
PROBABlLlTY 
AND 

MATHEMATICAL STATISTICS 

VoL 22. 2 (1002). pp. 443456 

MULTIPLY C-DECOMPOSABLE 
PROBABILITY MEASkTRES ON R 

ANID THEW CHARACTERISTIC FUNCTIONS 

TERESA R A J B A* @IEWO-BU~A) 

Abstract. We obtain the characteristic functions of distributions 
in LC,., i.e. a-times c-decomposable distributions in the class of 
infinitely divisible distributions, where 0 < a < m, 0 < c < 1. The 
characteristic functions of &-times sclfdecomposable laws (i.e. a-times 
c-decomposable for each CE(O, 1)) are well known (see [3], [5],  
PI, C131). 
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1. INTRODUCTION AND NOTATION 

Given a probability measure P  on R, Icl G 1, we say that P is c-decom- 
posable if P  = T, P *  PC for some probability measure PC, where T , x  = cx 
(x E R), T,  P (B) = P (T; ' B) for any non-zero c and Bore1 set B, and P = aO. 
For a probability measure P, is defined to be the probability measure given 
by F(A) = P ( -  A). We must mention the name of Lo6ve as a pioneer of the 
decomposable problem [6] (this history can be aIso found in Bunge [l]). Loeve 
showed in [6] that (if 0 < Icl < 1) P is c-decomposable if and only if P is of the 
form P  = *,"=, ZR PC for some probability measure PC. He denoted the set of all 
c-decomposable laws by LC. The class L, or the set of self-decomposable laws, is 
defined as L = r)cE,t,,Lc. A generalization of c-decomposable laws to the 
multiple case is given In [8]. Namely, for a given n EN we say [8] that a proba- 
bility measure P is n-times c-decomposabb if there exist probability measures 
PC,(l), . . ., PC,(, such that 
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Then, by (1.1), P is n-times c-decomposable if and only if P is of the form 

where the power is taken in the convolution sense. The formula (1.2) suggests 
to generalize the concept of n-times c-decomposable probability measures to 
the non-integer case (see [8]). 

Let i d  denote the class of all infinitely divisible measures  on^. For a > 0, 
r (k, a) is given by (1.2) with a in place of n. A probability measure P E Id is said 
to be a-times c-decomposabk (in Id, 0 < c < 1, or > 0) if there exists P , , ( , , ~ l d  
such that 

Let &,, denote the subclass of Id consisting of probability measures P such 
that (1.3) holds for some PCqI,,~id. It is well known [8] that the infinite con- 
volution (1.3) is convergent if and only if has the finite loga-moment, i.e. 

We define the class of completely c-decomposable measures by the for- 
mula LC,, =.. (see [l] and 173). We note that P is completely c-decom- 
posable if and only if it is n-times c-decomposable for every n E N. The proba- 
bility measures in La = no,,,, L C ,  are called ol-times self-decomposable for 
0 < cc < m, and completely self-decomposable for a = m. The measures in the 
classes L, (0 < a < m) of multiply self-decomposable measures were also inves- 
tigated on multidimensional spaces. In particular, their characteristic func- 
tional~ are well known (Kumar and Schreiber 151, Sato 1131, Jurek 131, Nguyen 
van Thu [9]). 

In this paper we give characteristic functions of multiply c-decomposable 
distributions, i.e. distributions in &,, (0 < a < CQ). 

2. MEASURES IN I+,= 

Let q(t) be the characteristic function of P ~ i d ,  

where g,(u) = eit" - 1 - itu/(l+ u2), b is a real constant, and p is a finite Bore1 
measure on R. The function q determines uniquely b and p. Then for the 



measure v = v IIL) given by 
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we have 
0 41 0 1 

(2.3) ( 1 + 1) u2/(l +uZ) r (du) < co or, equivalently, ( 1 + 1) uZ v [du) < cc , 
-s, 0 -1 0 

We shall call p and v the Khintchine and the f i v y  (spectral) masure, respec- 
tively, corresponding to P. - 

Let v,~,) be the Levy measure corresponding to PC,(,, satisfying (1.3). It is 
well known [8] that the following conditions are equivalent: 

(a) the infinite convolution (1.3) is convergent; 
(b) PC,,,, has a finite log"-moment, i.e. (1.4) holds; 
(c) v,,(,, satisfies the following condition: 

Id) the following series is convergent: 

Note that the Lkvy measures corresponding to distributions from &,, are of the 
form (2.5). We now apply (2.5) to obtain the characteristic function of a-times 
c-decomposable distributions (0 c a < m). 

