MULTIPLY c-DECOMPOSABLE PROBABILITY MEASURES ON \boldsymbol{R} AND THEIR CHARACTERISTIC FUNCTIONS

BY

TERESA RAJBA* (Bielsko-Biala)

Abstract

We obtain the characteristic functions of distributions in $L_{c, \alpha}$, i.e. α-times c-decomposable distributions in the class of infinitely divisible distributions, where $0<\alpha \leqslant \infty, 0<c<1$. The characteristic functions of α-times selfdecomposable laws (i.e. α-times c-decomposable for each $c \in(0,1)$) are well known (see [3], [5], [9], [13]).

2000 Mathematics Subject Classification: 60E05, 60E07, 60E10.
Key words and phrases: Infinitely divisible measure, decomposable probability measure, selfdecomposable measure.

1. INTRODUCTION AND NOTATION

Given a probability measure P on $R,|c| \leqslant 1$, we say that P is c-decomposable if $P=T_{c} P * P_{c}$ for some probability measure P_{c}, where $T_{c} x=c x$ $(x \in R), T_{c} P(B)=P\left(T_{c}^{-1} B\right)$ for any non-zero c and Borel set B, and $T_{0} P=\delta_{0}$. For a probability measure P, \widetilde{P} is defined to be the probability measure given by $\tilde{P}(A)=P(-A)$. We must mention the name of Loève as a pioneer of the decomposable problem [6] (this history can be also found in Bunge [1]). Loève showed in [6] that (if $0<|c|<1$) P is c-decomposable if and only if P is of the form $P=*_{k=0}^{\infty} T_{c^{k}} P_{c}$ for some probability measure P_{c}. He denoted the set of all c-decomposable laws by L_{c}. The class L, or the set of self-decomposable laws, is defined as $L=\bigcap_{c \in(0,1)} L_{c}$. A generalization of c-decomposable laws to the multiple case is given in [8]. Namely, for a given $n \in N$ we say [8] that a probability measure P is n-times c-decomposable if there exist probability measures $P_{c,(1)}, \ldots, P_{c,(n)}$ such that

$$
\begin{equation*}
P=T_{c} P * P_{c,(1)} * \ldots * P_{c,(n-1)}=T_{c} P_{c,(n-1)} * P_{c,(n)} . \tag{1.1}
\end{equation*}
$$

[^0]Then, by (1.1), P is n-times c-decomposable if and only if P is of the form

$$
\begin{gather*}
P=\stackrel{\infty}{k=0} T_{c^{k}} P_{c,(n)}^{r(k, n)}, \tag{1.2}\\
r(k, n)=n(n+1) \ldots(n+k-1) / k!=\Gamma(k+n) / \Gamma(n) \Gamma(k+1),
\end{gather*}
$$

where the power is taken in the convolution sense. The formula (1.2) suggests to generalize the concept of n-times c-decomposable probability measures to the non-integer case (see [8]).

Let $I d$ denote the class of all infinitely divisible measures on \boldsymbol{R}. For $\alpha>0$, $r(k, \alpha)$ is given by (1.2) with α in place of n. A probability measure $P \in I d$ is said to be α-times c-decomposable (in Id, $0<c<1, \alpha>0$) if there exists $P_{c,(\alpha)} \in I d$ such that

$$
\begin{equation*}
P=\underset{k=0}{\infty} T_{c^{k}} P_{c,(\alpha)}^{r(k, \alpha)} . \tag{1.3}
\end{equation*}
$$

Let $L_{c, \alpha}$ denote the subclass of $I d$ consisting of probability measures P such that (1.3) holds for some $P_{c,(\alpha)} \in I d$. It is well known [8] that the infinite convolution (1.3) is convergent if and only if $P_{c,(\alpha)}$ has the finite $\log ^{\alpha}$-moment, i.e.

$$
\begin{equation*}
\int_{-\infty}^{\infty} \log ^{\alpha}(1+|x|) P_{c,(\alpha)}(d x)<\infty \tag{1.4}
\end{equation*}
$$

We define the class of completely c-decomposable measures by the formula $L_{c, \infty}=\bigcap_{\alpha>0} L_{c, \alpha}$ (see [1] and [7]). We note that P is completely c-decomposable if and only if it is n-times c-decomposable for every $n \in N$. The probability measures in $L_{\alpha}=\bigcap_{0<c<1} L_{c, \alpha}$ are called α-times self-decomposable for $0<\alpha<\infty$, and completely self-decomposable for $\alpha=\infty$. The measures in the classes $L_{\alpha}(0<\alpha \leqslant \infty)$ of multiply self-decomposable measures were also investigated on multidimensional spaces. In particular, their characteristic functionals are well known (Kumar and Schreiber [5], Sato [13], Jurek [3], Nguyen van Thu [9]).

In this paper we give characteristic functions of multiply c-decomposable distributions, i.e. distributions in $L_{c, \alpha}(0<\alpha \leqslant \infty)$.

2. MEASURES IN $L_{c, \alpha}$

Let $\varphi(t)$ be the characteristic function of $P \in I d$,

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t+\int_{-\infty}^{\infty} g_{t}(u) \frac{1+u^{2}}{u^{2}} \mu(d u)\right\} \tag{2.1}
\end{equation*}
$$

where $g_{t}(u)=e^{i t u}-1-i t u /\left(1+u^{2}\right), b$ is a real constant, and μ is a finite Borel measure on \boldsymbol{R}. The function φ determines uniquely b and μ. Then for the
measure $v=v(\mu)$ given by

$$
\begin{equation*}
v=\left(1+u^{2}\right) /\left.u^{2} \mu\right|_{(-\infty, 0) \cup(0, \infty)} \tag{2.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) u^{2} /\left(1+u^{2}\right) v(d u)<\infty \text { or, equivalently, }\left(\int_{-1}^{0}+\int_{0}^{1}\right) u^{2} v(d u)<\infty \tag{2.3}
\end{equation*}
$$

We shall call μ and ν the Khintchine and the Lévy (spectral) measure, respectively, corresponding to P.

