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Abstract. We obtain the characteristic functions of distributions
in L.,, ie. o-times c-decomposable distributions in the class of
infinitely divisible distributions, where 0 < 2 < 00, 0 <c¢ < 1. The
characteristic functions of ¢-times sclfdecomposable laws (ie. a-times
c-decomposable for each ce(0, 1)) are well known (see [3], [5],

91, [13)).
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1. INTRODUCTION AND NOTATION

Given a probability measure P on R, |c| < 1, we say that P is c-decom-
posable if P = T._P+P, for some probability measure P,, where T,x = cx
(xeR), T, P(B) = P(T; ! B) for any non-zero ¢ and Borel set B, and T, P = &,
For a probability measure P, P is defined to be the probability measure given
by P(4) = P(—A). We must mention the name of Loéve as a pioneer of the
decomposable problem [6] (this history can be also found in Bunge [1]). Loéve
showed in [6] that (if 0 < |¢| < 1) P is c-decomposable if and only if P is of the
form P = #%{°_, T« P, for some probability measure P,. He denoted the set of all
c-decomposable laws by L.. The class L, or the set of self-decomposable laws, is
defined as L = ﬂce(o,uLC' A generalization of c-decomposable laws to the
multiple case is given 1n [8]. Namely, for a given ne N we say [8] that a proba-
bility measure P is n-times c-decomposable if there exist probability measures
P 1y, ..., Pey such that

(1.1) P= EP*Pc.u)*---*Pc,(n—-n = Y:'Pc,(n—l)*Pc,(n)-
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Then, by (1.1), P is n-times c-decomposable if and only if P is of the form

P= * TkP:?";',
(1.2) k=0

r(k, m) = n(n+1)...00+k—1)/k! = I (k+n)T ()T (k+1),

where the power is taken in the convolution sense. The formula (1.2) suggests
to generalize the concept of n-times c-decomposable probablhty measures to
the non-integer case (see [8]).

Let Id denote the class of all mﬁmtely divisible measures on R. For o > 0,
r(k, ) is given by (1.2) with a in place of n. A probability measure P e Id is said
to be a-times c-decomposable (in Id, 0 <c <1, a > 0) 1f there exists P, €ld
such that

(1.3) p=

k

I % 8

T PGS
0
Let L., denote the subclass of Id consisting of probability measures P such
that (1.3) holds for some P, € Id. It is well known [8] that the infinite con-
volution (1.3) is convergent if and only if P, ,, has the finite log®-moment, ie.

(1.4) Dj? log“(17+|x|) P,y (dx) < 0.

We define the class of completely c-decomposable measures by the for-
mula L, , = ﬂp o Lo (see [1] and [7]). We note that P is completely c-decom-
posable if and only if it is n-times c-decomposable for every ne N. The praba-
bility measures in L, = ﬂ o<e<y Lea are called a-times self-decomposable for
0 < a < oo, and completely self-decomposable for o = co. The measures in the
classes L, (0 < a < o0) of multiply self-decomposable measures were also inves-
tigated on multidimensional spaces. In particular, their characteristic func-
tionals are well known (Kumar and Schreiber [57, Sato [13], Jurek [3], Nguyen
van Thu [9]).

In this paper we give characteristic functions of multiply c- decomposable
distributions, i.e. dlstnbutlons in L, (0<a< o)

2. MEASURES IN L,

Let @(¢) be the characteristic function of Peld,

(2.1) qo(t)*eXp{sz } gz(u) " ﬂ(du)}

where g,(u) = e™—1—itu/(1+u?), b is a real constant, and u is a finite Borel
measure on R. The function ¢ determines uniquely b and u. Then for the
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measure v = v(u) given by

(2.2) v = (1+u?)/u® - w,00000,0)

we have

23) ( 33 +ajo) u?/(1+u?)y(du) < oo or, equivalently, ( E -I-;')uzv(du) < 0.

