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Abstract. We generalize the Erdos-Renyi limit theorem on the 
maximum of partial sums of random variables to the case when the 
number of terms in these sums in randomly distributed. Relations 
between this limit theorem and the spectral theory df random graphs 
and random matrices are discussed. 
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1. INTRODUCTION 

The Erdos-Rknyi limit theorem concerns the asymptotic behaviour of the 
random variables 

(1.1) q(~1,  k)  =  ma^ Si(k)/k, Si(k) = ti+Ci+~+.--+Si+k, 
i= 1, ...,il- k 

where E = (ti): is a family of independent identically distributed (i.i.d.) ran- 
dom variables determined on the same probability space D and having zero 
mathematical expectation Ec = 0. It is assumed that the function 

(1.2) 4 (z) = EecT 

is determined for z € I r ,  where Ir  c R+ = (0, + a). 
In [7] it is proved that given 1 < C < cc there exists, with probability 1, 

a non-random Iimit 

lirn q (n, [Clog n]) = o: 
n+m 

determined by the relation 

(1 -4) inf$(z)e-ar = e - l /C .  
=I 
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In the particular case when ti are given as Bernoulli random variables 

(1.5) 
1 with probability 1/2, 

T i  = Ci = 
- 1 with probability 1/2, 

the convergence (2.3) holds with C = clog, 2, where ct (c) is determined by the 
relation 

with 

It is easy to see that in this case ol takes values between the mean value 
0 = a (+ 00) and the maximum 1 = a (1) of random variables ii. Obviously, one 
can also determine the limit u (c) for the values c E (0, 1); in this case it is equal 
to 1. 

Further studies give more details about the convergence (1.3); in particu- 
lar, the convergence in probability was proved and the estimates with proba- 
bility 1 were derived for the difference 

(see [ 5 ] ) .  The Erdos-Rknyi theorem has found several applications (see, e.g., 
131, [I 11) and its various generalizations have been considered (random varia- 
bles indexed by sets, non-independent identically distributed random variables, 
random variables in Banach spaces and others). 

One more version of this limit theorem is motivated by the studies of 
spectra of random matrices [8]. Namely, when regarding the weighted adjacen- 
cy matrix of a random graph, one observes that the spectral norm of such 
a matrix is bounded from below by the maximum of the sums $(k) (1.1), 
where the number of terms k is distributed at random [8]. Then, in the limit of 
large dimension of such a sparse random matrix, one faces the problem that 
can be called the stochastic version of the Erdiis-Rinyi limit theorem. It is clear 
that in this direction one can find different generalizations of the Erdos-Rknyi 
theorem. In the present paper we give the proof of the results announced 
previously [9] in the form maximally close to (1.1). We discuss other related 
settings at the end of the paper. 

Let us complete this introduction with expressions of gratitude to Profes- 
sors A. Rouault and E. Rio for the interest to this work and valuable discus- 
sions. 
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I 

i 2. MAIN RESULT AND DISCUSSIIPN 
! 

1 Let us consider the family of i.i.d. random variables A = { A i } ~ ,  deter- 
mined on the same probability space as E, also independent of the family 8. ! These li take values in N according to the law Pr {A = k )  = q ( k )  such that 

I EA = p. We assume that the function $, ( t )  = Ee", t E lA G R, exists, 

I and x (t) is analytic and satisfies the conditions ;C ( t )  2 0 and ~ ( 0 )  =-0. It is easy 

i to deduce from (2.1) that 

I 
I (2.2) Pr (A 2 1) < inft,b, (t) e-" = exp (-pf (l/p) (1 + 0 (1))) as -P + m, 

T E I ~  

I 
I where 

We assume that f I'Y) is the steep function, i.e. it takes value + m when y goes 
beyond the domain of the definition off. Then by the Gartner-Ellis theorem 
(see e.g. [6f) 

Let us note that f (y)  is a nonnegative strictly convex monotone function. It 
attains its minimal value at the point y' = (EL)/p = 1. 

THEOREM 2.1. Let us consider the sums 

where {ti) are as in (1.1), and determine 

There exists with probability 1 u am-random limit 

lim q(n, Clogn) = ii 
n-r  m 

I 

determined by the following relations: 
I 

i 
(4 lf 



then di = i(C) is determined b y  the relation 

that generalizes (1.4). 
(ii) In the case of Bernoulli random variables t i  = Si (l.S), the convergence 

(2.6) holds with B = &(c) determined b y  the relation (cf. (1.6)) 

where c = C/log, 2. 