Let $v_{c,(\alpha)}$ be the Lévy measure corresponding to $P_{c,(\alpha)}$ satisfying (1.3). It is well known [8] that the following conditions are equivalent:
(a) the infinite convolution (1.3) is convergent;
(b) $P_{c,(\alpha)}$ has a finite $\log ^{\alpha}$-moment, i.e. (1.4) holds;
(c) $\nu_{c,(\alpha)}$ satisfies the following condition:

$$
\begin{equation*}
\left(\int_{-\infty}^{-1}+\int_{1}^{\infty}\right) \log ^{\alpha}(|x|) v_{c,(\alpha)}(d x)<\infty \tag{2.4}
\end{equation*}
$$

(d) the following series is convergent:

$$
\begin{equation*}
\nu=\sum_{k=0}^{\infty} r(k, \alpha) T_{c^{k}} v_{c,(\alpha)} . \tag{2.5}
\end{equation*}
$$

Note that the Lévy measures corresponding to distributions from $L_{c, \alpha}$ are of the form (2.5). We now apply (2.5) to obtain the characteristic function of α-times c-decomposable distributions $(0<\alpha<\infty)$.

Theorem 2.1. The function φ is the characteristic function of $P \in L_{c, \alpha}$ $(0<\alpha<\infty)$ if and only if φ is of the form

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) \sum_{k=0}^{\infty} r(k, \alpha) g_{t}\left(c^{k} u\right) v_{c,(\alpha)}(d u)\right\} \tag{2.6}
\end{equation*}
$$

where $b \in \mathbb{R}, G \geqslant 0$, and $v_{c,(\alpha)}$ is a Borel measure on $(-\infty, 0) \cup(0, \infty)$ such that $\left(\int_{-1}^{0}+\int_{0}^{1}\right) u^{2} v_{c,(\alpha)}(d u)<\infty$ and the condition (2.4) is satisfied. The function φ determines uniquely b, G and $v_{c,(\alpha)}$.

We shall find the relations of the representations (2.5) and (2.6) of Lévy measure and the characteristic function, respectively, corresponding to α-times c-decomposable distributions with the representations of Lévy measure and the characteristic function corresponding to α-times self-decomposable distributions. We start the study with the following lemma.

Lemma 2.2. If $\alpha>0, h>0$, and $x, y \in R$, then

$$
\begin{equation*}
\Gamma(\alpha+1) h^{\alpha} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, y-j h]}(x) \rightarrow\left((y-x)_{+}\right)^{\alpha} \quad \text { as } h \rightarrow 0 . \tag{2.7}
\end{equation*}
$$

Proof. Let g be a non-negative non-increasing function on \boldsymbol{R}. It is not difficult to prove that

$$
\begin{equation*}
h \sum_{j=1}^{\infty} g(x+j h) \leqslant \int_{x}^{\infty} g(u) d u \leqslant h \sum_{j=0}^{\infty} g(x+j h), \tag{2.8}
\end{equation*}
$$

which implies that the series $\sum_{j=0}^{\infty} g(x+j h)$ is convergent if and only if $\int_{x}^{\infty} g(u) d u<\infty$. From (2.8) we obtain $h \sum_{j=0}^{\infty} g(x+j h) \rightarrow \int_{x}^{\infty} g(u) d u$ as $h \rightarrow 0$. We can prove inductively that for each $n \in N$

$$
\begin{equation*}
h^{n} \sum_{j=0}^{\infty} r(j, n) g\left(x_{n}+j h\right) \rightarrow \int_{x_{n} x_{n-1}}^{\infty} \int_{x_{1}}^{\infty} \ldots \int_{0}^{\infty} g\left(x_{0}\right) d x_{0} d x_{1} \ldots d x_{n-1 .} \quad \text { as } h \rightarrow 0 . \tag{2.9}
\end{equation*}
$$

Applying (2.9) to $g(x)=\chi_{(-\infty, 0]}(x)$ we have

$$
\begin{equation*}
n!h^{n} \sum_{j=0}^{\infty} r(j, n) \chi_{(-\infty,-j h]}(x) \rightarrow\left((-x)_{+}\right)^{n} \quad \text { as } h \rightarrow 0 . \tag{2.10}
\end{equation*}
$$

Let $\alpha>0$. It is not difficult to prove that $\sum_{j=0}^{k} r(j, \alpha)=r(k, \alpha+1), k \in N$, which gives

$$
\sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty,-j h]}(x)=\sum_{j=0}^{\infty} r(j, \alpha+1) \chi_{(-(j+1) h,-j h]}(x) .
$$

Recall that (cf. [8]) for $0 \leqslant \alpha \leqslant 1$ the following inequalities hold:

$$
\begin{equation*}
k^{1-\alpha} \leqslant \Gamma(k+1) / \Gamma(k+\alpha) \leqslant(k+1)^{1-\alpha} . \tag{2.11}
\end{equation*}
$$

In the case $0 \leqslant \alpha \leqslant 1$, by (1.2) and (2.11) we obtain

$$
\begin{equation*}
\Gamma(\alpha+1) h^{\alpha} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty,-j h]}(x) \rightarrow\left((-x)_{+}\right)^{\alpha} \quad \text { as } h \rightarrow 0 \tag{2.12}
\end{equation*}
$$

In the case $\alpha>1$ we can write α in the form $\alpha=n+\beta$, where $n \in N$, $0 \leqslant \beta<1$. Assume that $\beta>0$. Putting

$$
I_{h, \alpha}(g)(x)=\sum_{j=0}^{\infty} r(j, \alpha) g(x+j h),
$$

we have $I_{h, \alpha_{1}+\alpha_{2}}(g)=I_{h, \alpha_{1}}\left(I_{h, \alpha_{2}}(g)\right)$. Then $I_{h, \alpha}(g)=I_{h, n}\left(I_{h, \beta}(g)\right)$. Applying (2.8) with $I_{h, \beta}(g)$ in place of g and putting $g=\chi_{(-\infty, 0]}$, similarly to the above, we infer that (2.12) holds for $\alpha>1$.