—

We shall call 4 and v the Khintchine and the Lévy (spectral) measure, respec-
tively, corresponding to P. -

Let v, be the Lévy measure corresponding to P, satlsfymg (1.3). It is
well known [8] that the following conditions are equlvalent

(a) the infinite convolution (1.3) is convergent;

(b) P, has a finite log®moment, ie. (1.4) holds;

(©) v satisfies the following condition:

2.4 ( _j +T]log“ (IX]) Ve, (d%) < 0

-0

(d) the following series is convergent:

(2.5) v=Y rk, o) TuVew.
k=0

Note that the Lévy measures corresponding to distributions from L, , are of the
form (2.5). We now apply (2.5) to obtain the characteristic function of a-times
c-decomposable distributions (0 < a < 00).

THEOREM 2.1. The function ¢ is the characteristic function of PeL.,
(0 <o < ) if and only if ¢ is of the form

oW o

(26)  @(?) = exp {ibt— Gt*/2+( _f + ) Y rk, @) ge(c* u)ve @ (du)},

— 0 k=0
where beR, G = 0, and v, is a Borel measure on (— oo, 0)u(0, o) such that
(j +_[0)u Ve (du) < 0 and the condition (2.4) is satisfied. The functlon @ de-
termmes uniquely b, G and v, .

We shall find the relations of the representations (2.5) and (2.6) of Lévy
measure and the characteristic function, respectively, corresponding to a-times
c-decomposable distributions with the representations of Lévy measure and the
characteristic function corresponding to a-times self-decomposable distribu-
tions. We start the study with the following lemma.

LemMA 22. If a >0, h >0, and x, yeR, then

o

2.7 TF@+1)h* Y r(j, D x-wy-m ) = (0=x)+)" as h—0.

=0
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Proof. Let g be a non-negative non-increasing function on R. It is not
difficult to prove that

(2.8) h ), gx+jh) < fgydu<h 3, g(x+jh),

i=1 x j=0
which implies that the series Z;x; og(x+jh} is convergent if and only if
§2 g(w)du < co. From (2.8) we obtain h2?=og(x+jh) — [~ g(u)du as h—0.
We can prove inductively that for each ne N -

[>e]

@9) 1 T r(j, m)g(a-+ih) - T .. [ gOco)dxodxy ...dX,—;  as h—0,

i=0 XnXpn—1 X1
Applying (2.9) to g(x) = (- «,07(X) We have

[ ]

(2.10) n Y r(j, W X- - () = ((—%)2)"  as k0.

i=0

Let « > 0. It is not difficult to prove that Zj;or(j, o) =r(k, a+1), keN,
which gives

o] [e0]

z F(Js ®) X, —jn () = X, P, 1) 1=+ 1n, - g (X)-

i=o j=0
Recall that (cf. [8]) for 0 < o £ 1 the following inequalities hold:
(2.11) k7t < Tk+1)/T (k+o) < (k+1)' 7=

In the case 0 <a< 1, by (1.2) and (2.11) we obtain

[+¢]

(212 Fe+D)R Y r(j, 0) X—w— @) = {(—x)+)" as k0.

Jj=0

In the case > 1 we can write « in the form « =n+f, where neN,
0< f < 1. Assume that f > 0. Putting

o

Liz(9)(x) = X r(j, 9)g (x+jh),

i=0
we have Iy, 44,(9) = Iha, (Ina: (9)) Then I, ,(g) = I, (I4,4(g)). Applying (2.8)
with I, 4(g) in place of g and putting g = y(- 0, similarly to the above, we
infer that (2.12) holds for o« > 1.

