PROBABILITY

AND MATHEMATICAL STATISTICS Vol. 22, Fasc. 2 (2002), pp. 443–456

MULTIPLY c-DECOMPOSABLE PROBABILITY MEASURES ON R AND THEIR CHARACTERISTIC FUNCTIONS

BY

TERESA RAJBA* (BIELSKO-BIALA)

Abstract. We obtain the characteristic functions of distributions in $L_{c,\alpha}$, i.e. α -times c-decomposable distributions in the class of infinitely divisible distributions, where $0 < \alpha \leq \infty$, 0 < c < 1. The characteristic functions of α -times selfdecomposable laws (i.e. α -times c-decomposable for each $c \in (0, 1)$) are well known (see [3], [5], [9], [13]).

2000 Mathematics Subject Classification: 60E05, 60E07, 60E10.

Key words and phrases: Infinitely divisible measure, decomposable probability measure, selfdecomposable measure.

1. INTRODUCTION AND NOTATION

Given a probability measure P on \mathbf{R} , $|c| \leq 1$, we say that P is *c*-decomposable if $P = T_c P * P_c$ for some probability measure P_c , where $T_c x = cx$ $(x \in \mathbf{R})$, $T_c P(B) = P(T_c^{-1}B)$ for any non-zero c and Borel set B, and $T_0 P = \delta_0$. For a probability measure P, \tilde{P} is defined to be the probability measure given by $\tilde{P}(A) = P(-A)$. We must mention the name of Loève as a pioneer of the decomposable problem [6] (this history can be also found in Bunge [1]). Loève showed in [6] that (if 0 < |c| < 1) P is c-decomposable if and only if P is of the form $P = *_{k=0}^{\infty} T_{ck} P_c$ for some probability measure P_c . He denoted the set of all c-decomposable laws by L_c . The class L, or the set of self-decomposable laws, is defined as $L = \bigcap_{c \in (0,1)} L_c$. A generalization of c-decomposable laws to the multiple case is given in [8]. Namely, for a given $n \in N$ we say [8] that a probability measure P is *n*-times c-decomposable if there exist probability measures $P_{c,(1)}, \ldots, P_{c,(n)}$ such that

(1.1)
$$P = T_c P * P_{c,(1)} * \dots * P_{c,(n-1)} = T_c P_{c,(n-1)} * P_{c,(n)}.$$

^{*} Department of Mathematics, University of Bielsko-Biała.

Then, by (1.1), P is n-times c-decomposable if and only if P is of the form

(1.2)

$$P = * T_{ck} P_{c,(n)}^{r(k,n)},$$

$$r(k, n) = n(n+1)...(n+k-1)/k! = \Gamma(k+n)/\Gamma(n)\Gamma(k+1).$$

where the power is taken in the convolution sense. The formula (1.2) suggests to generalize the concept of *n*-times *c*-decomposable probability measures to the non-integer case (see [8]).

Let *Id* denote the class of all infinitely divisible measures on R. For $\alpha > 0$, $r(k, \alpha)$ is given by (1.2) with α in place of n. A probability measure $P \in Id$ is said to be α -times c-decomposable (in Id, 0 < c < 1, $\alpha > 0$) if there exists $P_{c,(\alpha)} \in Id$ such that

(1.3)
$$P = \underset{k=0}{\overset{\infty}{*}} T_{c^k} P_{c,(\alpha)}^{r(k,\alpha)}.$$

Let $L_{c,\alpha}$ denote the subclass of *Id* consisting of probability measures *P* such that (1.3) holds for some $P_{c,(\alpha)} \in Id$. It is well known [8] that the infinite convolution (1.3) is convergent if and only if $P_{c,(\alpha)}$ has the finite \log^{α} -moment, i.e.

(1.4)
$$\int_{-\infty}^{\infty} \log^{\alpha} (1+|x|) P_{c,(\alpha)}(dx) < \infty.$$

We define the class of completely *c*-decomposable measures by the formula $L_{c,\infty} = \bigcap_{\alpha>0} L_{c,\alpha}$ (see [1] and [7]). We note that *P* is completely *c*-decomposable if and only if it is *n*-times *c*-decomposable for every $n \in N$. The probability measures in $L_{\alpha} = \bigcap_{0 < c < 1} L_{c,\alpha}$ are called α -times self-decomposable for $0 < \alpha < \infty$, and completely self-decomposable for $\alpha = \infty$. The measures in the classes L_{α} ($0 < \alpha \leq \infty$) of multiply self-decomposable measures were also investigated on multidimensional spaces. In particular, their characteristic functionals are well known (Kumar and Schreiber [5], Sato [13], Jurek [3], Nguyen van Thu [9]).

In this paper we give characteristic functions of multiply *c*-decomposable distributions, i.e. distributions in $L_{c,\alpha}$ ($0 < \alpha \leq \infty$).

2. MEASURES IN $L_{c,a}$

Let $\varphi(t)$ be the characteristic function of $P \in Id$,

(2.1)
$$\varphi(t) = \exp\left\{ibt + \int_{-\infty}^{\infty} g_t(u) \frac{1+u^2}{u^2} \mu(du)\right\},$$

where $g_t(u) = e^{itu} - 1 - itu/(1+u^2)$, b is a real constant, and μ is a finite Borel measure on **R**. The function φ determines uniquely b and μ . Then for the

measure $v = v(\mu)$ given by

(2.2)
$$v = (1+u^2)/u^2 \mu|_{(-\infty,0)\cup(0,\infty)}$$

we have

(2.3)
$$\left(\int\limits_{-\infty}^{0}+\int\limits_{0}^{\infty}\right)u^{2}/(1+u^{2})v(du)<\infty$$
 or, equivalently, $\left(\int\limits_{-1}^{0}+\int\limits_{0}^{1}\right)u^{2}v(du)<\infty$.