THEOREM 2.1. The function cp is the characteristic function of PEL, ,  
(0 < or < m) if and only if cp is of the form 

where b E R, G 2 0, and v,(,, is a Borel measure on (- CQ , 0) u(0, CQ) such that 
(10 +J:) u2 vC,(,) (du) < m and the condition (2.4) is satislied. The function q~ de- 
termines uniquely b, G and v,,~,,. 

We shall find the relations of the representations (2.5) and (2.6) of G v y  
measure and the characteristic function, respectively, corresponding to a-times 
c-decomposable distributions with the representations of Livy measure and the 
characteristic function corresponding to a-times self-decomposable distribu- 
tions. We start the study with the following lemma. 

LEMMA 2.2. If a > 0, h > 0, and x, y ER, then 



446 T. Rajba 

Proof. Let g be a non-negative non-increasing function on R. It is not 
difficult to prove that 

which implies that the series zT=o g(x+jh) is convergent if and only if 
g (u) du < m . From (2.8) we obtain h x,?=o g (x + jh) -r g (u) du as h -r 0. 

We can prove inductively that for each n ~ l V  - 

Applying (2.9) to g(x) =  XI-^,^^ (x) we have 

Let a > 0. It is not difficult to prove that x:=, r (j, a) = r(k,  a + 11, k EN, 
wbich gives 

Recall that (cf. [8]) for 0 < a < 1 the following inequalities hold: 

In the case 0 < a < 1, by (1.2) and (2.11) we obtain 

In the case a > 1 we can write u in the form a = n fa, where n EN, 
0 < /I < 1. Assume that /I > 0. Putting 

we have Ihal +, (g) = Iha, ( I , , ,  b)). Then I , a  (g) = 1h.n (Ih,B (gj). Applying (2.8) 
with in place of g and putting g = x ( - ~ , ~ , ,  similarly to the above, we 
infer that (2.12) holds for a > 1. 

Thus we have shown that (2.12) holds for all a > 0, which gives (2.7) and 
the lemma is proved. 
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THEOREM 2.3. A probability measure P is a-times selJldecumposable 
(0 < a. < a) if and only if its Livy spectral measure v is of the form 

or, equiv~lently, its characteristic function rp is of the form 
- 

0 m a  

(2.14) q(t) = exp (ibt -Gt2 /2+(  + j) l g,(~e-~)ay"-' d y  ya(dv)), 
- m  0 0 

where y, is a Bore1 measure on (- co, O)u(O, m) such that 

Proof ,  Let v be the Levy spectral measure corresponding to a-times self- 
-decomposable probability measure P, i,e. P E &,, for each c E (0, 1). Then so is 
v" defined by f ( B )  = v(-B),  B c (-m,O)v(O, m). 

Thus it is sufficient to assume that v is concentrated on (0, a). Let 7 be the 
measure on R defined by ?(lnB) = v (B), 3 c (0, a). Let f and f be the dis- 
tribution functions of v and V, respectively, i.e. f (x) = v((x, co)), x > 0, and 
T(y) = V(ty, co)), y ER. Then f (lnx) = f (x), x > 0. By (2.5) we see that V is of 
the form 

m 

(2.15) = C r(j ,  a)U-jhVc,a, 
j = O  

where h = -In c, U, (x) = x + Q, x, a E R. Defining V C ,  as 

we can rewrite (2.15) in the form 
m m  

(2.16) ~ ( d y )  = 1 C r (j, 4 U- j h  8" ($1 F ~ , ~  (d4. 
-m j = 0  

Then the distribution function of i j  is of the form 
m a r  

J (Y)  = 1 C r ( j 7  a )~( -m,~- jh~(~)vc ,a (d~)  
-03 j = O  

or, equivalently, 
m m 

(2.17) fiy) = j r ( u  + 1) ha x r (j, a) x(- m,u- jh] b ) % , a  (d~)r 
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where Yc,=(h) = ( r ( a +  1) ha)-' &,,(du). Now it is very easy to obtain the well- 
-known Lkvy spectral measure representation of u-times self-decomposable 
laws. From the relation (2.171, by letting h tend to zero and making use of 
Lemma 2.2 and Helly's theorem, we conclude that 

Consequently, f (n) = 1," (In vx TC,, (dv), x > 0, and 

The formula (2.18) gives a representation of ~ l ( ~ , , , .   or the general case 
note that v is given by (2.13), An easy computation shows that the characteristic 
function rp is given by the formula (2.14) and the theorem is proved. 