Thus we have shown that (2.12) holds for all « > 0, which gives (2.7) and
the lemma is proved.
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THEOREM 2.3. A probability measure P is o-times self~decomposable
(0 <a < o) if and only if its Lévy spectral measure v is of the form

19 @) =| (1) v rame

0 +

I +

or, equivalently, its characteristic function ¢ is of the form

+ ." i%”(ln%)a_ )’a(dU)X(m,O)(x):ldx

0 ®
(214) () =exp{ibt—Gt*/2+( | +[) [ g:(ve ) ay*~ 1 dyy,(dv)},
D 0 0
where vy, is a Borel measure on (— oo, 0)U(0, 00) such that
()] © o
(§ +0)fwe™)?(1+@e)?)~ 1 y* 1 dyy,(dv) < c0.
- o0 0 0 .

Proof. Let v be the Lévy spectral measure corresponding to a-times self-
-decomposable probability measure P, i.e. Pe L., for each ce(0, 1). Then so is
¥ defined by ¥(B) =v(—B), B < (—co, 0)u(0, ).

Thus it is sufficient to assume that v is concentrated on (0, o). Let ¥ be the
measure on R defined by 7(InB) = v(B), B = (0, ). Let f and f be the dis-
tribution functions of v and ¥, respectively, ie. f(x) = v((x, o)), x >0, and
F(») =7((y, ), yeR. Then f(Inx) =f(x), x > 0. By (2.5) we see that v is of
the form

a0

(215) V= Z T(j, “)U—jhvc,m
j=0
where h = —In¢, U,(x) = x+a, x, aeR. Defining V,, as

Vc.a(dx) = 5 Ou (X) Ve (du)
we can rewrite (2.15) in the form

2.16) i) = [ Y rG U —p6.0) Pea(d).

- j=0

Then the distribution function of 7 is of the form

FOI= § % 7l )t mammO) o)

© j

i

or, equivalently,

o0

Q1) JO)= | T@HDR Y () 2w m0) Tos @,

Jj=0
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where 7, (du) = (I' (@ + l)h"’)'1 V... (du). Now it is very easy to obtain the well-
-known Lévy spectral measure representation of a-times self-decomposable
laws. From the relation (2.17), by letting h tend to zero and making use of
Lemma 2.2 and Helly’s theorem, we conclude that

J0)= § @i fealdi) yeR

Consequently, f (x) = [ (Invx™ )% 7, (dv), x >0, and

© 5 v a—1 _ -
(2.18) v(dx)=| | ;(ln ;) Ve (dv)) dx, x>0.

0 +

The formula (2.18) gives a representation of V|, ). For the general case
note that v is given by (2.13). An easy computation shows that the characteristic
function ¢ is given by the formula (2.14) and the theorem is proved.

Now we are going to describe the classes L, ..

3. EXTREME POINTS

Let Peld and let v be the Lévy measure corresponding to P. By (1.1) and
(2.5), the following conditions are equivalent:

(@) PeL, y;

(b) for every k=1, 2, ... the measure v is of the form

[o.0]

(3.1 V= Z r(j, k) Ty ve g,

j=0

where v, 4, is a Borel measure on (— o0, 0)u(0, o0) satisfying the condition (2.3)
(with k in place of «);

(c) for every k = 1, 2,... the measure v, , satisfies the following inequali-
ties:
(3.2) . vc,(k)_ ﬂvc,(k) > 0,
where P, =P, P4 (k=1,2,...) are measures given by (1.1) and
Ve (k=0,1,2,..) are Lévy measures corresponding to P g,.

By (1.1) we have the following equalities:

(3.3) Ve,k+1) = Ve, — chc,(k) (k=0,1,2,...).

Put M° = {u: p is a finite Borel measure on R such that v = v () given by
(2.2) is of the form (3.1) for each ke N}. Then the set of Khintchine measures
corresponding to PeL,,, coincides with the set M°. We put M = {u: p is
a finite Borel measure on [— o0, oo] such that p|pe M°}. Let K be the subset of
M consisting of probability measures and K° = KnM°. The convexity of
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K follows easily from the definition. The space of all probability measures on
[— o0, o] with weak convergence is a metrizable compact space. We consider
the induced topology on K. We shall prove that K is closed and, consequently,
compact. First we shall find the extreme points of the set K. Let us denote by
e(K) the set of extreme points of K. Put ¥, = {y: 1 < |y| < 1/c}. The following
lemma is obvious.

