the process starting from x € R?. We always assume that sample paths of X, are
right continuous and have left limits almost surely. (X,, P*) is a Markov pro-
cess with transition probabilities given by P,(x, D) = P*(X,€D) = u,(D—x),
where g, is the distribution of X, with respect to P°, and is strong Markov with
respect to the so-called “standard filtration” (%, &) and quasi-left-continuous
on [0, o) (see [1]). We have P*(X,eD) = ij(t, x, y)dy, where p(t, x, y) is
the transition function of X,.

For an open set D — R?, we define a Markov time 7 = inf {t > 0: X,eD‘},
the first exit time from D. If m(D) < oo, then P*{tp, < 0} = 1, xeR% In this
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case the P* distribution of X, is a probability measure on D, called a-har-
monic measure (in x with respect to D) and denoted by w}. If w} is absolutely
continuous with respect to the Lebesgue measure on D¢, then the correspon-
ding density function Py (x, y), xe D, ye R?, is called the Poisson kernel (we put
Py(x, y)=0 for x, yeD). For Lipschitz domains the a-harmonic measure
}, is concentrated on int (D) and is absolutely continuous with respect to the
Lebesgue measure on D°. The Poisson kernel Py (x, y) is jointly continuous in
(x, yye D xint(D°) (see [3], Lemma 6).

For D =B(0,r), r >0, and xe B(0, r), the Poisson kernel Py, = P, is
given explicitly by the formula B

rz_lxlz

|yl>—r?

aj2
@ Pr(x,y)=C'i[ ] T for |yl >r, -

with C¢ = I'(d/2)n~%?~!sin(na/2), and equals O for [y| <r (see [2]).

2.4. Riesz potentials and o-harmonicity. For any x, y e R?, we define poten-
tial density or the Riesz kernel u(-, ) by

u(x, y) = ojop(t, x, y)dt.
0

u(x, y) is given explicitly by the formula (see [1])
u(x’ y) =,(gd,a|x_yrz_ds

where

_ I'(@—v7)

© ar = |1 ()]

For any nonnegative f € % (R%) we define the potential operator U, of the
process X, by

U, f(x) = E* T f(X)dt, xeR.

It follows that

U f (x) = [ u(x, y) f(»)dy.

R4

For any nonnegative f % (R%) we define
Gpf(x)=E* | f(X)dt, xeR.
(4]

Gy, is called the Green operator for D. We define G, (-, -), the Green function for
D, by

Gp(x, y) =u(x, y)—E*{tp < o0; u(X (zp), y)}, x,yeR?, x+#y.
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We put G,(x, x) = o0 if xeD and Gp(x, x) =0 when xeD°. For any non-
negative fe% (R, we have

Gpf(x) = Rf Gp(x, y) f () dy.

It is well known that Gp(x,y) >0 on DxD, Gp(, ) is symmetric and
Gp(x,y) =0 if x or y belongs to D°.

. The following Ikeda—Watanabe formula expressing the Poisson kernel
Py(x, y) in terms of Green function is known (see [17]): - -

© Potr, )= €4-af 25Dz, xeD, yeint (D),

plz—
where %, _, is given by (5).

DEFINITION 4. Let ue # (R%). We say that u is a-harmonic in an open set
Dc R if

u(x) = E*u(X (tp)), xeU,

for every bounded open set U satisfying U = D. We say that u is regular
o-harmonic in D if

u(x) = E*u(X (tp)), xeD.

By the strong Markov property of {X,}, regular a-harmonic functions are
a-harmonic. _

As the consequence of the definitions presented above, for any ye D and
r > 0 the Green function Gp (-, y) is a-harmonic on D\{y} and regular o-har-
monic on D\B(y, r). Moreover, if D; and D, are domains and D, < D,, then
Gp,(x, y) < Gp,(x, y) for x, yeD, (see [19] for more details).

Now we introduce the Martin kernel Kp(x, Q) for bounded Lipschitz
domains ([4], Lemma 6; see also [20]). For every Qe dD and xeD we define

. GD (x s 6)
™ Kolx, ) Dllélz'lQ Gp(xo, &)
The mapping (x, Q)+ Kp(x, Q) is continuous on D x dD. For every Q € 0D the
function K, (-, Q) is a-harmonic in D with K,(xy, Q) =1. If @, SedD and
0 #S, then Kj(x, @) >0 as x—>S.
We will denote by G(x, y), P(x, y) and K(x, y) the Green function, the
Poisson kernel and the Martin kernel for D, respectively.

2.5. Properties of a-harmonic functions. In this section we collect some
results of [3] needed in the sequel.

LemMMmA 5 (Harnack inequality). Let x, yeR% s> 0 and keN satisfy
|x—y| < 2*s. Let u be a function which is nonnegative in R® and a-harmonic in
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| B(x, s)\uB(y, 5). Then
@ M7 27H* Dy (x) S u(y) < M, 24442 u(x)
with M, = M, (d, ).
The next lemma is a version of Lemma 13 in [3].