We shall call μ and ν the Khintchine and the Lévy (spectral) measure, respectively, corresponding to P.

Let $v_{c,(\alpha)}$ be the Lévy measure corresponding to $P_{c,(\alpha)}$ satisfying (1.3). It is well known [8] that the following conditions are equivalent:

- (a) the infinite convolution (1.3) is convergent;
- (b) $P_{c,(\alpha)}$ has a finite log^{α}-moment, i.e. (1.4) holds;

(c) $v_{c,(\alpha)}$ satisfies the following condition:

(2.4)
$$\left(\int_{-\infty}^{-1} + \int_{1}^{\infty}\right) \log^{\alpha}(|x|) v_{c,(\alpha)}(dx) < \infty;$$

(d) the following series is convergent:

(2.5)
$$v = \sum_{k=0}^{\infty} r(k, \alpha) T_{c^k} v_{c,(\alpha)}.$$

Note that the Lévy measures corresponding to distributions from $L_{c,\alpha}$ are of the form (2.5). We now apply (2.5) to obtain the characteristic function of α -times *c*-decomposable distributions ($0 < \alpha < \infty$).

THEOREM 2.1. The function φ is the characteristic function of $P \in L_{c,\alpha}$ $(0 < \alpha < \infty)$ if and only if φ is of the form

(2.6)
$$\varphi(t) = \exp\{ibt - Gt^2/2 + (\int_{-\infty}^{0} + \int_{0}^{\infty})\sum_{k=0}^{\infty} r(k, \alpha)g_t(c^k u)v_{c,(\alpha)}(du)\},\$$

where $b \in \mathbb{R}$, $G \ge 0$, and $v_{c,(\alpha)}$ is a Borel measure on $(-\infty, 0) \cup (0, \infty)$ such that $(\int_{-1}^{0} + \int_{0}^{1}) u^2 v_{c,(\alpha)}(du) < \infty$ and the condition (2.4) is satisfied. The function φ determines uniquely b, G and $v_{c,(\alpha)}$.

We shall find the relations of the representations (2.5) and (2.6) of Lévy measure and the characteristic function, respectively, corresponding to α -times *c*-decomposable distributions with the representations of Lévy measure and the characteristic function corresponding to α -times self-decomposable distributions. We start the study with the following lemma.

LEMMA 2.2. If $\alpha > 0$, h > 0, and $x, y \in \mathbf{R}$, then

(2.7)
$$\Gamma(\alpha+1)h^{\alpha}\sum_{j=0}^{\infty}r(j,\alpha)\chi_{(-\infty,y-jh]}(x)\to ((y-x)_{+})^{\alpha} \quad as \ h\to 0.$$

Proof. Let g be a non-negative non-increasing function on R. It is not difficult to prove that

(2.8)
$$h\sum_{j=1}^{\infty}g(x+jh)\leqslant \int_{x}^{\infty}g(u)\,du\leqslant h\sum_{j=0}^{\infty}g(x+jh),$$

which implies that the series $\sum_{j=0}^{\infty} g(x+jh)$ is convergent if and only if $\int_{x}^{\infty} g(u) du < \infty$. From (2.8) we obtain $h \sum_{j=0}^{\infty} g(x+jh) \to \int_{x}^{\infty} g(u) du$ as $h \to 0$. We can prove inductively that for each $n \in N$

(2.9)
$$h^n \sum_{j=0}^{\infty} r(j, n) g(x_n + jh) \to \int_{x_n}^{\infty} \int_{x_{n-1}}^{\infty} \dots \int_{x_1}^{\infty} g(x_0) dx_0 dx_1 \dots dx_{n-1}$$
 as $h \to 0$.

Applying (2.9) to $g(x) = \chi_{(-\infty,0]}(x)$ we have

(2.10)
$$n! h^n \sum_{j=0}^{\infty} r(j, n) \chi_{(-\infty, -jh]}(x) \to ((-x)_+)^n \quad \text{as } h \to 0.$$

Let $\alpha > 0$. It is not difficult to prove that $\sum_{j=0}^{k} r(j, \alpha) = r(k, \alpha+1), k \in N$, which gives

$$\sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, -jh]}(x) = \sum_{j=0}^{\infty} r(j, \alpha+1) \chi_{(-(j+1)h, -jh]}(x).$$

Recall that (cf. [8]) for $0 \le \alpha \le 1$ the following inequalities hold:

(2.11)
$$k^{1-\alpha} \leq \Gamma(k+1)/\Gamma(k+\alpha) \leq (k+1)^{1-\alpha}.$$

In the case $0 \le \alpha \le 1$, by (1.2) and (2.11) we obtain

(2.12)
$$\Gamma(\alpha+1) h^{\alpha} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, -jh]}(x) \rightarrow ((-x)_{+})^{\alpha} \quad \text{as } h \rightarrow 0.$$

In the case $\alpha > 1$ we can write α in the form $\alpha = n + \beta$, where $n \in N$, $0 \le \beta < 1$. Assume that $\beta > 0$. Putting

$$I_{h,\alpha}(g)(x) = \sum_{j=0}^{\infty} r(j, \alpha) g(x+jh),$$

we have $I_{h,\alpha_1+\alpha_2}(g) = I_{h,\alpha_1}(I_{h,\alpha_2}(g))$. Then $I_{h,\alpha}(g) = I_{h,n}(I_{h,\beta}(g))$. Applying (2.8) with $I_{h,\beta}(g)$ in place of g and putting $g = \chi_{(-\infty,0]}$, similarly to the above, we infer that (2.12) holds for $\alpha > 1$.