Now we are going to describe the classes L,,,. 

3. EXTREME! POINTS 

Let P E I ~  and let v be the E v y  measure corresponding to P. By (1.1) and 
(2.5), the following conditions are equivalent: 

ta) PELC,,; 
(b) for every k = 1, 2, . . . the measure v is of the form 

where v,,(,) is a Borel measure on (- m , 0) v(0, oo) satisfying the condition (2.3) 
(with k in place of a); 

(c) for every k = 1, 2, .  . . the measure v , , ( ~ )  satisfies the following inequali- 
ties : 

where PC,(,, = P, PC,(,) (k = 1 ,  2, . . .) are measures given by (1.1) and 
vC,(,, (k = 0 ,  1, 2, . ..) are Lkvy measures corresponding to 

By (1.1) we have the following equalities: 

Put Mo = {p: p is a finite Borel measure on R such that v = v ( p )  given by 
(2.2) is of the form (3.1) for each  EN). Then the set of Khintchine measures 
corresponding to P E L , ,  coincides with the set MO. We put M = ( p :  p is 
a finite Borel measure on [- m,  oo] such that p1, E MO).  Let K be the subset of 
M consisting of probability measures and KO = K n  MO. The convexity of 
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K follows easily from the definition. The space of all probability measures on 
[- m, GO] with weak convergence is a metrizable compact space. We consider 
the induced topology on K. We shall prove that K is closed and, consequently, 
compact. First we shall find the extreme points of the set K. Let us denote by 
e ( K )  the set of extreme points of K. Put Y, = {y: 1 < lyl < l/c). The folIowing 
lemma is obvious. 

LEMMA 3.1. If p E e (K),  then y is concentrated on one cj the following sets: 
{- 00), (031, 10, 001, C- a, 01, L-lnd ( 0 ) .  

LEMMA 3.2. Let p E e (K).  If p is concentrated on the set ( - co ; 0) u (0, a), 
then p is concentrated OPZ the set of the form 

where yo E Y,. 

P r o  of. Let p E e (K) .  Since p E e ( K )  if and only if E e (K), it is sfl~cient to 
assume that p is concentrated on (0, m). Suppose that there exists 1 < E < l /c  
such that /i(AI) > 0 and p(A,)  > 0, where A1 = A1 (8)  = Ur= c-k [ I ,  E) and 
A, = A2 (E) = UT= -co c - ~  [ E ,  1/c). Then we have the equality 

where ai = p(Ai),  pi = m i 1  pJAi. Since A, n A, = D, there is no C > O such that 
p1 = C p .  By (3.4) we see that v = E, v1 + a ,  v 2 ,  where v ,  v l ,  v2 are the LCvy 
measures corresponding to p, p l ,  p2,  respectively. Let k E N. Since v is of the 
form (3.1), we obtain 

m 

(3.6) V I A ,  = C r (jl k) T,i (v,,fi,l~,), i = 1, 2. 
j=O 

Obviously, for every i = 1,  2,  ai vi is the Ltvy measure corresponding to the 
Khintchine measure ai pi and ai vi = vlAi. Thus by (3.5) we obtain z i p i €  M and 
consequently, pi€K. By (3.4) this contradicts that p is the extreme point. 

Thus we infer that for every 1 < E < l / c  either p(A,(c))  = 0 or 
p ( A ,  (E)) = 0. This implies that there exists yo E n(0, co) such that p is con- 
centrated on the set { y o ~ - k ) , " , - , .  Thus the lemma is proved. 

We use the following notation given in [14] and 121. We say that a function 
f is completely monotone if it has derivatives of any finite order such that 
(- Ir f ("'(x) 2 0 {n  = 0, 1, 2, . . .). Completely monotone functions on (0 ,  CQ) are 
characterized by the Bernstein representation (see [14], Theorem 12a1 p. 160). 

