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Abstract. We generalize the Erdés—Rényi limit theorem on the
maximum of partial sums of random variables to the case when the
number of terms in these sums in randomly distributed. Relations
between this limit theorem and the spectral theory of random graphs
and random matrices are discussed.
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1. INTRODUCTION

The Erdés—Rényi limit theorem concerns the asymptotic behaviour of the
random variables

(1.1) n(n, k)= max Si(k)k,  Si(k) = &+ Civat A i

i=1,..,n—k

where 5 = {£;}2, is a family of independent identically distributed (i.i.d.) ran-
dom variables determined on the same probability space Q and having zero
mathematlcal expectation E{ = 0. It is assumed that the function

(1.2) ¢ (v) = Ee®

is determined for tel,, where I; = R, = (0, + o0).

In [7] it is proved that given 1 < C < o0 there exists, w1th probability 1,
a non-random limit

(1.3) lim 5 (n, [Clogn]) = a
determined by the relation

(1.4) inf$(c)e* = e 1C.

tel
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In the particular case when ¢; are given as Bernoulli random variables

with probability 1/2,

1
(1.5) Gi=0i= {_1 with probability 1/2,

the convergence (1.3) holds with C = clog,2, where a(c) is determined by the
relation

(1.6) % - 14(#) i

with
h(t)= —tlogt—(1—t)log,(1—1), O<t<1.

It is easy to see that in this case a takes values between the mean value
0 = a(+ o) and the maximum 1 = «(1) of random variables {;. Obviously, one
can also determine the limit «(c) for the values ¢ (0, 1); in this case it is equal
to 1.
Further studies give more details about the convergence (1.3); in particu-
lar, the convergence in probability was proved and the estimates with proba-
bility 1 were derived for the difference

k
@—k[n (n, k)—a(C)]

(see [5]). The Erd6s—Rényi theorem has found several applications (see, €.g.,
[3], [11]) and its various generalizations have been considered (random varia-
bles indexed by sets, non-independent identically distributed random variables,
random variables in Banach spaces and others).

One more version of this limit theorem is motivated by the studies of
spectra of random matrices [8]. Namely, when regarding the weighted adjacen-
cy matrix of a random graph, one observes that the spectral norm of such
a matrix is bounded from below by the maximum of the sums S;(k) (1.1),
where the number of terms k is distributed at random [8]. Then, in the limit of
large dimension of such a sparse random matrix, one faces the problem that
can be called the stochastic version of the Erdés—Rényi limit theorem. It is clear
that in this direction one can find different generalizations of the Erdés—Rényi
theorem. In the present paper we give the proof of the results announced
previously [9] in the form maximally close to (1.1). We discuss other related
settings at the end of the paper.

Let us complete this introduction with expressions of gratitude to Profes-
sors A. Rouault and E. Rio for the interest to this work and valuable discus-
sions.
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2. MAIN RESULT AND DISCUSSION

Let us consider the family of iid. random variables A = {4;}{, deter-

‘mined on the same probability space as =, also independent of the family =.

These 4; take values in N according to the law Pr{i =k} = g(k) such that
EA = p. We assume that the function y,(t) = Ee*, tel, < R, exists,

@1) U, (t) = exp (px (1 +0(1) as p— oo

and y (t) is analytic and satisfies the conditions ¥ (f) = 0 and x(0) =.0. It is easy
to deduce from (2.1) that

@) PriizR<infy, (e =exp(~pf (fp)(1+0(D)) asp— oo,

where

2.3) f () =sup [yt—yx ()]

tel;

We assume that f (y) is the steep function, i.e. it takes value + o0 when y goes

~ beyond the domain of the definition of f. Then by the Gértner—Ellis theorem

(see e.g. [6])
(2.4) Pr{A > yp} =exp(—pf )(1+0(1), y =0, as p— co.

Let us note that f(y) is a non-negative strictly convex monotone function. It
attains its minimal value at the point y' = (EA)/p = 1.