Thus we have shown that (2.12) holds for all $\alpha > 0$, which gives (2.7) and the lemma is proved.

THEOREM 2.3. A probability measure P is α -times self-decomposable $(0 < \alpha < \infty)$ if and only if its Lévy spectral measure v is of the form

(2.13)
$$v(dx) = \left[\int_{0}^{\infty} \frac{\alpha}{x} \left(\ln \frac{v}{x} \right)_{+}^{\alpha-1} \gamma_{\alpha}(dv) \chi_{(0,\infty)}(x) + \int_{-\infty}^{0} \frac{\alpha}{|x|} \left(\ln \frac{v}{x} \right)_{+}^{\alpha-1} \gamma_{\alpha}(dv) \chi_{(-\infty,0)}(x) \right] dx$$

or, equivalently, its characteristic function φ is of the form

(2.14)
$$\varphi(t) = \exp\{ibt - Gt^2/2 + (\int_{-\infty}^{0} + \int_{0}^{\infty})\int_{0}^{\infty} g_t(ve^{-y}) \alpha y^{\alpha-1} dy \gamma_{\alpha}(dv)\},\$$

where γ_{α} is a Borel measure on $(-\infty, 0) \cup (0, \infty)$ such that

$$\left(\int_{-\infty}^{0} + \int_{0}^{\infty}\right)\int_{0}^{\infty} (ve^{-y})^{2} \left(1 + (ve^{-y})^{2}\right)^{-1} y^{\alpha-1} \, dy \, \gamma_{\alpha}(dv) < \infty.$$

Proof. Let v be the Lévy spectral measure corresponding to α -times self-decomposable probability measure P, i.e. $P \in L_{c,\alpha}$ for each $c \in (0, 1)$. Then so is \tilde{v} defined by $\tilde{v}(B) = v(-B)$, $B \subset (-\infty, 0) \cup (0, \infty)$.

Thus it is sufficient to assume that v is concentrated on $(0, \infty)$. Let \bar{v} be the measure on \mathbf{R} defined by $\bar{v}(\ln B) = v(B)$, $B \subset (0, \infty)$. Let f and \bar{f} be the distribution functions of v and \bar{v} , respectively, i.e. $f(x) = v((x, \infty))$, x > 0, and $\bar{f}(y) = \bar{v}((y, \infty))$, $y \in \mathbf{R}$. Then $\bar{f}(\ln x) = f(x)$, x > 0. By (2.5) we see that \bar{v} is of the form

(2.15)
$$\bar{v} = \sum_{j=0}^{\infty} r(j, \alpha) U_{-jh} \bar{v}_{c,\alpha},$$

where $h = -\ln c$, $U_a(x) = x + a$, $x, a \in \mathbb{R}$. Defining $\bar{v}_{c,a}$ as

$$\bar{v}_{c,\alpha}(dx) = \int_{-\infty}^{\infty} \delta_u(x) \, \bar{v}_{c,\alpha}(du)$$

we can rewrite (2.15) in the form

(2.16)
$$\bar{v}(dy) = \int_{-\infty}^{\infty} \sum_{j=0}^{\infty} r(j, \alpha) U_{-jh} \delta_u(y) \bar{v}_{c,\alpha}(du).$$

Then the distribution function of \bar{v} is of the form

$$\overline{f}(y) = \int_{-\infty}^{\infty} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, u-jh]}(y) \overline{v}_{c,\alpha}(du)$$

or, equivalently,

(2.17)
$$\overline{f}(y) = \int_{-\infty}^{\infty} \Gamma(\alpha+1) h^{\alpha} \sum_{j=0}^{\infty} r(j, \alpha) \chi_{(-\infty, u-jh]}(y) \overline{\gamma}_{c,\alpha}(du),$$

where $\bar{\gamma}_{c,\alpha}(du) = (\Gamma(\alpha+1)h^{\alpha})^{-1} \bar{\nu}_{c,\alpha}(du)$. Now it is very easy to obtain the well--known Lévy spectral measure representation of α -times self-decomposable laws. From the relation (2.17), by letting *h* tend to zero and making use of Lemma 2.2 and Helly's theorem, we conclude that

$$\overline{f}(y) = \int_{-\infty}^{\infty} (u-y)_{+}^{\alpha} \, \overline{\gamma}_{c,\alpha}(du), \quad y \in \mathbb{R}.$$

Consequently, $f(x) = \int_0^\infty (\ln v x^{-1})_+^{\alpha} \overline{\gamma}_{c,\alpha}(dv), x > 0$, and

(2.18)
$$v(dx) = \left(\int_{0}^{\infty} \frac{\alpha}{x} \left(\ln \frac{v}{x}\right)_{+}^{\alpha-1} \bar{\gamma}_{c,\alpha}(dv)\right) dx, \quad x > 0.$$

The formula (2.18) gives a representation of $v|_{(0,\infty)}$. For the general case note that v is given by (2.13). An easy computation shows that the characteristic function φ is given by the formula (2.14) and the theorem is proved.

Now we are going to describe the classes $L_{c,\infty}$.