LemMmA 3.1. If uee(K), then u is concentrated on one of the following sets:
{—o0}, {0}, (0, ), (— 0, 0), and {0}.

LeMMA 3.2. Let uee(K). If u is concentrated on the set (— o0, 0)u(0, ),
then u is concentrated on the set of the form

(34) | Do ™M s
where yy€Y,.

Proof. Let uee(K). Since pee(KX) if and only if jiee(K), it is sufficient to
assume that y is concentrated on (0, o). Suppose that there exists 1 <& < 1/c
~ such that p(4,) > 0 and u(4,) > 0, where A; = A, () = J,___c7*[1,¢) and
Ay =A,()=\J,___c"[e, 1/c). Then we have the equality

(3.5) Bo= 0y py +ap U,

where o; = u(4;), w; = o7 ! pl4,. Since A; N A, = @, there is no C > 0 such that
iy = Cu. By (3.4) we see that v =a, v, +a,v,, where v, v;, v, are the Lévy
measures corresponding to u, uy, [, respectively. Let ke N. Since v is of the
form (3.1), we obtain _
= o]
(3.6) Vg = Z r(js B) Ti(emla),  i=1,2.
j=o0
Obviously, for every i =1, 2, o;v; is the Lévy measure corresponding to the
Khintchine measure a; y; and o;v; = v|4,. Thus by (3.5) we obtain a; y;€ M and
consequently, u;€ K. By (3.4) this contradicts that u is the extreme point.
Thus we infer that for every 1<e&<1/c either pu(4,(e) =0 or
1(A2(e)) = 0. This implies that there exists yo€ ¥,n(0, o) such that u is con-
centrated on the set {yoc *}% - ,. Thus the lemma is proved.

We use the following notation given in [14] and [2]. We say that a function
f is completely monotone if it has derivatives of any finite order such that
(-1 f®x)=0(mn=0,1,2,..). Completely monotone functions on (0, o0) are
characterized by the Bernstein representation (see [14], Theorem 12a, p. 160).

ProposITION 3.3. A function f on (0, o0) is completely monotone if and only if
3.7 f@) = fe ™ F(dx),
0

where F is a Borel measure on [0, co]. Moreover, F is uniquely determined by f.
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Remark 34. A completely monotone function f on (a, ), where
—oo €£a<0, is also of the form (3.7). Moreover, if —o0 <a <0, then
f(a+0) < oo if and only if e”** F(dx) is a finite measure. If a = —co, then
e’ F (dx) is a finite measure for all b > 0.

Consider a sequence of real numbers {a,};>,. We define the sequence

given by the formula 4a, = a,+1—a,, n =0, 1, 2, ... Further, we define induc-
tively sequences as follows: 4! a, = 4a,, 4*a, = A(4*1a,), k=2,3,... The
sequence {a,}so will be called k-times monotone, k=1, 2, ..., if (see [4])

(3.8) Na, 20, j=1,2,..,k,n=0,1,2,...
It is well known [4] that

A*¥aq, = (I(;) a,,—(l;) ui1+...+(—1)F (2) i

The sequence {a,};%, will be called completely monotone if it is k-monotone for
k=1,2,... We say that a sequence {a,}s=o is minimal if decreasing a, makes
of it a sequence which is no longer completely monotone (see [2], [14]). We say
that a sequence {a,}i-_, is completely monotone if each of the sequences
{a} &, k=1,2,..., is completely monotone. If {a,};> _, is completely
monotone, then each of the sequences {a,}sx 4, k=1, 2, ..., is minimal.

ProPOSITION 3.5 (Feller [2]). Let {an}0= - be a completely monotone se-
quence, X, = nh, h >0, neZ (Z = {0, +1, +2,...}). Then there is a uniquely
determined function f(x) on R such that f(x) is completely monotone and

3.9 f(x,)=a, neZ.