LeMMA 6 (BHP). Let ZedD and pe(0, ry). Assume that functions u, v are
nonnegative in R? and positive, regular a-harmonic in D B(Z, p). If u and v van-
ish on D°nB(Z, p), then with a constant M, = M, (d, A, &) the following holds:

1 u(x) _u@) u(x)
9 MLV =M, ——
©) 2 069 So0) S Moy
for x, yeDnB(Z, p/2).
The next two results are versions of Lemmas 4 and 5 from [3].

LemmA 7 (Carleson estimate). There exists a constant My = M;(d, o, A)
such that, for all Q € dD and s€(0, ro/32), and functions u nonnegative in R®, regular
a-harmonic in DN B(Q, 2s) and satisfying u(x) =0 on D°nB(Q, 2s), we have

(10) u(x) < Msu(4), xeDnB(Q,s),
where A€ oL (Q).

LeEMMA 8. There exist constants y = y(d, a, A) <o and My = M,(d, a, A)
such that for all QedD and te(0, ro/32], and functions u nonnegative in R,
. a-harmonic in DnB(Q, t), we have

(11) u(Ady) = My (A4, —Ql/ty u(4,;), se(0,1),
where Ay e (Q), and A, e 4,(Q).
For the rest of the paper we fix the constant y in Lemma 8.

3. ESTIMATES FOR THE GREEN FUNCTION

In this section we prove Theorem 1. At first we will need an auxiliary lemma.

LeMMA 9. Let N > 0 and x, ye D satisfy |x—y| < Ns, where s = 6 (x) A 6 (y).
Let u be a function nonnegative in R? and o-harmonic in B(x, s)UB(y, s). Then

(12) - Mitu(x) <u()) < Miu(x)
with Ml =M1(d, o, N)

Proof LetkeN be such that 2~ < N+ 1 < 2. Since u is a-harmonic in
B(x, s)UB(y, s) and |x—y| < 2*s, by Lemma 5 we obtain

(M1 24049 ™y (x) S u(y) < M, 2049 u(x).
Therefore (12) holds with M; = M, (2(N+1))***. =

15 — PAMS 222
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We will also need the following estimates for the Green function of the ball
(see [19] for d > 3 and [12] for d > 2). The estimates are consequences of an
explicit formula for the function (see [2]).

PrOPOSITION 10. There exists a constant Ms; = Ms(d, o) such that
1 1 F2 (x) %2 (v)
A

5 L=yl Ix—yl?

] S GB,-(xa y)
< Ms[ S ST (y)}

Ix—yl*=® Ix—yl*

where B, = B(a, r), acR?, x, yeB,.

LEMMA 11. Let N > 0 and x, ye D satisfy |x—y| < N[6(x) A 6 (y)]. Then
(13) Catlx—yF "< G(x, y) < Cylx—yI*~*
with C, = C,(d, a, N).

Proof. The right-hand inequality is obvious because G (x, y) < u(x, y) =
@aalx—y*"% Let s =3(x)A 6(y). We now prove the left-hand side of (13).

We first assume that |x—y| < s/2. We clearly have dz(y) = s/2, where
B = B(x, s). By Proposition 10 we obtain

1 [ 1 % (x) 63> ()

5 pany
Ix—yl?~® Ix — y*

] < GB(xs y) < G(xa Y),

where M5 is the constant from Proposition 10. Since dz(y) = [x—y| and
dp(x) = |x—yl, we get
1 < G(x,y)
po—yle = T
Thus (13) holds with C, = C,(d, @) = M5 Vv €,,.

Now assume that |x—y| > s/2. Let y, be a point such that [x — y,| < s/4.
From Lemma 9 and (14) we obtain G (x, y) = ¢, G(x, yo) = ¢z |x—y|*~% which
gives the lower bound in (13). =

(14) M;?

Lemma 11 yields that there exists a constant Mg = M 6(d, o) such that
15) g(2) = Meri™%,  zeB(xg, 2ro/5).
To simplify the notation we will write
g(x) = G(xo,x) and ¢(x) = G(xo, ) A [€4(ro/4* ],

see the Introduction. We recall that G (x, y) < u(x, y) = €4.|x—y* % In particu-
lar, G (xo, X) < u(xq, X) < €an(ro/d 2 if |x—xo| = ro/4. Thus, for |x— x| = ro/4,
¢ (x) = g(x). Note that §(x,) = ro/4.

First we prove the estimate for Green function assuming that x and y are
not close to x,.
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LemMMaA 12. There is a constant Cs = Cs(D, o) such that if x, ye D\B(xo, r¢/3)
and Ac#(x, y), then

19(x)g () g(x)g()
g9%(4) g*(4)
In fact, (16) holds with Cs5 = Cs(d, A, a) provided é(x) v 6 (y) v |x—y| < ro/32.