Thus we have shown that (2.12) holds for all $\alpha>0$, which gives (2.7) and the lemma is proved.

Theorem 2.3. A probability measure P is α-times self-decomposable $(0<\alpha<\infty)$ if and only if its Lévy spectral measure v is of the form

$$
\begin{align*}
& v(d x)=\left[\int_{0}^{\infty} \frac{\alpha}{x}\left(\ln \frac{v}{x}\right)_{+}^{\alpha-1} \gamma_{\alpha}(d v) \chi_{(0, \infty)}(x)\right. \tag{2.13}\\
&\left.+\int_{-\infty}^{0} \frac{\alpha}{|x|}\left(\ln \frac{v}{x}\right)_{+}^{\alpha-1} \gamma_{\alpha}(d v) \chi_{(-\infty, 0)}(x)\right] d x
\end{align*}
$$

or, equivalently, its characteristic function φ is of the form

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) \int_{0}^{\infty} g_{t}\left(v e^{-y}\right) \alpha y^{\alpha-1} d y \gamma_{\alpha}(d v)\right\}, \tag{2.14}
\end{equation*}
$$

where γ_{α} is a Borel measure on $(-\infty, 0) \cup(0, \infty)$ such that

$$
\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) \int_{0}^{\infty}\left(v e^{-y}\right)^{2}\left(1+\left(v e^{-y}\right)^{2}\right)^{-1} y^{\alpha-1} d y \gamma_{\alpha}(d v)<\infty .
$$

Proof. Let v be the Lévy spectral measure corresponding to α-times self--decomposable probability measure P, i.e. $P \in L_{c, \alpha}$ for each $c \in(0,1)$. Then so is \tilde{v} defined by $\tilde{v}(B)=v(-B), B \subset(-\infty, 0) \cup(0, \infty)$.

Thus it is sufficient to assume that v is concentrated on $(0, \infty)$. Let \bar{v} be the measure on \boldsymbol{R} defined by $\bar{v}(\ln B)=\nu(B), B \subset(0, \infty)$. Let f and \bar{f} be the distribution functions of v and \bar{v}, respectively, i.e. $f(x)=v((x, \infty)), x>0$, and $\bar{f}(y)=\bar{v}((y, \infty)), y \in \boldsymbol{R}$. Then $\bar{f}(\ln x)=f(x), x>0$. By (2.5) we see that \bar{v} is of the form

$$
\begin{equation*}
\bar{v}=\sum_{j=0}^{\infty} r(j, \alpha) U_{-j h} \bar{v}_{c, \alpha}, \tag{2.15}
\end{equation*}
$$

where $h=-\ln c, U_{a}(x)=x+a, x, a \in \boldsymbol{R}$. Defining $\bar{v}_{c, \alpha}$ as

$$
\bar{v}_{c, \alpha}(d x)=\int_{-\infty}^{\infty} \delta_{u}(x) \bar{v}_{c, \alpha}(d u)
$$

we can rewrite (2.15) in the form

$$
\begin{equation*}
\bar{v}(d y)=\int_{-\infty}^{\infty} \sum_{j=0}^{\infty} r(j, \alpha) U_{-j h} \delta_{u}(y) \bar{v}_{c, \alpha}(d u) . \tag{2.16}
\end{equation*}
$$

Then the distribution function of \bar{v} is of the form

$$
\bar{f}(y)=\int_{-\infty}^{\infty} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, u-j h]}(y) \bar{v}_{c, \alpha}(d u)
$$

or, equivalently,

$$
\begin{equation*}
\bar{f}(y)=\int_{-\infty}^{\infty} \Gamma(\alpha+1) h^{\alpha} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, u-j h]}(y) \bar{\gamma}_{c, \alpha}(d u), \tag{2.17}
\end{equation*}
$$

where $\bar{\gamma}_{c, a}(d u)=\left(\Gamma(\alpha+1) h^{\alpha}\right)^{-1} \bar{v}_{c, \alpha}(d u)$. Now it is very easy to obtain the well--known Lévy spectral measure representation of α-times self-decomposable laws. From the relation (2.17), by letting h tend to zero and making use of Lemma 2.2 and Helly's theorem, we conclude that

$$
\bar{f}(y)=\int_{-\infty}^{\infty}(u-y)^{\alpha} \bar{\gamma}_{c, \alpha}(d u), \quad y \in \boldsymbol{R} .
$$

Consequently, $f(x)=\int_{0}^{\infty}\left(\ln v x^{-1}\right)^{\alpha}+\bar{\gamma}_{c, \alpha}(d v), x>0$, and

$$
\begin{equation*}
v(d x)=\left(\int_{0}^{\infty} \frac{\alpha}{x}\left(\ln \frac{v}{x}\right)_{+}^{\alpha-1} \bar{\gamma}_{c, \alpha}(d v)\right) d x, \quad x>0 \tag{2.18}
\end{equation*}
$$

The formula (2.18) gives a representation of $\left.v\right|_{(0, \infty)}$. For the general case note that v is given by (2.13). An easy computation shows that the characteristic function φ is given by the formula (2.14) and the theorem is proved.

Now we are going to describe the classes $L_{c, \infty}$.

3. EXTREME POINTS

Let $P \in I d$ and let v be the Lévy measure corresponding to P. By (1.1) and (2.5), the following conditions are equivalent:
(a) $P \in L_{c, \infty}$;
(b) for every $k=1,2, \ldots$ the measure v is of the form

$$
\begin{equation*}
v=\sum_{j=0}^{\infty} r(j, k) T_{c} v_{c,(k)} \tag{3.1}
\end{equation*}
$$

where $v_{c,(k)}$ is a Borel measure on $(-\infty, 0) \cup(0, \infty)$ satisfying the condition (2.3) (with k in place of α);
(c) for every $k=1,2, \ldots$ the measure $v_{c,(k)}$ satisfies the following inequalities:

$$
\begin{equation*}
v_{c,(k)}-T_{c} v_{c,(k)} \geqslant 0, \tag{3.2}
\end{equation*}
$$

where $P_{c,(0)}=P, P_{c,(k)}(k=1,2, \ldots)$ are measures given by (1.1) and $v_{c,(k)}(k=0,1,2, \ldots)$ are Lévy measures corresponding to $P_{c,(k)}$.