3. EXTREME POINTS

Let $P \in Id$ and let v be the Lévy measure corresponding to P. By (1.1) and (2.5), the following conditions are equivalent:

(a) $P \in L_{c,\infty}$;

(b) for every k = 1, 2, ... the measure v is of the form

(3.1)
$$v = \sum_{j=0}^{\infty} r(j, k) T_{c^j} v_{c,(k)},$$

where $v_{c,(k)}$ is a Borel measure on $(-\infty, 0) \cup (0, \infty)$ satisfying the condition (2.3) (with k in place of α);

(c) for every k = 1, 2, ... the measure $v_{c,(k)}$ satisfies the following inequalities:

(3.2)
$$v_{c,(k)} - T_c v_{c,(k)} \ge 0,$$

where $P_{c,(0)} = P$, $P_{c,(k)}$ (k = 1, 2, ...) are measures given by (1.1) and $v_{c,(k)}$ (k = 0, 1, 2, ...) are Lévy measures corresponding to $P_{c,(k)}$.

By (1.1) we have the following equalities:

(3.3)
$$v_{c,(k+1)} = v_{c,(k)} - T_c v_{c,(k)}$$
 $(k = 0, 1, 2, ...).$

Put $M^0 = \{\mu: \mu \text{ is a finite Borel measure on } \mathbb{R} \text{ such that } \nu = \nu(\mu) \text{ given by}$ (2.2) is of the form (3.1) for each $k \in \mathbb{N}\}$. Then the set of Khintchine measures corresponding to $P \in L_{c,\infty}$ coincides with the set M^0 . We put $M = \{\mu: \mu \text{ is}$ a finite Borel measure on $[-\infty, \infty]$ such that $\mu|_{\mathbb{R}} \in M^0\}$. Let K be the subset of M consisting of probability measures and $K^0 = K \cap M^0$. The convexity of K follows easily from the definition. The space of all probability measures on $[-\infty, \infty]$ with weak convergence is a metrizable compact space. We consider the induced topology on K. We shall prove that K is closed and, consequently, compact. First we shall find the extreme points of the set K. Let us denote by e(K) the set of extreme points of K. Put $Y_c = \{y: 1 \le |y| < 1/c\}$. The following lemma is obvious.

LEMMA 3.1. If $\mu \in e(K)$, then μ is concentrated on one of the following sets: $\{-\infty\}, \{\infty\}, (0, \infty), (-\infty, 0), and \{0\}.$

LEMMA 3.2. Let $\mu \in e(K)$. If μ is concentrated on the set $(-\infty, 0) \cup (0, \infty)$, then μ is concentrated on the set of the form

(3.4)
$$\{y_0 c^{-k}\}_{k=-\infty}^{\infty},$$

where $y_0 \in Y_c$.

Proof. Let $\mu \in e(K)$. Since $\mu \in e(K)$ if and only if $\tilde{\mu} \in e(K)$, it is sufficient to assume that μ is concentrated on $(0, \infty)$. Suppose that there exists $1 < \varepsilon < 1/c$ such that $\mu(A_1) > 0$ and $\mu(A_2) > 0$, where $A_1 = A_1(\varepsilon) = \bigcup_{k=-\infty}^{\infty} c^{-k} [1, \varepsilon)$ and $A_2 = A_2(\varepsilon) = \bigcup_{k=-\infty}^{\infty} c^{-k} [\varepsilon, 1/c)$. Then we have the equality

$$(3.5) \qquad \qquad \mu = \alpha_1 \,\mu_1 + \alpha_2 \,\mu_2,$$

where $\alpha_i = \mu(A_i)$, $\mu_i = \alpha_i^{-1} \mu|_{A_i}$. Since $A_1 \cap A_2 = \emptyset$, there is no C > 0 such that $\mu_1 = C\mu$. By (3.4) we see that $\nu = \alpha_1 \nu_1 + \alpha_2 \nu_2$, where ν , ν_1 , ν_2 are the Lévy measures corresponding to μ , μ_1 , μ_2 , respectively. Let $k \in N$. Since ν is of the form (3.1), we obtain

(3.6)
$$v|_{A_i} = \sum_{j=0}^{\infty} r(j, k) T_{c^j}(v_{c,(k)}|_{A_i}), \quad i = 1, 2.$$

Obviously, for every $i = 1, 2, \alpha_i v_i$ is the Lévy measure corresponding to the Khintchine measure $\alpha_i \mu_i$ and $\alpha_i v_i = v|_{A_i}$. Thus by (3.5) we obtain $\alpha_i \mu_i \in M$ and consequently, $\mu_i \in K$. By (3.4) this contradicts that μ is the extreme point.

Thus we infer that for every $1 < \varepsilon < 1/c$ either $\mu(A_1(\varepsilon)) = 0$ or $\mu(A_2(\varepsilon)) = 0$. This implies that there exists $y_0 \in Y_c \cap (0, \infty)$ such that μ is concentrated on the set $\{y_0 c^{-k}\}_{k=-\infty}^{\infty}$. Thus the lemma is proved.

We use the following notation given in [14] and [2]. We say that a function f is completely monotone if it has derivatives of any finite order such that $(-1)^n f^{(n)}(x) \ge 0$ (n = 0, 1, 2, ...). Completely monotone functions on $(0, \infty)$ are characterized by the Bernstein representation (see [14], Theorem 12a, p. 160).