THEOREM 2.1. Let us consider the sums
(2.5) Si(A) =&+ &+ HEvays

where {&;} are as in (1.1), and determine

fi(n, p) = max mi(n,p), 1:(n, p) = Si(A)/p.
There exists with probability 1 a non-random limit
(2.6) nllr?o fi(n, Clogn)=4d

determined by the following relations:

o If

@7 D(@/y) = max[(@r)/y—log ¢ (7)],
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then d = d(C) is determined by the relation
(2.8) ylg(f) Lf ) +yD@/y)] = 1/C

that generalizes (1.4).
(i) In the case of Bernoulli random variables &; = {; (1.5), the convergence
(2.6) holds with & = d(c) determined by the relation (cf. (1.6))

. 1 & 1
(2.9) ye(g{rfm){f(y)+y|:1—h(§+ﬂ):|}=E, .

where ¢ = C/log, 2.

To compare this theorem with results of [7], let us consider first the case
(i) of Bernoulli random variables. The next simplifying assumption is that
A; have the Poisson distribution with parameter p. This makes (2.5) close to the
model arising in the studies of sparse random matrices (see the end of this
paper). One can easily derive that in this case y(f) =¢'—1, I, = R, and

0 if ye(0, 1),

76) ={y(logy—1)+1 if ye[l, o).

The function

(2.10) 6a(9) = ylil—h(%&-%):'

is positive and strictly decaying on (a, + o0); the maximum is attained at a and
d.(a@) = a, g,(a) = —oo. The solution of (2.9) exists for all ce(0, + o0) and
lim,, ,, &(c) = 0. This coincides with the value of x(+ o) =0 given by (1.6).

It is not hard to show that &(c) > o (c) for all finite values of ¢. Moreover,
(2.9) implies that d&(c) increases infinitely as ¢ — 0. This means that

(2.11) lim #(n, p) =+,

1<p<logan
while the corresponding value of a(c), ¢ — 0, remains equal to 1. This is an
important difference between the usual and stochastic cases of the Erdos—Rényi
limit theorem (see Section 4).

The reason for (2.11) is that in the limit ¢ — O the averaging in (2.5) is not
sufficient and 7 (n, p) really searches for the maximum of variables #;. This is
provided by those variables that have almost all {; equal to 1; since one can see
large deviations of the number of terms in S;(4;) with respect to p, one can
obtain infinite values of #(n, p) in (2.11).

Thus, we conclude that the large fluctuations of g(J) in the scale p are
responsible for (2.11). This proposition is supported by the following obser-
vation. Let us forget the Poisson distribution of A and assume that there exists
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a finite interval Y < (0, o0) such that g([py]) = o(e”?) for all yeY = R\Y.
Then we determine f(y) as + oo on Y and still consider (2.9). In this case
sup, & (c) is finite. Finally, we observe that if £ (y) is close to the Dirac j-function
d(y—1), then d(c) is close to the values a(c) given by (1.5).

Summing up these arguments, we arrive at the conclusion that lim, |, &(c) =
oo provided the fluctuations of 4; around p are sufficiently large.

It is the general case of finite but unbounded random variables &;, the limit
& (C) as C — 1 can be infinite already in the classical case of 4; = k = [Clogn].

3. PROOF OF THEQOREM 2.1

As in [7], we give the proof of the item (ii) concerning the Bernoulli
random variables {;, and then we describe the changes needed to prove Theo-
rem 2.1 in the general case.

Let us show that for any positive ¢
(3.1) Pr{fi(n,clogan)>d+e}=0@n"% asn- o,

where 6 > 0 depends only on & We start with the elementary inequality

Pr{ sup mn, p)> Z Prim(n, p) > x; = nPrin(n, p) > x},

.....

where we used the fact that n; are identically distributed. Observmg that
{w: ny 2 x} < {w: A > px}, we can write

(3.2) Pr{n (n,p) = x} = ), q¢(OPr{S(Q) > px}.

1Zpx

Using the Stirling formula, we obtain

1 5 (l) 5 9~ flog2(i/l = (1~ jiog2(1 — /) : )
2! )= 14+0(1)).
Zurpop<iai\J)  arppsis 2nj(1—j/h—1

Elementary computation shows that the last sum is estimated by its first term
multiplied by a constant. Then we obtain the inequality

(3.3) Pr{S(h > px} < % 9~ M1 —h(1/2+(xp)/2D)]
l
If x > d+¢, then there exists § > 0 such that
1406
(34) f(y)+y[1 h<2 5 )]=f(y)+gx(y)>7

for all y > 0. It is clear that the minimal value of f(y) is f (1) = 0. Since f () is
strictly convex and monotone, it is continuous. Let us denote by z the value
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such that f(y) <0/(2c) for 1<y<z Then for al 0<y<z
(3.5) cg.(y) > 1+9/2.