By (1.1) we have the following equalities:

$$
\begin{equation*}
v_{c,(k+1)}=v_{c,(k)}-T_{c} v_{c,(k)} \quad(k=0,1,2, \ldots) \tag{3.3}
\end{equation*}
$$

Put $M^{0}=\{\mu: \mu$ is a finite Borel measure on \boldsymbol{R} such that $v=\nu(\mu)$ given by (2.2) is of the form (3.1) for each $k \in N\}$. Then the set of Khintchine measures corresponding to $P \in L_{c, \infty}$ coincides with the set M^{0}. We put $M=\{\mu: \mu$ is a finite Borel measure on $[-\infty, \infty]$ such that $\left.\left.\mu\right|_{\boldsymbol{R}} \in M^{0}\right\}$. Let K be the subset of M consisting of probability measures and $K^{0}=K \cap M^{0}$. The convexity of
K follows easily from the definition. The space of all probability measures on $[-\infty, \infty]$ with weak convergence is a metrizable compact space. We consider the induced topology on K. We shall prove that K is closed and, consequently, compact. First we shall find the extreme points of the set K. Let us denote by $e(K)$ the set of extreme points of K. Put $Y_{c}=\{y: 1 \leqslant|y|<1 / c\}$. The following lemma is obvious.

Lemma 3.1. If $\mu \in e(K)$, then μ is concentrated on one of the following sets: $\{-\infty\},\{\infty\},(0, \infty),(-\infty, 0)$, and $\{0\}$.

Lemma 3.2. Let $\mu \in e(K)$. If μ is concentrated on the set $(-\infty, 0) \cup(0, \infty)$, then μ is concentrated on the set of the form

$$
\begin{equation*}
\left\{y_{0} c^{-k}\right\}_{k=-\infty}^{\infty}, \tag{3.4}
\end{equation*}
$$

where $y_{0} \in Y_{c}$.
Proof. Let $\mu \in e(K)$. Since $\mu \in e(K)$ if and only if $\tilde{\mu} \in e(K)$, it is sufficient to assume that μ is concentrated on ($0, \infty$). Suppose that there exists $1<\varepsilon<1 / c$ such that $\mu\left(A_{1}\right)>0$ and $\mu\left(A_{2}\right)>0$, where $A_{1}=A_{1}(\varepsilon)=\bigcup_{k=-\infty}^{\infty} c^{-k}[1, \varepsilon)$ and $A_{2}=A_{2}(\varepsilon)=\bigcup_{k=-\infty}^{\infty} c^{-k}[\varepsilon, 1 / c)$. Then we have the equality

$$
\begin{equation*}
\mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}, \tag{3.5}
\end{equation*}
$$

where $\alpha_{i}=\mu\left(A_{i}\right), \mu_{i}=\left.\alpha_{i}^{-1} \mu\right|_{A_{i}}$. Since $A_{1} \cap A_{2}=\emptyset$, there is no $C>0$ such that $\mu_{1}=C \mu$. By (3.4) we see that $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}$, where v, v_{1}, v_{2} are the Lévy measures corresponding to μ, μ_{1}, μ_{2}, respectively. Let $k \in N$. Since v is of the form (3.1), we obtain

$$
\begin{equation*}
\left.v\right|_{A_{i}}=\sum_{j=0}^{\infty} r(j, k) T_{c^{j}}\left(\left.v_{c,(k)}\right|_{A_{i}}\right), \quad i=1,2 \tag{3.6}
\end{equation*}
$$

Obviously, for every $i=1,2, \alpha_{i} v_{i}$ is the Lévy measure corresponding to the Khintchine measure $\alpha_{i} \mu_{i}$ and $\alpha_{i} v_{i}=\left.v\right|_{A_{i}}$. Thus by (3.5) we obtain $\alpha_{i} \mu_{i} \in M$ and consequently, $\mu_{i} \in K$. By (3.4) this contradicts that μ is the extreme point.

Thus we infer that for every $1<\varepsilon<1 / c$ either $\mu\left(A_{1}(\varepsilon)\right)=0$ or $\mu\left(A_{2}(\varepsilon)\right)=0$. This implies that there exists $y_{0} \in Y_{c} \cap(0, \infty)$ such that μ is concentrated on the set $\left\{y_{0} c^{-k}\right\}_{k=-\infty}^{\infty}$. Thus the lemma is proved.

We use the following notation given in [14] and [2]. We say that a function f is completely monotone if it has derivatives of any finite order such that $(-1)^{n} f^{(n)}(x) \geqslant 0(n=0,1,2, \ldots)$. Completely monotone functions on $(0, \infty)$ are characterized by the Bernstein representation (see [14], Theorem 12a, p. 160).

Proposition 3.3. A function fon $(0, \infty)$ is completely monotone if and only if

$$
\begin{equation*}
f(t)=\int_{0}^{\infty} e^{-t x} F(d x) \tag{3.7}
\end{equation*}
$$

where F is a Borel measure on $[0, \infty]$. Moreover, F is uniquely determined by f.

Remark 3.4. A completely monotone function f on (a, ∞), where $-\infty \leqslant a<0$, is also of the form (3.7). Moreover, if $-\infty<a<0$, then $f(a+0)<\infty$ if and only if $e^{-a x} F(d x)$ is a finite measure. If $a=-\infty$, then $e^{b x} F(d x)$ is a finite measure for all $b>0$.