Proof. The proof of this lemma is the same as the proof of an analogous
lemma in [5] with appropriate adjustments, so we omit most of the details. To
give the reader the idea of proof we will only prove (16) under the.assumption

56(x) < 50(y) <|x—y| and r<ry/32,
where r =r(x, y) = 0(x) v o(y) v |x—y| (cf. [5]). To simplify the notation we
will write po for ry/32. Let Q and § be points such that |x—Q| = 4(x) and
[y—S8| = d(y). We have r =|x—y| and
1Q— S| = |x—y|—8(x)—0(y) > |x—yl—lx—yl/5—|x—yl/5 = 3r/5.

We choose E€f,;5(Q) and Fe,;5(S). By Lemma 6 (with p = 2r/5,
Z = §) applied to the functions G(x, ), g(-) we obtain

ert G(x, F) < G(x, ) <e G(x, F)
gx)g(F) gx)g(y) " g(x)g(F)
with ¢, = ¢, (d, A, a). Similarly, applying Lemma 6 to functions G(-, F), g(*)
(taking p = 2r/5, Z = Q), we get
;1 GER 6P _  GEF
g(E)g(F) ~g(x)g(F) g(E)g(F)

(16) Cs Ix—yI"" < G(x, ) < Cs e —y*~e.

an

(18)

Thus we have
o2 GE,F) _ G(x ) < GE,F)
g(E)g(F) g(x)g©) g(E)g(F)

Since 8 (E), 6 (F) = kr/5,0(A) = kr and |x—y|/5 < |[E—F| < 9|x—y|/5 < 5|x—y},
we have :

(19)

|E—F| < 9r/5 < (9/x)[3(E) A 4 (F)],
|E—A| < |[E—Q|+]Q—A| < r+4r < (25/x)[8(E) A 6(4)],
|F—A| < |F—S8|+|S—A| <r+4r < (25/x)[6 (F) A 6(4)].
Hence, by Lemmas 9 and 11, we obtain
c3'|E—FI""*< G(E, F) < ¢ |[E-FI*™7,
ci'g(E)<g(d)<cag(E), ci'g(F)<g(4)<csg(F)
Therefore we obtain (16) with Cs = Cs(d, 4, @). The proof is complete. =
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Let us remark here that the above argument is less technical than that
of [5]. This is due to the fact that the BHP for our stable processes (Lemma 6
above) has less stringent assumptions regarding the domain where the func-
tion needs to be harmonic as compared to the BHP for the classical harmonic
fungtions.

The proof of Theorem 1 is based on Lemmas 5, 6, 11 and 12, and is
analogous to the one from [5], so we omit the details.

4. THE POISSON AND THE MARTIN KERNEL - -

4.1. The Poisson kernel. In this section we will deal with the Poisson kernel
— the density function of a-harmonic measure w3 (see Section 2). Before we
prove Theorem 2, we will need some estimates for the function ¢ (x).

Let us recall that for xeD\B(xo, ro/4) we have ¢(x)=g(x), where
g(x) = G(xp, x); and g(x) is an a-harmonic function in D\{x,}. Therefore,
although ¢ (x) is not a-harmonic in D\B(x,, r¢/4), it is equal to an ¢-harmonic
function on this set. This simple observation yields useful estimates of the
function ¢(x). We also recall that y = y(d, 4, ) < a is the constant from
Lemma 8. '

By the Harnack inequality there exists a constant C¢ = Cg(D, a, N) such
that

(20) ¢(x) = Cs
for all xeD satisfying 6 (x) = N.

LemMmA 13. Let x, 2y, 25, z€D and r;=06(x)vo(z)vix—z]| for i=1, 2.
Let N be a constant satisfying ry < Nr, or |[x—z4| < N|x—z,|. Let Ae B(x, z),
A,eHB(x, z1), and A,eB(x, z;). Then

21 ¢ (A1) < C7¢(A4y),
22 ¢ (x) < Cs p(4),
23) ¢(x) = Cod(x),

where C; = C4(D, a, N), Cg = Cg(D, @), and Cy = Co(D, ).

Proof. We may and do assume that N > 1. If Nr, > r,/32, then from (20)
we get (21).

Therefore we may and do assume that r; < Nr, < ro/32. Let 2y € ,,(Q)
and z5e A y,,(Q), where QedD is a point such that |x —Q| = d(x). We have

5
72— Al < 511 SZ[SE) A S(A],

, N+4__,
|22 — Al S (N+4)r; < W[é (%) A 6(4,)].
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Applying Lemma 9 we have

P(A1) S c29(2),  d(2) Sc2¢(4)

with ¢; = ¢,(d, 4, a, N). In fact, we apply Lemma 9 to the domain D, =
D\B(xo, ro/4) and the function g. According to the remarks at the beginning
of this section the results for the function ¢ follow. In the sequel we will simply
pass over similar discussions. By Lemma 7 we have ¢(z)) < ¢3¢ (z3) with
¢3 = c3(d, A, ). Therefore we obtain (21) with C, = c2c,.