PROPOSITTON 3.3. A function f on (0 ,  m) is completely monotone ifand only if 
m 

f ( t )  = j e-"F(dx),  
0  

where F is a Bore2 m a s w e  on [O, m]. Moreover, F is uniquely determined b y  f. 
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Remark  3.4. A completely monotone function f on (a, a), where 
- oo < a < 0, is also of the form (3.7). Moreover, if - co < a < 0, then 
f (a+O) < ao if and only if e-""F(dx) is a finite measure. If a = - m, then 
ebx F (dx) is a finite measure for all b > 0. 

Consider a sequence of real numbers { a , ) s o .  We define the sequence 
given by the formula Aa, = a,,, -a,, n = 0, 1, 2, . . . Further, we define induc- 
tively sequences as follows: A'  a, = Aa,,, Aka, = A (Ak-' a,), k = 2, 3, . . . The 
sequence  an]^=, will be called k-times monotone, k = 1, 2, . . ., if (see [4]) 

- 

(3.8) Ajan>O, j =  1, 2 ,..., k, n = 0 ,  l , 2 ,  ... 
It  is well known [4] that 

The sequence { a n ) ~ O  will be called completely monotone if it is k-monotone for 
k = 1,2, . . . We say that a sequence {a,),"=, is minimal if decreasing a. makes 
of it a sequence which is no longer completely monotone (see [2], [14]). We say 
that a sequence {a,),"=-, is compIetely monotone if each of the sequences 
{a,),", -,, k = 1, 2, . . ., is completely monotone. If {an},"= -, is completely 
monotone, then each of the sequences (a,),", +, k = 1, 2, . . ., is minimal. 

PROPOSITION 3.5 (Feller [23. Let {a,)% - , be a completely monotone se- 
quence, x, = nh, h > 0, nEZ (2 = (0, f 1, k2, . . .)). Then there is a uniquely 
determined function f (x) on R such that f (x) is completely monotone and 

Remark  3.6. In [2] the function f (x) is defined such that it is completely 
monotone for x 2 xo and f (x,) = a,, n = 1, 2, . . ., f (xO) < a,, where a,, a,, . . . 
is a completely monotone sequence corresponding to a sequence of real num- 
bers 0 < xo < xl < . . . such that the series l/xn diverges. But if a,, al, .. . is 
minimal, then we have the equality f (xo) = ao. 

LEMMA 3.7. Let p ~ e ( K )  and assume that p is concentrated on the set 
( - a ,  O)u(O, co). Then v = v(p) is of the form 

where 0 < oro < 2, yo€ Y,, and 

P r o  of. Let p E e(K) and let p be concentrated on the set (- co, 0) u(0, m). 
As in Lemma 3.2 it is sufficient to assume that p is concentrated on (0, CQ). By 



Decomposable prob~bility measures 451 

Lemma 3.2, p is concentrated on the set given by (3.6). Put 

By (3.2) and (3.31, the sequence (a,),"=-, is completely monotone. Put 
x, = nln (c-l), n E 2. By Proposition 3.5 there exists a uniquely determined 
completely monotone function f on R such that 

By Proposition 3.3, f is of the form - 

m 

(3.14) f (x)  = j e-"XF(dz), 
0 

where I; is a Bore1 measure on (0, a) (F is without atoms on the set (0,  CQ) 

since lima, = 0 as n+ ca and an > 0, ~ E Z . )  
Now we shall prove that F is a degenerate measure. Contrary to our 

statement suppose that there exists b > 0 such that F ( ( 0 ,  b] )  > 0 and 
F((b, a)) > 0. Then we can write f as the sum of completely monotone 
functions: f =f, +fi, where A (x) = 1; epzx F, (dz), i = 1, 2, F1 = Ft[,,,,, 
Fz = F- F ,  . In particular, we have f (xJ = f, (x,) + f2 (x,), n E 2. We define the 
measures v l ,  v2 as follows: v i  ({yo c-"1) =fi (x,), i = 1, 2, n E Z.  Then v i  = v i  (pi), 
i = 1, 2, are Lkvy measures of infinitely divisible distributions such that pi E M 
and p = pl +p,. Let us put p = p1 ({yoc-n)~=-,). Then we have 

Pl Pl P 2  

B 
" where -, - P = B-+(l-8)m, B l-BEKy 

which contradicts the fact that p is an extreme point. 
Thus, F is degenerate. Then, for example, let F = Co J,,, where zo, Co are 

positive constants. This implies by (3.14) that f is of the form 

(3.15) f (x) = Coexp(-zox), XER. 