Consider a sequence of real numbers $\left\{a_{n}\right\}_{n=0}^{\infty}$. We define the sequence given by the formula $\Delta a_{n}=a_{n+1}-a_{n}, n=0,1,2, \ldots$ Further, we define inductively sequences as follows: $\Delta^{1} a_{n}=\Delta a_{n}, \Delta^{k} a_{n}=\Delta\left(\Delta^{k-1} a_{n}\right), k=2,3, \ldots$ The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ will be called k-times monotone, $k=1,2, \ldots$, if (see [4])

$$
\begin{equation*}
\Delta^{j} a_{n} \geqslant 0, \quad j=1,2, \ldots, k, n=0,1,2, \ldots \tag{3.8}
\end{equation*}
$$

It is well known [4] that

$$
\Delta^{k} a_{n}=\binom{k}{0} a_{n}-\binom{k}{1} a_{n+1}+\ldots+(-1)^{k}\binom{k}{k} a_{n+k}
$$

The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ will be called completely monotone if it is k-monotone for $k=1,2, \ldots$ We say that a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is minimal if decreasing a_{0} makes of it a sequence which is no longer completely monotone (see [2], [14]). We say that a sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is completely monotone if each of the sequences $\left\{a_{n}\right\}_{n=-k}^{\infty}, k=1,2, \ldots$, is completely monotone. If $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is completely monotone, then each of the sequences $\left\{a_{n}\right\}_{n=-k}^{\infty}, k=1,2, \ldots$, is minimal.

Proposition 3.5 (Feller [2]). Let $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ be a completely monotone sequence, $x_{n}=n h, h>0, n \in \boldsymbol{Z}(\boldsymbol{Z}=\{0, \pm 1, \pm 2, \ldots\})$. Then there is a uniquely determined function $f(x)$ on \boldsymbol{R} such that $f(x)$ is completely monotone and

$$
\begin{equation*}
f\left(x_{n}\right)=a_{n}, \quad n \in \boldsymbol{Z} . \tag{3.9}
\end{equation*}
$$

Remark 3.6. In [2] the function $f(x)$ is defined such that it is completely monotone for $x \geqslant x_{0}$ and $f\left(x_{n}\right)=a_{n}, n=1,2, \ldots, f\left(x_{0}\right) \leqslant a_{0}$, where a_{0}, a_{1}, \ldots is a completely monotone sequence corresponding to a sequence of real numbers $0 \leqslant x_{0}<x_{1}<\ldots$ such that the series $\sum 1 / x_{n}$ diverges. But if a_{0}, a_{1}, \ldots is minimal, then we have the equality $f\left(x_{0}\right)=a_{0}$.

Lemma 3.7. Let $\mu \in e(K)$ and assume that μ is concentrated on the set $(-\infty, 0) \cup(0, \infty)$. Then $v=v(\mu)$ is of the form

$$
\begin{equation*}
v=C_{0} \sum_{k=-\infty}^{\infty}\left(c^{k}\right)^{-z_{0}} \delta_{y_{0} c^{k}} \tag{3.10}
\end{equation*}
$$

where $0<\alpha_{0}<2, y_{0} \in Y_{c}$, and

$$
\begin{equation*}
C_{0}=\left\{\sum_{k=-\infty}^{\infty}\left[\left(y_{0} c^{k}\right)^{2}\left(c^{k}\right)^{-z_{0}}\right] /\left[1+\left(y_{0} c^{k}\right)^{2}\right]\right\}^{-1} \tag{3.11}
\end{equation*}
$$

Proof. Let $\mu \in e(K)$ and let μ be concentrated on the set $(-\infty, 0) \cup(0, \infty)$. As in Lemma 3.2 it is sufficient to assume that μ is concentrated on ($0, \infty$). By

Lemma 3.2, μ is concentrated on the set given by (3.6). Put

$$
\begin{equation*}
a_{n}=\nu\left(\left\{y_{0} c^{n}\right\}\right), \quad n \in \mathbb{Z} \tag{3.12}
\end{equation*}
$$

By (3.2) and (3.3), the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is completely monotone. Put $x_{n}=n \ln \left(c^{-1}\right), n \in Z$. By Proposition 3.5 there exists a uniquely determined completely monotone function f on \boldsymbol{R} such that

$$
\begin{equation*}
f\left(x_{n}\right)=a_{n}, \quad n \in \boldsymbol{Z} . \tag{3.13}
\end{equation*}
$$

By Proposition 3.3, f is of the form

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-z x} F(d z) \tag{3.14}
\end{equation*}
$$

where F is a Borel measure on $(0, \infty)(F$ is without atoms on the set $\{0, \infty\}$ since $\lim a_{n}=0$ as $n \rightarrow \infty$ and $a_{n}>0, n \in \boldsymbol{Z}$.)

Now we shall prove that F is a degenerate measure. Contrary to our statement suppose that there exists $b>0$ such that $F((0, b])>0$ and $F((b, \infty))>0$. Then we can write f as the sum of completely monotone functions: $f=f_{1}+f_{2}$, where $f_{i}(x)=\int_{0}^{\infty} e^{-z x} F_{i}(d z), \quad i=1,2, \quad F_{1}=\left.F\right|_{(0, b]}$, $F_{2}=F-F_{1}$. In particular, we have $f\left(x_{n}\right)=f_{1}\left(x_{n}\right)+f_{2}\left(x_{n}\right), n \in \boldsymbol{Z}$. We define the measures v_{1}, v_{2} as follows: $v_{i}\left(\left\{y_{0} c^{-n}\right\}\right)=f_{i}\left(x_{n}\right), i=1,2, n \in \boldsymbol{Z}$. Then $v_{i}=v_{i}\left(\mu_{i}\right)$, $i=1,2$, are Lévy measures of infinitely divisible distributions such that $\mu_{i} \in M$ and $\mu=\mu_{1}+\mu_{2}$. Let us put $\beta=\mu_{1}\left(\left\{y_{0} c^{-n}\right\}_{n=-\infty}^{\infty}\right)$. Then we have

$$
\mu=\beta \frac{\mu_{1}}{\beta}+(1-\beta) \frac{\mu_{2}}{1-\beta}, \quad \text { where } \frac{\mu_{1}}{\beta}, \frac{\mu_{2}}{1-\beta} \in K
$$

which contradicts the fact that μ is an extreme point.
Thus, F is degenerate. Then, for example, let $F=C_{0} \delta_{z_{0}}$, where z_{0}, C_{0} are positive constants. This implies by (3.14) that f is of the form

$$
\begin{equation*}
f(x)=C_{0} \exp \left(-z_{0} x\right), \quad x \in \boldsymbol{R} \tag{3.15}
\end{equation*}
$$