To compare this theorem with results of [7], let us consider first the case 
(ii) of Bernoulli random variables. The next simplifying assumption is that 
ili have the Poisson distribution with parameter p. This makes (2.5) close to the 
model arising in the studies of sparse random matrices (see the end of this 
paper). One can easily derive that in this case x ( t )  = d - 1, I ,  = R, , and 

The function 

is positive and strictly decaying on (a, + m ) ;  the maximum is attained at a and 
gll(a) = a, gA(a) = - m .  The solution of (2.9) exists for all C E ( O ,  + m )  and 
lim,,, i ( c )  = 0.  This coincides with the value of a ( +  m )  = 0 given by (1.6). 

It is not hard to show that E(c) > a(c)  for all finite values of c. Moreover, 
(2.9) implies that Z(c) increases infinitely as c + 0.  This means that 

while the corresponding value of a(c), c + 0, remains equal to 1. This is an 
important difference between the usual and stochastic cases of the Erdos-R6nyi 
limit theorem (see Section 4). 

The reason for (2.11) is that in the limit c + 0 the averaging in (2.5) is not 
sdticient and f(n,  p) really searches for the maximum of variables gi. This is 
provided by those variables that have almost all ci equal to 1 ;  since one can see 
large deviations of the number of terms in Si(ilJ with respect to p, one can 
obtain infinite values of q (n ,  p) in (2.11). 

Thus, we conclude that the large fluctuations of q(Z) in the scale p are 
responsible for (2.11). Thjs proposition is supported by the following obser- 
vation. Let us forget the Poisson distribution of 1 and assume that there exists 
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a finite interval Y c (0, a) such that q(Cpy]) = o(e-P) for all y E P = R\Y. 
Then we determine f 01) as + m on P and still consider (2.9). In this case 
snp, B(c) is finite. Finally, we observe that iff ( y )  is close to the Dirac 6-function 
6 (y - I), then &(c) is close to the values ol (c) given by (1.5). 

Summing up these arguments, we arrive at the conclusion that limCl, a"(c) = 
ao provided the fluctuations of li around p are sufficiently large. 

It is the general case of finite but unbounded random variables t i ,  the limit 
B(C)  as C -+ 1 can be infinite already in the classical case of li k = [Clog n] .  

As in [fl, we give the proof of the item (ii) concerning the Bernoulli 
random variables ri, and then we describe the changes needed to prove Theo- 
rem 2.1 in the general case. 

Let us show that for any positive E 

where S > 0 depends only on s. We start with the elementary inequality 

where we used the fact that qi are identically distributed. Observing that 
{w:  ql > X> c {w:  A 2 px) ,  we can write 

Using the Stirling formula, we obtain 

Elementary computation shows that the last sum is estimated by its first term 
multiplied by a constant. Then we obtain the inequality 

(3.3) 
U Pr { S  (I) 2 px) < -2-'[1 -h(1/2+(x~)/(21))1. 

Jr 
If x 2 E+E, then there exists 6 > 0 such that 

for all y 2 0. It  is clear that the minimal value off (y) is f (1) = 0. Since f (y) is 
strictly convex and monotone, it is continuous. Let us denote by z the value 



such that f (y) < 6/(2c) for 1 < y < z. Then for all 0 < y G z 

(3.51 cg, Cy) > 1 + S/2. 

Using monotonicity of gx(.), we derive from (3.3) the inequality 

Taking into account that p = clog, n, using (3.5) and combination of (2.2) and 
(3.4), we obtain 

because the number of terms in the first sum is of the order O(log2 n). The 
relation (3.1) is proved. 

To prove the almost sure estimate, we follow the scheme of [7]. Let us 
consider the sequence of random variables 

qj q(e(j+l)/c- 1, j ) .  

Then (3.1) implies the convergence of the series C jPr  {qj > oi). Now, taking 
into account that q (n ,  Clogn) < i j j  for all n such that &IC < n < eU+')IC- 1, we 
obtain the relation 

Pr(limsupf(n, Clogn) 6 di} = 1. 
n+ m 

This completes the estimate from above of the limit limg"(n, clog, n) for the 
case of Bernoulli random variables. 

In the general case one can use the inequality (see e.g. [I]) 

(3.6) . Pr (S (0 2 px) = (2nlbl)- 'I2 e-'D(xIy), 

where 0 < b < bl < B < coy instead of (3.3). The remaining part of the proof 
repeats the arguments presented above. 