We introduce the function 

where x = In (u/yo), u > 0, x E R. By (3.12) and (3.13) we have f (n ln c- l) = 

f (x.) = v ( { y o  C-"1). Thus 

By (3.15) and (3.16) we havef(u) = Co (u/yo)-"O. Taking into account (3.17) we 
see that this implies 



Denote by v,,,,,, the measure given by (3,18), 

 pry,.^^) = u2/(1 + u2) v~Y,,,,, ( d ~ ) .  
Since pIYO,zO, is a probability measure, Co is given by (3.11), where O < zo < 2, 
yo E Y,. Thus the lemma is proved. 

Let us put G, = O < z0 < 2, yo€ Y,). Directly from Lemmas 3.1 
and 3.7 we obtain the following lemma: 

LEMMA 3+8. e(K)cGcu{GO, a_,, 6,). 

Lmm4 3.9. G,u{GO, S-,, S , } c e ( K ) .  - 

P r o  of. Once again it is sufficient to consider pb0,,,, for yo E Y,n(O, a ) ,  
0 < zo < 2. Suppose that p~,,,,o, is not an extreme point. -Then there exist 
0 < /? < I ,  pl, p2€K such that ,ul # pz and 

(3.19) ~~yo.za) = BPI +I1 -81~2. 
Clearly, both measures p,, p2 are concentrated on the set {u,)F= -,, where 
u,, = y0c-", ~ E Z .  By (3.19) we have 

(3.20) V(~~,Z,) = BVI + (1 - 8) v2 3 

where vi = vi(pi), i = 1, 2. Let f, fl, f2 be completely monotone functions such 
that f (x,) = ~b,,~,) (u,), h(x,) = v; (u,), X, = nln (c- I), i = 1, 2, n E Z. We note 
that the function g = j7fl +(l-8) f2 is a completely monotone function. By 
(3.20) we have f (x,) = g(xn), nEZ.  Since a completely monotone function is 
uniquely determined by its value at points xn, ~ E Z ,  we have 

(3.21) f (~)=Bfi (~)+( l -P)fzIx) ,  XER. 

Since f (x) = Co exp (-2, x) and it is the extreme point in the set of completely 
monotone functions (see [lo]), it follows by (3.21) that fi (x) = f2(x) = 
Co exp (- z0 x). This implies that v l  = v2 = v(~,,,, and, consequently, p, = 
p2 = p(yo,zol. This contradiction implies that  yo,,,, must be an extreme point. 
This completes the proof of the lemma. 

By Lemmas 3.8 and 3.9 we have 

THEOREM 3.10. e(K) = G,u {6,,, 6-,, 8,). 

By p, * p  we denote the weak convergence of measures. Observe that 
e(K) is closed. In particular, we have: 

Thus e(K) is compact and, consequently, K is compact. 

LEMMA 3.11. K is compact. 
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4. TI%E CI-URACTERHTIC FUNCTIONS OF MEASURES FROM LC,, 

Now we will apply Choquet's theorem on representation of the points of 
a compact convex set as barycenters of the extreme points ([lo], p. 19). Then, 
taking into account Theorem 3.10, we infer that ,u is in K if and only if 

where y is a probability measure on G,  u (a0, 6-, , 6,). Moreover, p E KO if 
and only if the measure y assigns zero mass to the set {S -, , 8,).  We note that 
the representation of fil~-,,o),(o,,), where p€KO, is given by (4.1) with 
Gcu {Joy 6- ,, S,] replaced by G,. It is not dficult to prove that the mapping 
k,? -, Cy, z) is a homeomorphism of Y, x (O,2) onto Gc. Thus we can write p from 
KQ and concentrated on (-m, O)u(O, oo) in the form 

where A is a probability measure on YE x (0,2). It is not H c u l t  to prove that 
K is a simplex (analogously as in [Ill); then from Choquet's uniqueness theo- 
rem for a metrizable space ([lo], p. 70) we infer that A is determined uniquely 
(see [l I]). Obviously, the measure p E M0 concentrated on ( - a,, 0) v(0, m) is 
given by (4.2), where d is a finite measure on Y,  x (0, 2). Finally, by (4.2) we 
obtain the representation of v = v (p), where p E M O .  Thus the following lemma 
is proved: 