We introduce the function

$$
\begin{equation*}
\hat{f}(u)=f(x), \tag{3.16}
\end{equation*}
$$

where $x=\ln \left(u / y_{0}\right), u>0, x \in \mathbb{R}$. By (3.12) and (3.13) we have $f\left(n \ln c^{-1}\right)=$ $f\left(x_{n}\right)=v\left(\left\{y_{0} c^{-n}\right\}\right)$. Thus

$$
\begin{equation*}
\hat{f}\left(y_{0} c^{-n}\right)=v\left(\left\{y_{0} c^{-n}\right\}\right), \quad n \in \boldsymbol{Z} . \tag{3.17}
\end{equation*}
$$

By (3.15) and (3.16) we have $\hat{f}(u)=C_{0}\left(u / y_{0}\right)^{-z_{0}}$. Taking into account (3.17) we see that this implies

$$
\begin{equation*}
\nu\left(\left\{y_{0} c^{-n}\right\}\right)=C_{0}\left(c^{-n}\right)^{-z_{0}}, \quad n \in \boldsymbol{Z} . \tag{3.18}
\end{equation*}
$$

Denote by $v_{\left(y_{0}, z_{0}\right)}$ the measure given by (3.18),

$$
\mu_{\left(y_{0}, z_{0}\right)}(d u)=u^{2} /\left(1+u^{2}\right) v_{\left(y_{0}, z_{0}\right)}(d u) .
$$

Since $\mu_{\left(y_{0}, z_{0}\right)}$ is a probability measure, C_{0} is given by (3.11), where $0<z_{0}<2$, $y_{0} \in Y_{c}$. Thus the lemma is proved.

Let us put $\left.G_{c}=\left\{\mu_{\left(y_{0}, z_{0}\right)}\right) 0<z_{0}<2, y_{0} \in Y_{c}\right\}$. Directly from Lemmas 3.1 and 3.7 we obtain the following lemma:

Lemma 3.8. $e(K) \subset G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\}$.
Lemma 3.9. $G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\} \subset e(K)$.
Proof. Once again it is sufficient to consider $\mu_{\left(y_{0}, z_{0}\right)}$ for $y_{0} \in Y_{c} \cap(0, \infty)$, $0<z_{0}<2$. Suppose that $\mu_{\left(y_{0}, z_{0}\right)}$ is not an extreme point. Then there exist $0<\beta<1, \mu_{1}, \mu_{2} \in K$ such that $\mu_{1} \neq \mu_{2}$ and

$$
\begin{equation*}
\mu_{\left(y_{0}, z_{0}\right)}=\beta \mu_{1}+(1-\beta) \mu_{2} . \tag{3.19}
\end{equation*}
$$

Clearly, both measures μ_{1}, μ_{2} are concentrated on the set $\left\{u_{n}\right\}_{n=-\infty}^{\infty}$, where $u_{n}=y_{0} c^{-n}, n \in Z$. By (3.19) we have

$$
\begin{equation*}
v_{\left(y_{0}, z_{0}\right)}=\beta v_{1}+(1-\beta) v_{2} \tag{3.20}
\end{equation*}
$$

where $v_{i}=v_{i}\left(\mu_{i}\right), i=1,2$. Let f, f_{1}, f_{2} be completely monotone functions such that $f\left(x_{n}\right)=v_{\left(y_{0}, z_{0}\right)}\left(u_{n}\right), f_{i}\left(x_{n}\right)=v_{i}\left(u_{n}\right), x_{n}=n \ln \left(c^{-1}\right), i=1,2, n \in Z$. We note that the function $g=\beta f_{1}+(1-\beta) f_{2}$ is a completely monotone function. By (3.20) we have $f\left(x_{n}\right)=g\left(x_{n}\right), n \in \mathbb{Z}$. Since a completely monotone function is uniquely determined by its value at points $x_{n}, n \in Z$, we have

$$
\begin{equation*}
f(x)=\beta f_{1}(x)+(1-\beta) f_{2}(x), \quad x \in \boldsymbol{R} . \tag{3.21}
\end{equation*}
$$

Since $f(x)=C_{0} \exp \left(-z_{0} x\right)$ and it is the extreme point in the set of completely monotone functions (see [10]), it follows by (3.21) that $f_{1}(x)=f_{2}(x)=$ $C_{0} \exp \left(-z_{0} x\right)$. This implies that $v_{1}=v_{2}=v_{\left(y_{0}, z_{0}\right)}$ and, consequently, $\mu_{1}=$ $\mu_{2}=\mu_{\left(y 0, z_{0}\right)}$. This contradiction implies that $\mu_{\left(y_{0}, z_{0}\right)}$ must be an extreme point. This completes the proof of the lemma.