Note that [x—z,| < N |x—z,| implies r; < 2(N +1)r,. Therefore the proof
of (21) is completed.

To prove (22) note that if d(z) <ro/32, then zeB(z,z). Since
d(x) v d(z) v [x—z| = d(z), by (21) we get (22). The case d(z) > ry/32 follows
from (20).

Now we will prove (23). If d(x)>ro/64, then (20) yields (23). If
0(x) <ro/64, then xesly5,(Q), where QedD is a point satisfying
|x—Ql = d(x). Let zg€ o,,32(Q). Lemma 8 applied to x and z, and (20) yield
(23). =

LEMMA 14. There exists a constant Cy; = Cy;(D, o) such that for all
QedD and t > 0 we have

24) $(4) > Cu 'Al —or

¢(42), s5€(0, 1),

where A, el,(Q), A,e A, (Q).

Proof. If t < r¢/32, then (24) holds by Lemma 8. Assume that t > r,/32.
Then A, = x;. :

For s <ro/32 let 2’ € o,y32(Q). By (20) we get ¢ (z) = ¢, $(4,), where
¢y =c¢; (D, ®). From Lemma 8 we obtain

A —_ ? A —_ ?
s> (T2 60> s (MY g,
where ¢, =c,(d, 4, a). If s >ry/32, then (24) obviously holds. =

LEMMA 15. There exists a constant Cy, = Cy15(D, ) such that for all
X, 21, 2, €D satisfying |x—z,| < |x—2z,| we have

|x— Z1|

(25) ¢ (4;) 2 C12 ¢( 2)>

where A1 € #B(x, z,), A, B (x, z,).
Proof Let ry =38(x)vd(zy) v|x—z4 and r, =68(x) v d(zy) Vv |x—2z,).
Let Qe0D be a point such that [x—Q| = é(x).

If ry > ro/32, then by (20) we have ¢ (4;) > ¢; ¢(A4,), where ¢y = ¢, (D, d).
Since |x—z;| < |x—2z,), (25) holds.
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Assume that r; < /32 and r, > ro/32. Then A, = xy. If |x—z,| > ro/64,
then by (23) we have ¢(A4;) = c;(r1¥)! = c2 k" [x—2z4|", where ¢, = ¢, (D, ).
Hence (25) holds because the function ¢ is bounded from above. If
|x—z5| < 7ro/64, then &(x)>ry/64 (because |x—zy|+3d(x)=ry > ro/32).
Hence, by (20) and (22), we have ¢ (4,) = c3 ¢ (x) = c4, Where ¢3 = c3(D, o)
and c4 = c4(D, ®). Using the condition |x—z,| < |x—2z,|, we obtain (25).

Now we assume that ry, r, < ro/32. Let 2 € &, (Q) and z5 € o, (Q). Since
|[A;—zi| < (5/k)[6(A;) A 6(z)] for i =1, 2, we obtain by Lemma 9

csd (A1) 2 ¢(21),  csP(22) = d(4a),

where ¢5 = ¢5(D, o). If r; > r,, then by Lemma 7 we have cq ¢ (z}) = ¢ (z3),
where ¢ = c(d, A, ). Therefore (25) holds with C,, = c5%¢g!. Let ry <7,.

"By Lemma 8 we have

¢ (z1) = ¢ (121 )¢(Zz) 07167( )¢(Zz),

where c¢; =c5(d, 4, ®). Note that d(z;) < 2(6 (x) v |x—zz|), and hence
r, L2y vix—2z,)). If ry = |x—2z,|, then ri/r; > 1/2 2 |x—2z4|/(2|x—2z,)). If
ry <|x—zy, then 7y <2|x—2z,), and since r, > |x—2z;, we again get
ri/r2 = |x—2z4| /2 |x —2z,|). Using this we obtain (25) with C,, = ¢52c;(x/2)". =

The following lemma is crucial in our considerations. Its proof depends on
the fact that the constant y in Lemma 8 is smaller than o.

LEMMA 16. Let yeint(D) and Se oD be a point such that 6(y) = |y—S|.
Let t = 6(y). Then for G = B(S, t)ynD and y €5y (S) we have
¢ () < $(2) ¢ ()
) ly—zj*** Sy (1+o()

26 Crd
9 SOy (1+s)

with C13 = C13(D a)
Proof. Forall zeD let z’e |, (S). From Lemma 7 it follows easily that

27 ¢ (2) = c1¢(2),

where ¢; = ¢; (D, a).
Assume that 6 (y) < r¢/32. By Lemma 14 there exists ¢, = ¢, (D, «) such
that for zeD we have

28) $0) > 2<'y S') $) > crc ( ‘”) ().
ly—z| ly—

dZ < Clg
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Hence we obtain

$(2) L O y—2l
Ip—ggdz<eia =21 * (8 ()’
< et UHTo3! $() e B0

(L+O) sosonely—2F* =7 (80 8P +30))
where ¢3 =c3(D, a).