PROPOSITION 3.3. A function f on $(0, \infty)$ is completely monotone if and only if

(3.7)
$$f(t) = \int_{0}^{\infty} e^{-tx} F(dx),$$

where F is a Borel measure on $[0, \infty]$. Moreover, F is uniquely determined by f.

Remark 3.4. A completely monotone function f on (a, ∞) , where $-\infty \le a < 0$, is also of the form (3.7). Moreover, if $-\infty < a < 0$, then $f(a+0) < \infty$ if and only if $e^{-ax} F(dx)$ is a finite measure. If $a = -\infty$, then $e^{bx} F(dx)$ is a finite measure for all b > 0.

Consider a sequence of real numbers $\{a_n\}_{n=0}^{\infty}$. We define the sequence given by the formula $\Delta a_n = a_{n+1} - a_n$, n = 0, 1, 2, ... Further, we define inductively sequences as follows: $\Delta^1 a_n = \Delta a_n$, $\Delta^k a_n = \Delta (\Delta^{k-1} a_n)$, k = 2, 3, ... The sequence $\{a_n\}_{n=0}^{\infty}$ will be called *k*-times monotone, k = 1, 2, ..., if (see [4])

$$(3.8) \qquad \Delta^{j} a_{n} \geq 0, \quad j = 1, 2, ..., k, \ n = 0, 1, 2, ...$$

It is well known [4] that

$$\Delta^k a_n = \binom{k}{0} a_n - \binom{k}{1} a_{n+1} + \ldots + (-1)^k \binom{k}{k} a_{n+k}.$$

The sequence $\{a_n\}_{n=0}^{\infty}$ will be called *completely monotone* if it is k-monotone for k = 1, 2, ... We say that a sequence $\{a_n\}_{n=0}^{\infty}$ is minimal if decreasing a_0 makes of it a sequence which is no longer completely monotone (see [2], [14]). We say that a sequence $\{a_n\}_{n=-\infty}^{\infty}$ is completely monotone if each of the sequences $\{a_n\}_{n=-k}^{\infty}, k = 1, 2, ...,$ is completely monotone. If $\{a_n\}_{n=-\infty}^{\infty}$ is completely monotone, then each of the sequences $\{a_n\}_{n=-k}^{\infty}, k = 1, 2, ...,$ is minimal.

PROPOSITION 3.5 (Feller [2]). Let $\{a_n\}_{n=-\infty}^{\infty}$ be a completely monotone sequence, $x_n = nh$, h > 0, $n \in \mathbb{Z}$ ($\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$). Then there is a uniquely determined function f(x) on \mathbb{R} such that f(x) is completely monotone and

$$(3.9) f(x_n) = a_n, \quad n \in \mathbb{Z}.$$

Remark 3.6. In [2] the function f(x) is defined such that it is completely monotone for $x \ge x_0$ and $f(x_n) = a_n$, $n = 1, 2, ..., f(x_0) \le a_0$, where $a_0, a_1, ...$ is a completely monotone sequence corresponding to a sequence of real numbers $0 \le x_0 < x_1 < ...$ such that the series $\sum 1/x_n$ diverges. But if $a_0, a_1, ...$ is minimal, then we have the equality $f(x_0) = a_0$.

LEMMA 3.7. Let $\mu \in e(K)$ and assume that μ is concentrated on the set $(-\infty, 0) \cup (0, \infty)$. Then $\nu = \nu(\mu)$ is of the form

(3.10)
$$v = C_0 \sum_{k=-\infty}^{\infty} (c^k)^{-z_0} \delta_{y_0 c^k},$$

where $0 < \alpha_0 < 2$, $y_0 \in Y_c$, and

(3.11)
$$C_0 = \left\{ \sum_{k=-\infty}^{\infty} \left[(y_0 \, c^k)^2 \, (c^k)^{-z_0} \right] / \left[1 + (y_0 \, c^k)^2 \right] \right\}^{-1}.$$

Proof. Let $\mu \in e(K)$ and let μ be concentrated on the set $(-\infty, 0) \cup (0, \infty)$. As in Lemma 3.2 it is sufficient to assume that μ is concentrated on $(0, \infty)$. By Lemma 3.2, μ is concentrated on the set given by (3.6). Put

(3.12)
$$a_n = v(\{y_0 c^n\}), \quad n \in \mathbb{Z}.$$

By (3.2) and (3.3), the sequence $\{a_n\}_{n=-\infty}^{\infty}$ is completely monotone. Put $x_n = n \ln(c^{-1}), n \in \mathbb{Z}$. By Proposition 3.5 there exists a uniquely determined completely monotone function f on \mathbb{R} such that

$$(3.13) f(x_n) = a_n, \quad n \in \mathbb{Z}.$$

By Proposition 3.3, f is of the form

(3.14)
$$f(x) = \int_{0}^{\infty} e^{-zx} F(dz),$$

where F is a Borel measure on $(0, \infty)$ (F is without atoms on the set $\{0, \infty\}$ since $\lim a_n = 0$ as $n \to \infty$ and $a_n > 0$, $n \in \mathbb{Z}$.)