LEMMA 4.1. The measure v is the Ltvy measure corresponding to P E LC, ,  $ 
and only $ v t a b s  one of the following forms: 

where R is a pnite BoreE measure on Y ,  x (0, 2), or, equivalently, 

where z is a Borel measure on Y, x (0, 2) (z = yz Co ( y ,  z)  A) such that 

is a finite Borel measure on Y,  x (0, 2), or, equivalently, 
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where 5 is a Borel measure on Y, x (0, 2) such that 

is a finite Borel measure on Y,. x (0, 2). 
Moreover, the measure v determines uniquely the measures 1, z, and <. 
Applying (4.3) and (4.4) we obtain the characteristic functions of com- 

pletely c-decomposable distributions. 

THEOREM 4.2. Thefinction q is the characteristicfunction Cf P E LC,, i f  and 
only if rp is of the form 

(4.8) tp ( t )  = exp (ibt - (3t2/2 

where d is a finite Borel measure on Y, x (0, 2), b E R, G 2 0, or, equivalently, 
. - 

m 

(4.9) ~p (t)  = exp {ibt - Gt2/2 + j lycnl -"g,  ( y f )  z (d ( Y ,  z) ) ) ,  
Y , x ( 0 , 2 )  n = - m  

where z is a Borel measure on Y, x (0,  2) such that the condition (4.5) is satisjied, 
~ E R ,  G 2 0. 

Moreover, b, G, A, and a are uniquely determined. 

Remark  4.3. In the particular case z = zl x z2 we can rewrite the for- 
mula (4.9) in the form 

m m 2 

(4.10) cp ( t)  = exp {ibt - Gt2/2+ x gt bc") X Y , ~ )  1 l ~ c ~ l - ~ a 2  (dz)al ( d ~ ) ) .  
- m  n=-m 0 

Putting h(u) = lul-'r, (dz) and K(x) = h (u), where u > 0 and x = In u, we 
obtain 

m m 

(4.1 1) cp ( t)  = exp {ibt - Gt2/2 + j x gt (yc") xyc (Y) k (ye") 7 2  (dz) z l  (dy)) 9 

- m  n=-m 

where h (u) is a function on ( - coy 0)  u (0,  a) for which h ( - ts) = h (u) and F(x) 
is a completely monotone function (on El) such that the measure I: determined 
by the Bernstein representation (3.7) is concentrated on (0,  2), i.e. 
F(x) = 1; e-"z, (dz). 

We shall derive from Lemma 4.1 the well-known representation of com- 
pletely self-decomposable distribution. 

THEOREM 4.4. A probability measure P is compietely sew-decomposable i f  
and only if its Ltvy spectral measure v is of the form 
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or, equivalently, its chmacteristic function q is of the form 

(4.13) rp ( t )  = exp (ibt - G t 2 / 2 + j (  j + j ) g , ( ~ ) z l u l - ~ - ' d u  y (dz)), 
0 -a 0 

where y is a finite BoreE measure on (0, 2). 

Proof.  Let a probability measure P be completely self-decomposable, i.e. 
P E  LC,, for every c E (0, 1). Let v be the Uvy spectral measure corresponding 
to P. By Lemma 4.1, v is of the form (4.4). Assume that v is concentrated on 
(0, a). Then we can write V and its distribution function f i n t h e  form 

respectively. From (4.15), by letting h tend to zero and making use of Helly's 
theorem, we conclude that f (u) = &,,,I,,2, e-"" y (d (y , z)). Taking the measure 
y (dz) in place of the measure y (d Iy, z)), respectively, we obtain 

and 
2 

v (dx) = J zx -'- 
0 

r (dz). 

The above formula gives a representation of vlto,co,. Consequently, v is 
determined by (4.12). Easy computations show that the characteristic function 
is given by (4.13). Thus the theorem is proved. 
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