Using monotonicity of g,(-), we derive from (3.3) the inequality

Pr {11 > x} g( Z + Z ) q(l) 2Ih(1/2 + (xp)/(2D) — 1)

px<l<pz pzxl l
<U Z 2—pyx(l/p)+2—pgx(2)(1+0(1)) Z q(l)
xp<l<pz 1Zpz

Taking into account that p = clog, n, using (3.5) and combination of (2.2) and
(3.4), we obtain

Pr {’11(", P) = x} = O(n_1—5/4)

because the number of terms in the first sum is of the order O (log,n). The
relation (3.1) is proved.

To prove the almost sure estimate, we follow the scheme of [7]. Let us
consider the sequence of random variables

fiy = iU IC—1, j).

Then (3.1) implies the convergence of the series Z Pr {#; > d}. Now, taking
into account that #(n, Clogn) < f; for all n such that €€ < n < eVt IC_1 we
obtain the relation

Pr {limsup#(n, Clogn) < §} = 1.

This completes the estimate from above of the limit lim# (n, clog, n) for the
case of Bernoulli random variables.
In the general case one can use the inequality (see e.g. [1])

(6 Pr{S() > px} = (2nlb)~1/2 ¢~ 120G,

where 0 < b < b; < B < o0, instead of (3.3). The remaining part of the proof
repeats the arguments presented above.

Now let us show that Pr {max;#; < &—¢'} vanishes as n — c0. To do this,
we take an integer m and determine the subsets of Q

B,(m) = {weQ: sup A, <mj}.

The next observation is that the events

Ak(na m) = {CD! nkm+1(": p) < xan(m)}
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are jointly independent for all 0 < k < n(m)—1, n(m) = [n/m]. Thus, we can
write

n(m)

(3.7 Pr{supn; < x|B,(m)} = || Pr{4.(n, m)}
i k=1
B (Pr (n: <xNB, (m)})"<m>
Pr (B, (m)) ’
where we have put 5, = 1, (n, p). Using the elementary relations
Pr{F nB,(m)} < 1—Pr{FnB,(m)}

and .
Pr{DB,(m)} = Pr{D}—Pr {DAB,(m)} > Pr{D}—Pr {B,(m)}

with F = {®: #, < x} and D = F, we can write

(3.8) Pr{n; < xNB,(m)} <1-Pr{n, > x}+Pr{B,(m)}.

Let us consider Pr{n; > x}. If x < &(c)—e, then there exist é' > 0 and
Z' > 1 such that

1 1-¢&
B9  fO+y|1-h(z+2) |22 forall y>z.
2 2y c
The Stirling formula implies the following inequality inverse to (3.3):
1 l
(3.10) 5 y ( ) > Y ot -h(1/z + e
@+pxyzsj<iNJ \/I

Using this estimate and remembering about the monotonicity of the function
g<(-) in (2.10), we derive from (3.2) the relation

Pr{n, > x} > n~call-hA2+x/@z00 ¥ g(]),

yZpz1
Now (2.4) together with (3.9) imply that
(3.11) Pri{n, >x}=0(@m""'*%).

In the general case, one can use (3.6) instead of (3.10) and obtain (3.11).
Let us estimate Pr {B, (m)} < nPr{4; > m}. We use again (2.2) and observe
that if z” is such that f(z") = 3/C, then

(3.12) Pr{B,(m)}=0(m 2, m=pz’, asn—oo.
Now we can derive from (3.7), (3.8), (3.11) and (3.12) that

: , l_o(n—1+6') n/(pz'") o1
Pr{sup#; < x|B,(pz")} < BEIRR = O (exp(—n’"?)).




228 A. Khorunzhy

Finally, writing the inequality
Pr {sup m<x}<Pr {sup 1; < x|B,(m)} Pr(B,(m))+Pr {B (m)}

with m = pz”, we get
Pr{f(n,p)<d—¢}=0(@n"3?.