Now we shall prove that F is a degenerate measure. Contrary to our statement suppose that there exists b > 0 such that F((0, b]) > 0 and $F((b, \infty)) > 0$. Then we can write f as the sum of completely monotone functions: $f = f_1 + f_2$, where $f_i(x) = \int_0^\infty e^{-zx} F_i(dz)$, i = 1, 2, $F_1 = F|_{(0,b]}$, $F_2 = F - F_1$. In particular, we have $f(x_n) = f_1(x_n) + f_2(x_n)$, $n \in \mathbb{Z}$. We define the measures v_1 , v_2 as follows: $v_i(\{y_0 c^{-n}\}) = f_i(x_n)$, i = 1, 2, $n \in \mathbb{Z}$. Then $v_i = v_i(\mu_i)$, i = 1, 2, are Lévy measures of infinitely divisible distributions such that $\mu_i \in M$ and $\mu = \mu_1 + \mu_2$. Let us put $\beta = \mu_1(\{y_0 c^{-n}\}_{n=-\infty}^\infty)$. Then we have

$$\mu = \beta \frac{\mu_1}{\beta} + (1-\beta) \frac{\mu_2}{1-\beta}, \quad \text{where } \frac{\mu_1}{\beta}, \frac{\mu_2}{1-\beta} \in K,$$

which contradicts the fact that μ is an extreme point.

Thus, F is degenerate. Then, for example, let $F = C_0 \delta_{z_0}$, where z_0 , C_0 are positive constants. This implies by (3.14) that f is of the form

(3.15)
$$f(x) = C_0 \exp(-z_0 x), \quad x \in \mathbf{R}.$$

We introduce the function

$$\hat{f}(u) = f(x),$$

where $x = \ln (u/y_0)$, u > 0, $x \in \mathbb{R}$. By (3.12) and (3.13) we have $f(n \ln c^{-1}) = f(x_n) = v(\{y_0 c^{-n}\})$. Thus

(3.17)
$$\hat{f}(y_0 c^{-n}) = v(\{y_0 c^{-n}\}), \quad n \in \mathbb{Z}.$$

By (3.15) and (3.16) we have $\hat{f}(u) = C_0 (u/y_0)^{-z_0}$. Taking into account (3.17) we see that this implies

(3.18)
$$v(\{y_0 c^{-n}\}) = C_0(c^{-n})^{-z_0}, \quad n \in \mathbb{Z}.$$

Denote by $v_{(y_0,z_0)}$ the measure given by (3.18),

 $\mu_{(y_0,z_0)}(du) = u^2/(1+u^2) v_{(y_0,z_0)}(du).$

Since $\mu_{(y_0,z_0)}$ is a probability measure, C_0 is given by (3.11), where $0 < z_0 < 2$, $y_0 \in Y_c$. Thus the lemma is proved.

Let us put $G_c = \{\mu_{(y_0,z_0)}: 0 < z_0 < 2, y_0 \in Y_c\}$. Directly from Lemmas 3.1 and 3.7 we obtain the following lemma:

LEMMA 3.8. $e(K) \subset G_c \cup \{\delta_0, \delta_{-\infty}, \delta_{\infty}\}.$

LEMMA 3.9. $G_c \cup \{\delta_0, \delta_{-\infty}, \delta_{\infty}\} \subset e(K).$

Proof. Once again it is sufficient to consider $\mu_{(y_0,z_0)}$ for $y_0 \in Y_c \cap (0, \infty)$, $0 < z_0 < 2$. Suppose that $\mu_{(y_0,z_0)}$ is not an extreme point. Then there exist $0 < \beta < 1$, $\mu_1, \mu_2 \in K$ such that $\mu_1 \neq \mu_2$ and

(3.19)
$$\mu_{(y_0,z_0)} = \beta \mu_1 + (1-\beta) \mu_2.$$

Clearly, both measures μ_1 , μ_2 are concentrated on the set $\{u_n\}_{n=-\infty}^{\infty}$, where $u_n = y_0 c^{-n}$, $n \in \mathbb{Z}$. By (3.19) we have

(3.20)
$$v_{(v_0,z_0)} = \beta v_1 + (1-\beta) v_2,$$

where $v_i = v_i(\mu_i)$, i = 1, 2. Let f, f_1 , f_2 be completely monotone functions such that $f(x_n) = v_{(y_0,z_0)}(u_n)$, $f_i(x_n) = v_i(u_n)$, $x_n = n \ln(c^{-1})$, $i = 1, 2, n \in \mathbb{Z}$. We note that the function $g = \beta f_1 + (1-\beta) f_2$ is a completely monotone function. By (3.20) we have $f(x_n) = g(x_n)$, $n \in \mathbb{Z}$. Since a completely monotone function is uniquely determined by its value at points x_n , $n \in \mathbb{Z}$, we have

(3.21)
$$f(x) = \beta f_1(x) + (1-\beta) f_2(x), \quad x \in \mathbf{R}.$$

Since $f(x) = C_0 \exp(-z_0 x)$ and it is the extreme point in the set of completely monotone functions (see [10]), it follows by (3.21) that $f_1(x) = f_2(x) = C_0 \exp(-z_0 x)$. This implies that $v_1 = v_2 = v_{(y_0,z_0)}$ and, consequently, $\mu_1 = \mu_2 = \mu_{(y_0,z_0)}$. This contradiction implies that $\mu_{(y_0,z_0)}$ must be an extreme point. This completes the proof of the lemma.