By Lemmas 3.8 and 3.9 we have
Theorem 3.10. $e(K)=G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\}$.
By $\mu_{n} \Rightarrow \mu$ we denote the weak convergence of measures. Observe that $e(K)$ is closed. In particular, we have:

$$
\begin{array}{ll}
\mu_{\left(y_{n}, z\right)} \Rightarrow \mu_{(1, z)} & \text { as } y_{n} \rightarrow c^{-1}-0(0<z<2), \\
\mu_{\left(y, z_{n}\right)} \Rightarrow \delta_{0} & \text { as } z_{n} \rightarrow 2-0\left(y \in Y_{c}\right) \\
\mu_{\left(y, z_{n}\right)} \Rightarrow \delta_{\infty} & \text { as } z_{n} \rightarrow 0+0\left(y \in Y_{c} \cap(0, \infty)\right) \\
\mu_{\left(y, z_{n}\right)} \Rightarrow \delta_{-\infty} & \text { as } z_{n} \rightarrow 0+0\left(y \in Y_{c} \cap(-\infty, 0)\right) .
\end{array}
$$

Thus $e(K)$ is compact and, consequently, K is compact.
Lemma 3.11. K is compact.

4. THE CHARACTERISTIC FUNCTIONS OF MEASURES FROM $L_{c, \infty}$

Now we will apply Choquet's theorem on representation of the points of a compact convex set as barycenters of the extreme points ([10], p. 19). Then, taking into account Theorem 3.10, we infer that μ is in K if and only if

$$
\begin{equation*}
\mu=\int_{G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\}} \theta \gamma(d \theta), \tag{4.1}
\end{equation*}
$$

where γ is a probability measure on $G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\}$. Moreover, $\mu \in K^{0}$ if and only if the measure γ assigns zero mass to the set $\left\{\delta_{-\infty}, \delta_{\infty}\right\}$. We note that the representation of $\left.\mu\right|_{(-\infty, 0) \cup(0, \infty)}$, where $\mu \in K^{0}$, is given by (4.1) with $G_{c} \cup\left\{\delta_{0}, \delta_{-\infty}, \delta_{\infty}\right\}$ replaced by G_{c}. It is not difficult to prove that the mapping $\mu_{(y, z)} \rightarrow(y, z)$ is a homeomorphism of $Y_{c} \times(0,2)$ onto G_{c}. Thus we can write μ from K^{0} and concentrated on $(-\infty, 0) \cup(0, \infty)$ in the form

$$
\begin{equation*}
\mu=\int_{Y_{c} \times(0,2)} \mu_{(y, z)} \lambda(d(y, z)), \tag{4.2}
\end{equation*}
$$

where λ is a probability measure on $Y_{c} \times(0,2)$. It is not difficult to prove that K is a simplex (analogously as in [11]); then from Choquet's uniqueness theorem for a metrizable space ($[10]$, p. 70) we infer that λ is determined uniquely (see [11]). Obviously, the measure $\mu \in M^{0}$ concentrated on $(-\infty, 0) \cup(0, \infty)$ is given by (4.2), where λ is a finite measure on $Y_{c} \times(0,2)$. Finally, by (4.2) we obtain the representation of $v=\nu(\mu)$, where $\mu \in M^{0}$. Thus the following lemma is proved:

Lemma 4.1. The measure v is the Lévy measure corresponding to $P \in L_{c, \infty}$ if and only if v takes one of the following forms:

$$
\begin{align*}
v(d u)=\int_{\mathbf{Y}_{c} \times(0,2)}\left\{\sum_{j=-\infty}^{\infty}\left(c^{j}\right)^{-z}\left(y c^{j}\right)^{2} /[1\right. & \left.\left.+\left(y c^{j}\right)^{2}\right]\right\}^{-1} \tag{4.3}\\
& \times \sum_{n=-\infty}^{\infty}\left(c^{n}\right)^{-z} \delta_{y c^{n}}(u) \lambda(d(y, z))
\end{align*}
$$

where λ is a finite Borel measure on $Y_{c} \times(0,2)$, or, equivalently,

$$
\begin{equation*}
v(d u)=\int_{Y_{c} \times(0,2)} \sum_{n=-\infty}^{\infty}\left(y c^{n}\right)^{-z} \delta_{y c^{n}}(u) \tau(d(y, z)) \tag{4.4}
\end{equation*}
$$

where τ is a Borel measure on $Y_{c} \times(0,2)\left(\tau=y^{z} C_{0}(y, z) \lambda\right)$ such that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left|y c^{n}\right|^{2-z} /\left(1+y c^{n}\right)^{2} \tau(d(y, z)) \tag{4.5}
\end{equation*}
$$

is a finite Borel measure on $Y_{c} \times(0,2)$, or, equivalently,

$$
\begin{equation*}
v(d u)=\int_{Y_{c} \times(0,2)} \sum_{n=-\infty}^{\infty}\left(c^{n}\right)^{-z} \delta_{y c^{n}}(u) \xi(d(y, z)) \tag{4.6}
\end{equation*}
$$

where ξ is a Borel measure on $Y_{c} \times(0,2)$ such that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left(c^{n}\right)^{2} /\left(1+y c^{n}\right)^{2} \xi(d(y, z)) \tag{4.7}
\end{equation*}
$$

is a finite Borel measure on $Y_{c} \times(0,2)$.
Moreover, the measure v determines uniquely the measures λ, τ, and ξ.
Applying (4.3) and (4.4) we obtain the characteristic functions of completely c-decomposable distributions.

Theorem 4.2. The function φ is the characteristic function of $P \in L_{c, \infty}$ if and only if φ is of the form

$$
\begin{align*}
& \text { 8) } \quad \varphi(t)=\exp \left\{i b t-G t^{2} / 2\right. \tag{4.8}\\
& \left.+\int_{Y_{c} \times(0,2)}\left[\sum_{j=-\infty}^{\infty}\left(c^{j}\right)^{-z}\left(y c^{j}\right)^{2} /\left[1+\left(y c^{j}\right)^{2}\right]\right]^{-1} \sum_{n=-\infty}^{\infty}\left(c^{n}\right)^{-z} g_{t}\left(y c^{n}\right) \lambda(d(y, z))\right\},
\end{align*}
$$

where λ is a finite Borel measure on $Y_{c} \times(0,2), b \in \boldsymbol{R}, G \geqslant 0$, or, equivalently,

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\int_{Y_{c} \times(0,2)} \sum_{n=-\infty}^{\infty}\left|y c^{n}\right|^{-z} g_{t}\left(y c^{n}\right) \tau(d(y, z))\right\}, \tag{4.9}
\end{equation*}
$$

where τ is a Borel measure on $Y_{c} \times(0,2)$ such that the condition (4.5) is satisfied, $b \in R, G \geqslant 0$.