Let us put B = B(y', 6 (y)/2). Note that B < G and for every zeB we
have [y'—z| < 8()') A 8(2). Hence, by Lemma 9, we have o
¢(2) Zcap(y),

where ¢, = ¢,(d, @). Using this we obtain

2 g 90 s 00,

G|y—zld+a /B|y—z|d+a By_z|d+a
L b)) oo 60
(25(3’))'H°'m( ) 655(}’)“(14‘5()’))"

where ¢s = ¢s(D, o). Taking Cy3 =c3 v cs ' we obtain (26).
Now assume that d(y) > ro/32. From (22) and the fact | Gp(x, z)dz =
E*{tp} we have

cal <y [ (20 dz < [P(2)dz < cs E*{1p} < cg,
G G

where cg, ¢, cg depend only on D and a. From the last inequality we easily
obtain (26). m

LEMMA 17. There exists a constant Cyq = Cy4 (D, ) such that
(29) Cid ¢ (x) < E*{1p} < Ci4¢(x), xeD.

Proof. Let B = B(zy, 1) be such that d(zy) = 6+ 1. Consider the function
f(x) = P*{X,, € B}. Clearly, this function is a-harmonic in D. From the Ikeda
~Watanabe formula (6) and the fact that E* {tp} = [ Gp(x, y)dy there exists
a constant ¢; = ¢; (d, 8, a) such that

ci VE* {1p} < f (%) < ¢ E*{1p}.
The rest is the consequence of Lemma 6 applied to functions f(-) and G(xg,*). =

Proof of Theorem 2. In this proof we will use the convention that all
constants depend only on D and o (unless it is stated otherwise). For every
zy, z, €D we denote by 4,, ., any point belonging to the set #(z,, z,). For the
rest of the proof we put

ri=ri(x,2)=0(x)vé@)Vix—z, ra=rxy)=0xvQ)vix—yl
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To shorten the notation we will write po = ro/32. By Theorem 1 and (6) we have
¢(x)¢(2)
D ¢2 (Ax,z) |x_z|d—a Iz_.vld-Hz

()9 (2)
S v R

where C; = C; (D, ). Our task will be to estimate the above integral. We will
consider 3 cases:

(@) [x—yl = 56(y) and (y) <ro/32; -

(b) Ix—yl < 56(y) < 5ro/32;

(©) 0(y) > ro/32.

Case (a). [x—y| = 56(y) and 6(y) < ro/32.

Note that [x—y'| < |x—y|+5 () +|y'—S| < 2|x—y| and |x—y| > |x—y|—
d(¥)—|y—S| > 3|x—yl/5. Hence we get

3le—ylf5 < Ix—=yl<2lx—yl.

(30)  €4-.Cit

dz < P(x, )

Let us consider the following sets:
B, =B(y, |x—y|/2)nD, B, =B(x, [x—yl/2)nD,
B; = D\(B, UB,).
Let us put

_ ¢ (x)¢(2) . _
I; = ;L 7 (Ax.z)lx—zld—ﬂz—yld”dz fori=1,2,3.

We first estimate I,. For zy, z, € B; we have |[x—z4| = [x—y|/2 > |x—z,|/3. By
the reason of symmetry, |x —z,|/3 < |x—z;] < 3|x—z,|. Since y' € By, by (21)
(taking z; =z and z, = y’) there exists a constant ¢, such that

(1) c1'@(Asy) S 0(Ar) Sc16(Ary), z€By.
By Lemma 16 there exists a constant c, satisfying

SOF(I+0F s lr—2"  2spr(l+o0)F

Moreover, for ze B; we have |x—y|/2 < [x—y| < 2|x—y|. Using this, (31) and
(32) we obtain

¢(x) 9 (y)
2 d - <
¢ (Axy) X =y () (1 +6 ()

33) mt

. $() 6 ()
32 () =S GF (1+ 0)

<

where m; = ¢2¢, 2972,
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We now estimate I, from above. Let ze B,. We have |y—z| > |x—y|/2.
Using this and (21), we have

¢(x)2d+a ,.
o @ (Ax) [x—2' 7% [x—p|"*e

Suppose zeB,. Since [x—z| < |x—)| < 2|x—y|, by Lemma 15 we have

(34) I <cs f

[x—2z|

¢(sz)/c4[| |:| ¢( xy)

Consequently, we get

dz jx—y|?
35 < dz
S BTy RR TP L [y g s e
_1 l yly -1 Ix_yla
W V'=cscC .
¥ 7w L + L)

Note that by assumption (a) and Lemma 15 we obtain

b(Ay,) > ce[ °0) ]Yqb(Ax,y,) > cg2"" [l ) ] (4s),

x—¥

where y” is a point such that 6(y") =[y'—y"| = 6(y)/2. Since ¢ (4, ,) <
c7;¢(y) (by Lemma 9), we have

B) > cocy 27 [| ‘V’l] 6 (4sy).