Remark 3.6. In [2] the function f (x) is defined such that it is completely
monotone for x = xo and f (x,) = a,, n =1, 2, ..., f (xo) < ay, Where ag, ay, ...
is a completely monotone sequence corresponding to a sequence of real num-

bers 0 < xo < X; <... such that the series ), 1/x, diverges. But if ao, a4, ... is
minimal, then we have the equality f (xo) = ao.

LEMMA 3.7. Let pece(K) and assume that p is concentrated on the set
(—o0,0)u(, ). Then v=v(u) is of the form

(3.10) v=Co Y (Y8000

k=—w

where 0 < 0y <2, yoe Y, and

(3.11) Co={ 3 [0 YL +poc]} "

k=~w
Proof. Let uee(K) and let u be concentrated on the set (— oo, 0)uU(0, ).
As in Lemma 3.2 it is sufficient to assume that y is concentrated on (0, o). By
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Lemma 3.2, u is concentrated on the set given by (3.6). Put
(3.12) a,=v({yoc"}), neZ.

By (3.2) and (3.3), the sequence {a,};-_, is completely monotone. Put
x, =nln(c™1), neZ. By Proposition 3.5 there exists a uniquely determined
completely monotone function f on R such that

(3.13) f(x,)=a, nekZ.
By Proposition 3.3, f is of the form .

(3.14) Cfx) = ?e"z"F(dz),
0

where F is a Borel measure on (0, co) (F is without atoms on the set {0, oo}
since lima, =0 as n— o and a, >0, neZ)

Now we shall prove that F is a degenerate measure. Contrary to our
statement suppose that there exists b >0 such that F((0, b])>0 and
F((b, ©0)) > 0. Then we can write f as the sum of completely monotone
functions: f =f;+f,, where fi(x)= f;o e ™F;dz), i=1,2, F;=Flon
F, = F—F,. In particular, we have f (x,) = f1 (x,) + /2 (x,), ne Z. We define the
measures vy, v, as follows: v;({yo ¢ ™"}) = fi(x,), i = 1, 2, ne Z. Then v; = v;(uy),
i=1, 2, are Lévy measures of infinitely divisible distributions such that y;e M
and p=p;+p,. Let us put f=p ({yoc "}z _) Then we have

p=pE vt —p -2,  where 12, £2

B 1-p B 1-p

which contradicts the fact that 4 is an extreme point.
Thus, F is degenerate. Then, for example, let F = C, d,,, where z,, Cq are
positive constants. This implies by (3.14) that f is of the form

(3.15) f(x)=Cpexp(—zyx), xeR.

ek,

We introduce the function
(3.16) - fa)=1),

where x = In(u/y,), u >0, xeR. By (3.12) and (3.13) we have f(nlnc™ 1) =
S (xy) =v({{yoc™"}). Thus

(3.17) foc™ =v({yoc™™), neZ.

By (3.15) and (3.16) we have f (w) = Co (u/yo)~*°. Taking into account (3.17) we
see that this implies

(3.18) v({{yoc ") =Colc™™ 7%, nelZ.
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Denote by v, ., the measure given by (3.18),
Byo.zo) (@) = 2 /(1 +1%) Viyo,z0) (A1)

Since pyy,,zp) 1S @ probability measure, C, is given by (3.11), where 0 <z, < 2,
yo€ Y.. Thus the lemma is proved.

Let us put G, = {§g,z0 0 < zo < 2, yo€ Y.}. Directly from Lemmas 3.1
and 3.7 we obtain the following lemma:

LemMMa 3.8. e(K) = G, U {0g; 0, 0o}
LeMMA 3.9. G,U{dg, 0, 0} = e(K). =

Proof. Once again it is sufficient to consider i, ., for yoe .n(0, ),
0 < zy < 2. Suppose that pu, ., is not an extreme point. -Then there exist
0<p <1, uy, u,€K such that u, # u, and

(319) Hiyo,zp) = /3#1 +(1 - B) Ha.