Moreover, b, G, λ, and τ are uniquely determined.
Remark 4.3. In the particular case $\tau=\tau_{1} \times \tau_{2}$ we can rewrite the formula (4.9) in the form

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g_{t}\left(y c^{n}\right) \chi_{Y_{c}}(y) \int_{0}^{2}\left|y c^{n}\right|^{-z} \tau_{2}(d z) \tau_{1}(d y)\right\} . \tag{4.10}
\end{equation*}
$$

Putting $h(u)=\int_{0}^{2}|u|^{-z} \tau_{2}(d z)$ and $\bar{h}(x)=h(u)$, where $u>0$ and $x=\ln u$, we obtain

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g_{t}\left(y c^{n}\right) \chi_{Y_{c}}(y) h\left(y c^{n}\right) \tau_{2}(d z) \tau_{1}(d y)\right\} \tag{4.11}
\end{equation*}
$$

where $h(u)$ is a function on $(-\infty, 0) \cup(0, \infty)$ for which $h(-u)=h(u)$ and $\bar{h}(x)$ is a completely monotone function (on \mathbb{R}) such that the measure F determined by the Bernstein representation (3.7) is concentrated on (0,2), i.e. $\bar{h}(x)=\int_{0}^{2} e^{-z x} \tau_{2}(d z)$.

We shall derive from Lemma 4.1 the well-known representation of completely self-decomposable distribution.

Theorem 4.4. A probability measure P is completely self-decomposable if and only if its Lévy spectral measure v is of the form

$$
\begin{equation*}
v(d x)=\int_{0}^{2} z|x|^{-1-z} \gamma(d z) \tag{4.12}
\end{equation*}
$$

or, equivalently, its characteristic function φ is of the form

$$
\begin{equation*}
\varphi(t)=\exp \left\{i b t-G t^{2} / 2+\int_{0}^{2}\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) g_{t}(u) z|u|^{-1-z} d u \gamma(d z)\right\} \tag{4.13}
\end{equation*}
$$

where γ is a finite Borel measure on (0,2).
Proof. Let a probability measure P be completely self-decomposable, i.e. $P \in L_{c, \infty}$ for every $c \in(0,1)$. Let v be the Lévy spectral measure corresponding to P. By Lemma 4.1, v is of the form (4.4). Assume that v is concentrated on $(0, \infty)$. Then we can write \bar{v} and its distribution function \bar{f} in the form

$$
\begin{gather*}
\bar{v}(d u)=\int_{[0, h) \times(0,2)} \sum_{j=-\infty}^{\infty} e^{-z(y-j h)} \delta_{y-j h}(u) \gamma_{h}(d(y, z)), \tag{4.14}\\
\bar{f}(u)=\int_{[0, h) \times(0,2)} \sum_{j=-\infty}^{\infty} e^{-z(y-j h)} \chi_{(y-(j+1) h, y-j h]}(u) \tag{4.15}\\
\times\left[\left(1-e^{-z h}\right)^{-1} \gamma_{h}\right](d(y, z)),
\end{gather*}
$$

respectively. From (4.15), by letting h tend to zero and making use of Helly's theorem, we conclude that $\bar{f}(u)=\int_{\{0\} \times(0,2)} e^{-z u} \gamma(d(y, z))$. Taking the measure $\gamma(d z)$ in place of the measure $\gamma(d(y, z))$, respectively, we obtain

$$
\begin{equation*}
\bar{f}(u)=\int_{0}^{2} e^{-z u} \gamma(d z), \quad f(x)=\int_{0}^{2} x^{-z} \gamma(d z) \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
v(d x)=\int_{0}^{2} z x^{-z-1} \gamma(d z) \tag{4.17}
\end{equation*}
$$

The above formula gives a representation of $\left.v\right|_{(0, \infty)}$. Consequently, v is determined by (4.12). Easy computations show that the characteristic function is given by (4.13). Thus the theorem is proved.

REFERENCES

[1] J. Bunge, Nested classes of C-decomposable laws, Ann. Probab. 25 (1997), pp. 215-229.
[2] W. Feller, Completely monotone functions and sequences, Duke Math. J. 5 (1939), pp. 661-674.
[3] Z. Jurek, The classes $L_{m}(Q)$ of probability measures on Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 31 (1983), pp. 51-62.
[4] K. Knopp, Mehr fach monotone Zahlenfolgen, Math. Z. 22 (1925), pp. 75-85.
[5] A. Kumar and B. M. Schreiber, Characterization of subclasses of class L probability distributions, Ann. Probab. 6 (1978), pp. 279-293.
[6] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), pp. 107-126.
[7] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Research Report, Keio University, Japan, 1997.
[8] Nguyen van Thu, Multiply c-decomposable probability measures on Banach spaces, Probab. Math. Statist. 5 (1985), pp. 251-263.
[9] Nguyen van Thu, Multiply self-decomposable probability measures on Banach spaces, Studia Math. 66 (1979), pp. 160-175.
[10] R. P. Phelps, Lectures on Choquet's Theorem, New York 1966.
[11] T. Rajba, A representation of distributions from certain classes $L_{S}^{i d}$, Probab. Math. Statist. 4 (1984), pp. 67-78.
[12] T. Rajba, On multiple decomposability of probability measures on R, Demonstratio Math. 2 (2001), pp. 275-294.
[13] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980), pp. 207-232.
[14] D. V. Widder, The Laplace Transform, University Press, Princeton, N. J., 1941.

Received on 4.3.2002;
revised version on 22.11.2002

[^0]: * Department of Mathematics, University of Bielsko-Biała.