Therefore Pr{lim 1nf,,_.w11(n Clogn) > d} = 1. This completes the proof of
Theorem 2.1. =

4. APPLICATIONS TO RANDOM GRAPHS AND RANDOM MATRICES

Let us consider the adjacency matrix A of a simple graph I" with the sets of
vertices and edges denoted by V and E, respectively. If || = N and the vertices
are enumerated, then A is an N x N real symmetric matrix with the entries

1 if the edge e(i, j)eE
4.1 AN = . ’ “i,j=1,..,N.
@D j {0 if (i, )¢ E, hi
The set of eigenvalues of A" is often called the spectrum of I' (see [3]).
One of the models of random graphs (see e.g. [2]) is determined by the
ensemble {A™?} of matrices whose entries {a;;, i < j} are given as a family of
jointly independent random variables with distribution

2 = 1  with probability p/N,
710  with probability 1—p/N.

Having a random graph I'™P), one can ask about the asymptotic behaviour of
its spectrum when N — oo, in particular, what happens with the maximal (mini-
mal) eigenvalue of A®P), This question was addressed in [8] in a more general
setting than (4.1).

Namely, the random matrix ensemble W{*? = a;;w;; has been studied,
where {w;, i <j} are jointly independent random variables, independent also
of {a;}. It is assumed that the probability distribution of w;; has all odd
moments zero My, = 0 and my, < k9% with y >0, k > 1. Under these
conditions, it was shown that the spectral norm of the matrix

We 1 WP

N/
in the limit N, p— co, converges with probability 1 to the limits
. 20 if p=0((logn'*"),
42 WP =
( ) ” “ {+OO 1f p= O(GOgn)l—y)

for any y > 7. Here we have put v = ,/Ewizj, i,j=1,..., N,
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Modifying slightly computations of [8], one can show that the same
convergence (4.2) is valid for the spectral norm of ||p~1/2 AP with y > 0.

To study the limit of p = Clog N, one has to carry out more accurate
analysis than that of [8]. One of the possible results can be obtained by using
Theorem 2.1. Indeed, one can write the inequality

]IW"""’II2> max IIW‘N"’E(I)IIZ— max T:(N, p),
where e(i); = 6;;. Observing that
N

TN D=1 T agwi > LY apn = TV, b,
p j=1 j=zi )

one faces the same problem as described in Theorem 2.1. Indeed, pT;(n, p) is

given by the sum of independent random variables and the number of terms is

given by 4; = Z ;j that approaches the Poisson random variables 4; with

parameters zp/NJ < p, respectlvely Thus pT;(n, p) resembles S;(4;) in (2.5) with

¢ replaced by &, = wi. Let us put

43) H(N,p) = sup L(N,p) and H(N,p)= sup T(N,p)

Consequently, the first difference between (2.5) and (4.3) is the following:
(4.4) EE; =v*>0.

However, it is easy to check that Theorem 2.1 remains valid in the case of (4.4).
The relations (2.6)(2.8) do not change provided ¢ in (1.2) is replaced by
$ (r) = Ee. In this case d(+ o) =12

The following proposition is true:

@.5) lim H(N, ClogN) <4(C),
where d(C) is determined by (2.7) and (2.8) in terms of ¢ (). We put inequality
in (4.5) because the parameters of random variables £; are of the order p pro-
vided i ~ 1 but decrease to zero when i increases up to N. This is another
difference between H (N, p) and #(n, p) determined in (2.5).

In this connection, it would be interesting to develop an analogue of the
Erdds—Rényi limit theorem for maxima of T; and of T;. It is natural to expect
that lim H(N, Clog N) = &(C). Of special interest is the study of asymptotic
behaviour of ||W®™:CleM)|2 also because in the limit C — oo it is four times
greater than that of &(C).

Using the adjacency matrix A%?, it is shown in [10] that its maximal
eigenvalue is closely related with the maximal degree 4 of a random graph.
Since the asymptotic behaviour of 4 is fairly well studied, this gives an impor-
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tant source of information on the spectra of random graphs. It could be in-
teresting to find the limit of the spectral norm of AP in dependence on C,
where p = ClogN, N — 0. .

The behaviour of sums of type (2.5) is interesting by itself in the following
aspect. Assume that the random variables A; are such that E; = p but the
second moment of 4; does not exist. Then it is interesting to know whether the
border p ~ logn still remains to be the critical one for the maxima #(n, p).
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