Clearly, both measures p,, p, are concentrated on the set {u,},=_., where
u,=yoc ", neZ. By (3.19) we have

(320) Vyo,z0) = ,3V1 + (1 - ﬁ) Va,

where v; = v;(i;), i = 1, 2. Let f, f;, f> be completely monotone functions such
that f(X,) = Vgo.z0) (Un)s fi(Xn) = vi(), X, =nln(c™?), i=1, 2, neZ. We note
that the function g = Bf; +(1—p) f, is a completely monotone function. By
(3.20) we have f(x,) = g(x,), neZ. Since a completely monotone function is
uniquely determined by its value at points x,, neZ, we have

(3.21) f)=B/i(x)+(1=P)f2(x), xeR.

Since f(x} = Cyexp(—zyx) and it is the extreme point in the set of completely
monotone functions (see [10]), it follows by (3.21) that f;(x) =f5(x) =
Coexp(—zox). This implies that v; = v, = v, ., and, consequently, u; =
Uz = Hgo,ze)- This contradiction implies that pg, ., must be an extreme pomt
This completes the proof of the lemma.

By Lemmas 3.8 and 3.9 we have
THEOREM 3.10. e(K) = G, U {09, 0 -, 00} -

By pu,=u we denote the weak convergence of measures. Observe that
e(K) is closed. In particular, we have:

Homn =Bz 85 Ya—c '—=0(0<z<2),
Hiy,zn) = 00 as z,»2-0 (ye¥),
Hy,zn) = Oco as z, > 0+0 (ye¥.n(0, «0)),
Ppom=0-o a8 z,— 040 (yeY.n(—c0, 0)).
Thus e(K) is compact and, consequently, K is compact.
LemmA 3.11. K is compact.
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4. THE CHARACTERISTIC FUNCTIONS OF MEASURES FROM L,

Now we will apply Choquet’s theorem on representation of the points of
a compact convex set as barycenters of the extreme points ([10], p. 19). Then,
taking into account Theorem 3.10, we infer that y is in K if and only if

(4.1) p= [ Oy(do),
G U{60,0 - o0y0c0}

where 7 is a probability measure on G,U {8y, 6, 0,,}. Moreover, peK® if
and only if the measure y assigns zero mass to the set {§_,,, 0, }. We note that
the representation of pl-w.0ju0.)» Where peK?® is given by (4.1) with
G.U{0¢, 0_«, 0} replaced by G.. It is not difficult to prove that the mapping
Uy, — (¥, 2) is a homeomorphism of ¥, x (0, 2) onto G.. Thus we can write 4 from
K° and concentrated on (—oo, 0)u(0, ) in the form

(42) H= I Hey,z) A (d (y’ Z)),
¥cx(0,2)

where A is a probability measure on Y, x (0, 2). It is not difficult to prove that
K is a simplex (analogously as in [117); then from Choquet’s uniqueness theo-
rem for a metrizable space ([10], p. 70) we infer that A is determined uniquely
(see [11]). Obviously, the measure ue M° concentrated on (— oo, 0)uU(0, o) is
given by (4.2), where 4 is a finite measure on Y, x (0, 2). Finally, by (4.2) we
obtain the representation of v = v(u), where ue M°. Thus the following lemma
is proved:

LEMMA 4.1. The measure v is the Lévy measure corresponding to Pe L, , if
and only if v takes one of the following forms:

@3) vaw= [ {3 @ 0NM1+odr]

Y.%(0,2) j=—o

) X S (@) 820, 2),

n=—w

where A is a finite Borel measure on Y, x (0, 2), or, equivalently,

4.4 vdu = | i W) F by (W) T(d (v, 2)),

Y¢x{0,2) n=—a
where 7 is a Borel measure on Y, x(0, 2) (t = y*Cy(y, 2) A) such that

0

4.5) Y e+ yeY o (d (v, 2))

n=—co0

is a finite Borel measure on Y,x (0, 2), or, equivalently,

(46) vd= [ Y (@) ey, 2),

Y. %(0,2) n=—o0
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where ¢ is a Borel measure on Y, x (0, 2) such that

@) S (@ +yeYEd(, 2)

n=—oo

is a finite Borel measure on Y;x (0, 2).
Moreover, the measure v determines uniquely the measures A, 1, and £.