Hence

¢ 2° ¢ () Ix—yI*
= Ce ¢ (Ax,y’) 0 (y)a .

Applying this and (35) to (34) we obtain

, P (x)9 ()
* (Aey) IX—yI* 28 () (1+6 ()
where m, = c3cqtescgte; 29122 (14 po)-.
Now we estimate I; from above. Note that for zeB; it follows that
|x—2z| = |x—y|/2 and |x—z| > |x—y'|/3. By (21) we have cg ¢ (4,.) > ¢(Axy)
Using this and Lemma 16 we get

2w | ¢ (x)$(2)
B3 ¢2 (Ax,y’) |x—y|"—¢ |z_y|d+a

(36) I,<m

I3 < c}
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¢ (x) [ ¢ (2)dz
% (Axy)x—yI* " plz—y"*e
660 |
G (Axy) Ix— Y128 (1)* (1 + 6 ()’

< ciime

2 Ad—
<09082 @

Hence we get

¢ (x) o)

37 13 X I3 ?
D s O* (Ary)x =y * 1 OP(1+60)" -

where m; = c2cg2¢7%.
Using (33), (36) and (37) we obtain

» d (%) 6 ()
L2 (Ayy) X — YT Y (LSO

<Ii+I,+15

& (x) ¢ () '
P (Axy) IXx— Y128 ) (1+0 )

< (m1 +m, +m3)

Applying this to (30) we obtain (2).

Case b. |x—y| < 56 (y) < 5r¢/32.
Note that in this case d(x) < |x—y| < 58(y). Since 6(y) < po, we have

o(y) 2 (x/5) 6 (x).

By (22) there exists a constant ¢10 such that ¢ (y') < ¢y ¢ (A,,,). Note that
lx—y1 < [x=yl+ly—y1<76() < (7/x)6(y). Hence 6 () = (/)12 If 15 > po,
we have 6(y) > (k/7) po, and by (20) we obtain
(38) el () S d(Axy) <11 9.

If r, < po, we have |y — A, ;| < 3r, < (21/x) [ (A,,,) A 6(¥)] and (38) now fol-
lows from Lemma 9.
Let us put

B,=B(y,3|x—y)nD, Bs=D\B,, Bg=B(S,5()nD

We will consider the integrals

= ¢ (x) P (2) -
t I¢2(Ax Jlx— —z47 %z — y|d+adz for i=4,5,6.

We first estimate I, from above. Suppose zeB,. Let z;€D be such that
4|x—y| <|x—zy <5|x—y. We have |x—z| <|x—z,;| and |x— y|<|x z4].
Applying Lemma 15 to the points x, z, z; and (21) to the points x, y', z; we
obtain

O P (N PIVRREIN (= Z'I) b (4sy).
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By (22) we have

(40) 149 (As2) = ¢ (2).
‘By assumption (b) we have |y—z| = d(y) = |x—y|/S. Therefore, using (38)40)
we get
¢ (x)
I, < -
s S S S TP
—v|?
<cpd C14j' ¢ (x)|x—yl dz -

B4 ¢(Ax.y’) |x_zld_z+7|y_zld+a
¢ (x)¢ (V) Ix—yI*

¢2 (Ax.y’) |x _y|d+l

¢ (x)p(y)

¢ (Ay) X =y "2 8 @GP (1+6()
where m, = ¢4; €13’ €14€15(1+po)*.

We now estimate I; from above. Suppose that zeBs;. We have
|x—z| > |x—yl and 2|x—z|>|[x—)| Hence, by (21) we obtain
¢ (Ayy) < 169 (Ay,). Since a <d and Bs =D, by Lemma 16 we get

¢ (x) { ¢ (2)dz
x,y’) |X—Y|dw35 |y_Z|d+a
¢ (x) 9 (y)
ms—> d—a § ()2 a
¢* (Axy) Ix—y1"=* 8 () (L +6 ()

We now estimate I from below. Suppose that ze B(S, d(y))nD. Note

that |x—z| < 3|x—y|. Moreover, r; < 4x~'r,. Indeed, 6(z) < k™1 6()) and

-1
K €11C13 C14Cs5

<my

Issc%6¢2(A

<

Pe—zl < Ix—y|+Iy' =2l <|]x—y|+2c" 16 (y) < 4 [Ix—y'| v 3 (¥)].
Hence
§(x)vo@)VIx—zl <46 (x) v () VIx—YI).
Therefore, by Lemma 13 we have ¢;; ¢ (A,,2) < ¢ (A, ). Using this, by Lem-
ma 16, we obtain
¢ (x) [ ¢ (z)dz
¢* (Axy) X =Y~ g ly—2l?*®
a-d ¢ (x) ()
¢ (Ary) lx— 28 O (L+8 )
¢ (x) ()
® 6 (Auy) =18 OF (1+3 0

Ig>c},3%7¢

2
= Ci7C183

>
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Therefore we get

m ¢(x)¢ ()
6 2 d—a ]
$* (Axy) X =y 25 Y (143 ()

< (m4 + m5)

s S lg < I4+1s

¢ (x) b ()
G (Ary) X =yl * 8 () (1+8 ()"

Applying this to (30) we obtain (2).