By Lemmas 3.8 and 3.9 we have

THEOREM 3.10. $e(K) = G_c \cup \{\delta_0, \delta_{-\infty}, \delta_{\infty}\}.$

By $\mu_n \Rightarrow \mu$ we denote the weak convergence of measures. Observe that e(K) is closed. In particular, we have:

$$\begin{aligned} \mu_{(y_n,z)} &\Rightarrow \mu_{(1,z)} & \text{as } y_n \to c^{-1} - 0 \quad (0 < z < 2), \\ \mu_{(y,z_n)} &\Rightarrow \delta_0 & \text{as } z_n \to 2 - 0 \quad (y \in Y_c), \\ \mu_{(y,z_n)} &\Rightarrow \delta_\infty & \text{as } z_n \to 0 + 0 \quad (y \in Y_c \cap (0, \infty)), \\ \mu_{(y,z_n)} &\Rightarrow \delta_{-\infty} & \text{as } z_n \to 0 + 0 \quad (y \in Y_c \cap (-\infty, 0)). \end{aligned}$$

Thus e(K) is compact and, consequently, K is compact.

LEMMA 3.11. K is compact.

4. THE CHARACTERISTIC FUNCTIONS OF MEASURES FROM $L_{c,\infty}$

Now we will apply Choquet's theorem on representation of the points of a compact convex set as barycenters of the extreme points ([10], p. 19). Then, taking into account Theorem 3.10, we infer that μ is in K if and only if

(4.1)
$$\mu = \int_{G_c \cup \{\delta_0, \delta_{-\infty}, \delta_{\infty}\}} \theta \gamma (d\theta),$$

where γ is a probability measure on $G_c \cup \{\delta_0, \delta_{-\infty}, \delta_\infty\}$. Moreover, $\mu \in K^0$ if and only if the measure γ assigns zero mass to the set $\{\delta_{-\infty}, \delta_\infty\}$. We note that the representation of $\mu|_{(-\infty,0)\cup(0,\infty)}$, where $\mu \in K^0$, is given by (4.1) with $G_c \cup \{\delta_0, \delta_{-\infty}, \delta_\infty\}$ replaced by G_c . It is not difficult to prove that the mapping $\mu_{(y,z)} \to (y, z)$ is a homeomorphism of $Y_c \times (0, 2)$ onto G_c . Thus we can write μ from K^0 and concentrated on $(-\infty, 0) \cup (0, \infty)$ in the form

(4.2)
$$\mu = \int_{Y_c \times (0,2)} \mu_{(y,z)} \lambda(d(y, z)),$$

where λ is a probability measure on $Y_c \times (0, 2)$. It is not difficult to prove that K is a simplex (analogously as in [11]); then from Choquet's uniqueness theorem for a metrizable space ([10], p. 70) we infer that λ is determined uniquely (see [11]). Obviously, the measure $\mu \in M^0$ concentrated on $(-\infty, 0) \cup (0, \infty)$ is given by (4.2), where λ is a finite measure on $Y_c \times (0, 2)$. Finally, by (4.2) we obtain the representation of $v = v(\mu)$, where $\mu \in M^0$. Thus the following lemma is proved:

LEMMA 4.1. The measure v is the Lévy measure corresponding to $P \in L_{c,\infty}$ if and only if v takes one of the following forms:

(4.3)
$$v(du) = \int_{Y_c \times (0,2)} \left\{ \sum_{j=-\infty}^{\infty} (c^j)^{-z} (yc^j)^2 / [1 + (yc^j)^2] \right\}^{-1} \times \sum_{n=-\infty}^{\infty} (c^n)^{-z} \,\delta_{yc^n}(u) \,\lambda(d(y,z)),$$

where λ is a finite Borel measure on $Y_c \times (0, 2)$, or, equivalently,

(4.4)
$$v(du) = \int_{Y_c \times (0,2)} \sum_{n=-\infty}^{\infty} (yc^n)^{-z} \, \delta_{yc^n}(u) \, \tau(d(y, z)),$$

where τ is a Borel measure on $Y_c \times (0, 2)$ ($\tau = y^z C_0(y, z) \lambda$) such that

(4.5)
$$\sum_{n=-\infty}^{\infty} |yc^n|^{2-z}/(1+yc^n)^2 \tau \left(d(y, z)\right)$$

is a finite Borel measure on $Y_c \times (0, 2)$, or, equivalently,

(4.6)
$$v(du) = \int_{Y_c \times (0,2)} \sum_{n=-\infty}^{\infty} (c^n)^{-z} \delta_{yc^n}(u) \xi(d(y, z)),$$

where ξ is a Borel measure on $Y_c \times (0, 2)$ such that

(4.7)
$$\sum_{n=-\infty}^{\infty} (c^n)^2 / (1 + yc^n)^2 \xi(d(y, z))$$

is a finite Borel measure on $Y_c \times (0, 2)$.

Moreover, the measure v determines uniquely the measures λ , τ , and ξ .

Applying (4.3) and (4.4) we obtain the characteristic functions of completely *c*-decomposable distributions.

THEOREM 4.2. The function φ is the characteristic function $\overline{o}f P \in L_{c,\infty}$ if and only if φ is of the form

(4.8)
$$\varphi(t) = \exp\left\{ibt - Gt^2/2 + \int_{Y_c \times (0,2)} \left[\sum_{j=-\infty}^{\infty} (c^j)^{-z} (yc^j)^2 / [1 + (yc^j)^2]\right]^{-1} \sum_{n=-\infty}^{\infty} (c^n)^{-z} g_t(yc^n) \lambda(d(y, z))\right\}$$

where λ is a finite Borel measure on $Y_c \times (0, 2)$, $b \in \mathbb{R}$, $G \ge 0$, or, equivalently,

(4.9)
$$\varphi(t) = \exp\left\{ibt - Gt^2/2 + \int_{Y_c \times (0,2)} \sum_{n = -\infty}^{\infty} |yc^n|^{-z} g_t(yc^n) \tau(d(y, z))\right\},$$

where τ is a Borel measure on $Y_c \times (0, 2)$ such that the condition (4.5) is satisfied, $b \in \mathbf{R}$, $G \ge 0$.