Applying (4.3) and (4.4) we obtain the characteristic functions of com-
pletely c-decomposable distributions.

THEOREM 4.2. The function ¢ is the characteristic function of Pe L, o, if and
only if ¢ is of the form

(4.8) ¢ (t) = exp {ibt —Gt?/2

+ [ X @70+ X @ a0 A(d b, 2)},
Yex(0,2) j=—w n=-o
where A is a finite Borel measure on Y,x(0, 2), beR, G = 0, or, equivalently,

o0

(49) oe@=exp{ibt—Gt*2+ [ Y |yc"I7*g:(yc")t(d(y, 2))},

Yex(0,2) n=—ow0
where 1 is a Borel measure on Y, x (0, 2) such that the condition (4.5) is satisfied,
beR, G>=0.
Moreover, b, G, A, and T are uniquely determined.

Remark 4.3. In the particular case T = 7, X7, we can rewrite the for-
mula (4.9) in the form

w© © 2 )
(4.10) @@ =exp{ibt—G*2+ [ gt(yC")ch(y)(I)lyC"I"rz(dZ)n(dy)}-

Putting h(u) = _ff) |u| %7, (dz) and h(x) = h(u), where u >0 and x = Inu, we
obtain

1) e =exp{bi—GE2+ [ Y 40 1r.0) hpe) w2 (d2) T, (@)},
where h(u) is a function on (— o0, 0)U(0, oo) for which h(—u) = h(u) and h(x)
is a completely monotone function (on R) such that the measure F determined
by the ) Bernstein representation (3.7) is concentrated on (0, 2), ie.
h(x) = [, e " 1, (d2).

We shall derive from Lemma 4.1 the well-known representation of com-
pletely self-decomposable distribution.

THEOREM 4.4. A probability measure P is completely self-decomposable if
and only if its Lévy spectral measure v is of the form

4.12) v(dx) = }zlxl_l_"y(dz)
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or, equivalently, its characteristic function ¢ is of the form

2 0 ©
(4.13) @ (1) =exp {ibt—G*2+[( | + [)g.(w)z|ul"* "% duy(dz)},
0 0

— 0
where y is a finite Borel measure on (0, 2).

Proof. Let a probability measure P be completely self-decomposable, i.e.
PeL,,, for every ce(0, 1). Let v be the Lévy spectral measure corresponding
to P. By Lemma 4.1, v is of the form (4.4). Assume that v is concentrated on
(0, c0). Then we can write 7 and its distribution function f in the form

@14  T@w= | ie"‘”‘f"’éy_,-;.(u)vh(d(y, z)),

[0,k) %(0,2) j=—o0

415) fw= | Y, e Ty G imy— i (¥)
[0,h) X(0,2) j=—
X [(1 _e_Zh)_l yh] (d(ya Z)),

respectively. From (4.15), by letting h tend to zero and making use of Helly’s
theorem, we conclude that f(u) = Lo)x ©.2) e “y(d(y, z)). Taking the measure
y(dz) in place of the measure y(d(y, z)), respectively, we obtain

(4.16) fw)= ge""y(dz), fx)= (];x_z)’(dz)
and
4.17) v(dx) = }zx"'ly(dz).

0

The above formula gives a representation of v|g, ). Consequently, v is
determined by (4.12). Easy computations show that the characteristic function
is given by (4.13). Thus the theorem is proved.
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