Case (¢). 4(y) > ro/32.
From the Ikeda—Watanabe formula we infer that

cd {zn} E* {rp}
19 5(}’ d+a 5(y)d+a’

and (2) follows from Lemma 17. =

S P(x,y) < co

The estimates of the Martin kernel follow easily from the estimates for the
Green function (Theorem 1). Since the proof is analogous to the one from [5],
we will omit it.

5. APPLICATIONS

In this section we present some applications of the results obtained in this
work, which simplifies proofs of some well-known results. The first one is the
following “3G Theorem™ (cf. [6] and [15]).

THEOREM 18 (“3G Theorem™). There exists a constant Cyq = C14(D, @)
such that for every x,y,zeD we have

G, »)G(y, 2) e —yl* % ly—z*"4
—— < Cy,y -
G(x, 2) |x — z|*
Proof. The proof follows [5]. Let x, y, ze D and Re #(x, y), Seﬂ(y, z)
and Te#(x, z). By Theorem 1 we have

G, )G, 2) _ c3 Ix—y[*~4|y—z*~4
G(x,2) ' |x—zp?

1)

.
W=,
where

_$0)$(T)
P (R)$(S)

We only need to show that W is bounded. By (22) there exists a constant
¢y =cy(D,a) such that ¢(y)<c;9d(R) and ¢(y) <c;¢(S). Note that
|x—z| < |x—y|+|y—2z < 2(x—y| v |y—z|). Hence by (21) there exists a con-
stant ¢, = ¢, (D, «) such that either ¢ (T) < c; ¢(R) or ¢(T) < ¢, ¢ (S). There-
fore W < ¢, c,. Taking Cy, = CicicZ we obtain (41). =
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We conclude this work with short proofs of the well-known estimates for
the Green function and the Poisson kernel for bounded C!! domains (Theo-
rems 21 and 22) first proved in [12], {13] and [19].

A function F: R*~! — R is called C*! if it has first derivative F’ and there
exists a constant # such that for all x, ye R~ ! we have |F' (x)—F ()| < n]x—}|.
A domain D = R is called a C''' domain with constants #, r, > 0 if for every
QedD there exists a C! function Fy: R®! - R (with C!! constant #), an
orthonormal coordinate system CSy and a constant ro = ro(D) such that if
¥ ={¥1, ¥2, ..., ya) in CS, coordinates, then

B(Qa ro)ﬁD = B(Q: rO)n{y: Ya > FQ(yla Y25 .e0s yd—l)}'

Clearly, every (bounded) C''! domain is Lipschitz. C!'* domains have the
following property ([22]):

There exists a constant s, such that for every xeD satisfying 6 (x) < s,
there exist two balls B: and B2 of radius s, such that B! = D, B2 c int (D) and
0BLNdB2 = {x*}, where x*€dD is a point satisfying &(x) = |x—x*|. The con-
stant s, depends on d, 5, ry, where ro, and # are constants defining the C!'!
domain.

In what follows we assume that our (bounded) Lipschitz domain D with
Lipschitz character (rq, A) is also a C!'! domain with constants r, and #. When
writing ¢ = c¢(D), we mean ¢ = c(d, ro, 4, 0), as usual. We first need the fol-
lowing auxiliary results based on the explicit formula for the Green function of
the complement of the ball [2].

LemMma 19. For any s > O there exists a constant Mg = Mgy (d, o, s) such
that for every ball B = B(a, s)< R* we have

Op (x)m
x— yld —%2°

The proof of this lemma can be found in [12] (Lemma 2.5).

(42) Gpe(x, y) < Mgly—al*? x, ye B.

LEMMA 20. There exists a constant Cy5 = Cy5(D, 5o, ®) such that
(43) o Ci‘sl 5'1/2 (x) S Ex {TD} S C15 5“’2 (x)
Jor all xeD.