Moreover, b, G, λ , and τ are uniquely determined.

Remark 4.3. In the particular case $\tau = \tau_1 \times \tau_2$ we can rewrite the formula (4.9) in the form

(4.10)
$$\varphi(t) = \exp\left\{ibt - Gt^2/2 + \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g_t(yc^n) \chi_{Y_c}(y) \int_{0}^{2} |yc^n|^{-z} \tau_2(dz) \tau_1(dy)\right\}.$$

Putting $h(u) = \int_0^2 |u|^{-z} \tau_2(dz)$ and $\overline{h}(x) = h(u)$, where u > 0 and $x = \ln u$, we obtain

(4.11)
$$\varphi(t) = \exp\left\{ibt - Gt^2/2 + \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g_t(yc^n) \chi_{Y_c}(y) h(yc^n) \tau_2(dz) \tau_1(dy)\right\},$$

where h(u) is a function on $(-\infty, 0) \cup (0, \infty)$ for which h(-u) = h(u) and $\overline{h}(x)$ is a completely monotone function (on **R**) such that the measure F determined by the Bernstein representation (3.7) is concentrated on (0, 2), i.e. $\overline{h}(x) = \int_0^2 e^{-zx} \tau_2(dz)$.

We shall derive from Lemma 4.1 the well-known representation of completely self-decomposable distribution.

THEOREM 4.4. A probability measure P is completely self-decomposable if and only if its Lévy spectral measure v is of the form

(4.12)
$$v(dx) = \int_{0}^{2} z |x|^{-1-z} \gamma(dz)$$

or, equivalently, its characteristic function φ is of the form

(4.13)
$$\varphi(t) = \exp\left\{ibt - Gt^2/2 + \int_0^2 \left(\int_{-\infty}^0 + \int_0^\infty\right) g_t(u) \, z \, |u|^{-1-z} \, du \, \gamma(dz)\right\},$$

where γ is a finite Borel measure on (0, 2).

Proof. Let a probability measure P be completely self-decomposable, i.e. $P \in L_{c,\infty}$ for every $c \in (0, 1)$. Let v be the Lévy spectral measure corresponding to P. By Lemma 4.1, v is of the form (4.4). Assume that v is concentrated on $(0, \infty)$. Then we can write \bar{v} and its distribution function \bar{f} in the form

(4.14)
$$\bar{v}(du) = \int_{[0,h)\times(0,2)} \sum_{j=-\infty}^{\infty} e^{-z(y-jh)} \delta_{y-jh}(u) \gamma_h(d(y, z)),$$

(4.15)
$$\overline{f}(u) = \int_{[0,h]\times(0,2)} \sum_{j=-\infty}^{\infty} e^{-z(y-jh)} \chi_{(y-(j+1)h,y-jh]}(u) \times [(1-e^{-zh})^{-1} \gamma_h](d(y,z)),$$

respectively. From (4.15), by letting *h* tend to zero and making use of Helly's theorem, we conclude that $\overline{f}(u) = \int_{\{0\}\times(0,2)} e^{-zu} \gamma(d(y, z))$. Taking the measure $\gamma(dz)$ in place of the measure $\gamma(d(y, z))$, respectively, we obtain

(4.16)
$$\overline{f}(u) = \int_{0}^{2} e^{-zu} \gamma(dz), \quad f(x) = \int_{0}^{2} x^{-z} \gamma(dz)$$

and

(4.17)
$$v(dx) = \int_{0}^{2} z x^{-z-1} \gamma(dz).$$

The above formula gives a representation of $v|_{(0,\infty)}$. Consequently, v is determined by (4.12). Easy computations show that the characteristic function is given by (4.13). Thus the theorem is proved.

REFERENCES

- [1] J. Bunge, Nested classes of C-decomposable laws, Ann. Probab. 25 (1997), pp. 215-229.
- [2] W. Feller, Completely monotone functions and sequences, Duke Math. J. 5 (1939), pp. 661-674.
- [3] Z. Jurek, The classes $L_m(Q)$ of probability measures on Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 31 (1983), pp. 51–62.
- [4] K. Knopp, Mehr fach monotone Zahlenfolgen, Math. Z. 22 (1925), pp. 75-85.
- [5] A. Kumar and B. M. Schreiber, Characterization of subclasses of class L probability distributions, Ann. Probab. 6 (1978), pp. 279-293.
- [6] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), pp. 107-126.

T. Rajba

- [7] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Research Report, Keio University, Japan, 1997.
- [8] Nguyen van Thu, Multiply c-decomposable probability measures on Banach spaces, Probab. Math. Statist. 5 (1985), pp. 251-263.
- [9] Nguyen van Thu, Multiply self-decomposable probability measures on Banach spaces, Studia Math. 66 (1979), pp. 160-175.
- [10] R. P. Phelps, Lectures on Choquet's Theorem, New York 1966.
- [11] T. Rajba, A representation of distributions from certain classes L_s^{id} , Probab. Math. Statist. 4 (1984), pp. 67–78.
- [12] T. Rajba, On multiple decomposability of probability measures on R, Demonstratio Math. 2 (2001), pp. 275-294.
- [13] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980), pp. 207-232.
- [14] D. V. Widder, The Laplace Transform, University Press, Princeton, N. J., 1941.

Received on 4.3.2002; revised version on 22.11.2002