Proof. It is well known (see, e.g., (2.10) in [10], or [87) that there exists
a constant My = My (d, ) such that for any s >0 we have

(44) E* {tpo,q} = Mo (s*—|xI?"?, x€B(0, s).
First assume that d(x) > s,. Note that

E° {13050} = E*{TBs.500} < E* {tp} < E* {Tp0} = E® {T8(0,0)} -

Hence (43) holds clearly because J(x) is also bounded by *two constants:
s <d(x)<0.
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Now assume that 6(x) <s,. We have E*{1p} < E*{1p}. From (44)
it follows that there exists a constant c¢; =c,;(d, So, ®) such that
E*{tpi} > ¢; 6§2(x) = ¢; 6% (x). Hence we obtain the left-hand side of (43). Let
x’ be the center of the ball B;. Note that dg2)c(x) = 6(x). By Lemma 19, for any
yeD we get

6%2 (x)

G(x, y) < Gz (x, y) < €2 [y— x| oy

where ¢, = ¢,(d, a, 5g). Therefore

X na/2 5«/2(x)
E*{ep} = [ Glx, )y < ]j;Cz L = L

61/2 (JC)

———— = dy < c367%(x),
Pe—y1*=%

< fealso+0172
D

where ¢y = c3(D, s, @). This completes the proof. m

In connection to the fact that E*{z,} is comparable to G(x,, x) at the
boundary of D we remark here that it is known that for every Q € oD the limit

. G(an J’)
lim
Day~Q 5(J’)a/2

exists and is a positive number (see [9] for the proof).
THEOREM 21. There exists a constant Cy6 = C16(D, So, @) such that

5% (%) 52 ()

% |x_ |¢_d<Gx’ )
— ) ¥ >,y

45) Cd <1 A

/2 af2
< cm(l A M) s

| —y|*
Proof. By Lemmas 17 and 20 there exists a constant ¢; = ¢, (D, 5o, @)
such that

(46) ci 10 (x) < p(x) < ¢, 07%(x), xeD.
By Theorem 1 and (46) we get for ¢, = c,(D, a)
P Wix—y <G, )<, Wx—y"™?,  x, yeD,

where

@7 W=

FPWETY) (5 (y))“fz . (a (x))“/z FERE)
[B6)ve0) v ik—lF 6t/ "\50) b=y
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Since (6 (x)/6(¥)) A (6(3)/6(x)) < 1, we get
W <1 A [0 (x) 0% (y) Ix —y| ~“1.
Therefore the right-hand side of (45) holds with Ci4 = c,.

To estimate W from below, we assume first that J(y) < 6(x)/3. Then
[x—yl = 6(x)—48(y) > 26(x)/3. Hence

6 (x)6 )/lx—yI* < 90 (n)/(46 (x)) < 1.
Therefore we get
A 02 (x) %% (y) _ (93> 82 (%) 8%*(y)

= @) x—yF
< (9)«/2 l: 5a/2 (y) 5“/2 (x) 6@/2 (y)

4) |2m" T =y

]<3W.

The case d(x) < d(y)/3 is analogous to the previous one.

If 6(y)/3 < 6(x) < 36(y), then 8(y)/d(x) = 1/3 and J(x)/d(y) = 1/3. Hence
1 A (072 (x) 8%2 (y)/|1x — yI%) < 3W.

Therefore we obtain (45) with Ci6 = 3¢;. m

We will now give a short proof of the estimates for the Poisson kernel for
bounded C!'!' domains (see [12]).

THEOREM 22. There exists a constant Cy7 = Cy7(D, so, ) such that
%2 (x)

48 Cit
) Ix—y|* 62 (y) (1 +6 ()

¢/2 < P(x’ y)

8%2 (x)
< Cyy — y|d 5oz 145 (V2
lx—yl? 6% (y) (1 +3 ()

where xeD and yeint(D°).

Proof. By Lemmas 17 and 20 there exists a constant ¢; = ¢4 (D, sg, @)
such that

(49) 7162 (x) < ¢(x) < ¢, 6% (x), xeD.

Let xeD, yeint(D), y' e(y)(S), where SedD is a point such that
ly—S]=0(). Let s=3d(x) vd(y) Vv |x—)'|. By Theorem 2 and (49) we have

5% (%) 52 ()
5 () x—yI** 5 G) 1+ S )Y

(50) c3* < P(x, y)

¢4 092 (x) 672 (y)
T A =yl )1+ ()

where Ae#(x, y') and ¢, = ¢, (D, s, @).
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First assume that d(y) < ro/32. Note that xd(y) < 6()') < 6(y). Hence
thére exists a constant c¢3 = ¢3(4) such that

(51) c310() <3() < cad(y).
It suffices to prove that there exists a constant c, = c4(4) such that
(52) cat =yl < 5(4) S calx—yl.

Indeed, |x—y| < [x—V|+|y—Y| < |Ix—y|+26 (¥) < ¢35 < (3¢a/Kk) 0 (A). More-
over, [x—y| = d(x)vé(y) and |x—y| <|x—y|+25(y) < 3|x—=y|, and hence
|x—y| = s/3 > 8(A)/12. Therefore (52) holds. Applying (51) and (52) to (50) we
obtain (48).

Now assume that &(y) > ro/32. We have y' = x; = A. There exist con-
stants ¢s = ¢5(0, ro) and cg = c¢(0, ro) such that

cstx—y <o) <cslx—yl, gt <IN +1<ced(y)
for all xeD. These two inequalities and (50) yield (48). =
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