Now let us show that Pr {maxiqi < di-E') vanishes as n + co. To do this, 
we take an integer m and determine the subsets of SZ 

B, (m) = {w E 0: sup ,Ii < m) . 
i =  I, .... n 

The next observation is that the events 
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1 are jointly independent for all 0 < k 6 n (m) - 1, n (m) = [n/m]. Thus, we can 
t ~ write 

nbl 

(3.7) Pr {sup gi G x IBn (m)) = n Pr (A,  (n,  m)} 
i k =  1 

Pr {q l' < x n En (m)) 

I 

! where we have put ql = q l ( n ,  p). Using the elementary relations 
- 1 Pr (F n B, (m)) < 1 - Pr {Fn B, (m)) 

1 

l and 

Pr {D n 3, (m)) = Pr (D) - Pr {D n Bn (m)) 2 Pr { D }  - Pr {Bn (m)} 

with F = {w: ql < x) and D = F, we can write 
I 
I (3.8) P r ( q ,  $ xnB.(m))  d 1 -Pr {q l  > x ) + ~ r { B , ) } .  

Let us consider Pr { q ,  > x}. If x < di(c)-r, then there exist 6' > 0 and 
zf > 1 such that 

(3.9) f ( y ) + y  [ 1 - h  (k -+- ;)I a- l;a for all y 3 zl 

The Stirling formula implies the following inequality inverse to (3.3): 

Using this estimate and remembering about the monotonicity of the function 
g,(.) in (2.10), we derive from (3.2) the relation 

Pr iql > 3 n - ~ z 1 [ 1 - h ( l / 2 + x i ( 2 z l ) ) l  z 4(1). 
~ 2 ~ 2 1  

Now (2.4) together with (3.9) imply that 

In the general case, - one can use (3.6) instead of (3.10) and obtain (3.11). 
Let us estimate Pr {B,  (m)] < n Pr (Ai  3 m}.  We use again (2.2) and observe 

that if z" is such that f (z") 2 3/C, then 

I 

Now we can derive from (3.7), (3.8), (3.11) and (3.12) that 

Pr {SUP qi < x IB, (pz")} < = 0 (exp ( - nd'i2)). 
i 



Finally, writing the inequality 

Pr {sup qi G x} d Pr {sup q, d x IB, (m)) Pr (B, (m)) + Pr {B,  Cm)) 
i i 

with m = pz", we get 

Therefore Pr {lim inf,,, , i j  (a, Clog n) 3 di) = 1. This completes the proof of 
Theorem 2.1, 

- 

4. APPLICATIONS TO RANDOM GRAPHS RANDOM MATRICES 

Let us consider the adjacency matrix A of a simple graph r with the sets of 
vertices and edges denoted by V and E, respectively. If 1VI = N and the vertices 
are enumerated, then A is an N x N real symmetric matrix with the entries 

1 if the edge s ( i , j ) ~ E ,  
(4.1) A y )  = i , j = l ,  ..., iV. 0 if e(i,j)$E, 

The set of eigenvalues of A(N) is often called the spectrum of r (see [3]). 
One of the models of random graphs (see e.g. [2]) is determined by the 

ensemble of matrices whose entries (ai!, i < j} are given as a family of 
jointly independent random variables with hstribution 

1 with probability p/N,  
0 with probability 1 -p/N 

Having a random graph T(N.P), one can ask about the asymptotic behaviour of 
its spectrum when N + a, in particular, what happens with the maximal (mini- 
mal) eigenvalue of AfN,p). This question was addressed in [8] in a more general 
setting than (4.1). 

Namely, the random matrix ensemble W{ysp) = aij wij has been studied, 
where {wi j ,  i < j) are jointly independent random variables, independent also 
of (aij) .  It is assumed that the probability distribution of wij has all odd 
moments zero mzk+ = 0 and mzk < k(l+')k with y 2 0, k 2 1. Under these 
conditions, it was shown that the spectral norm of the matrix 

in the limit N, p + ao, converges with probability 1 to the limits 

2u if = 0 ((log n)' 'Y), 

if p = 0 ((log n)l- y )  

for any y > r. Here we have put v = a, i ,  j  = 1, .. ., N 
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Modifying slightly computations of [8], one can show that the same 
convergence (4.2) is valid for the spectra1 norm of ([p-112 A'N-plll with y > 0. 

To study the limit of p = ClogN, one has to carry out more accurate 
analysis than that of [8]. One of the possible results can be obtained by using 
Theorem 2.1. Indeed, one can write the inequality 

]l$N~p)112 2 max l1wN,p)e (i)112 = max ( N ,  p), 
i =  1, ..., n i= l . . . . ,n  

where e (ill = S i j .  Observing that - 

one faces the same problem as described in Theorem 2.1. Indeed, p$(n, p) is 
given by the sum of independent random variables and the number of terms is 
given by xi = z!=,nu that approaches the Poisson random variables 4 with 
parameters ip/ld< p, respectively. Thus p E ( n ,  p) resembles Si(Ai) in (2.5) with 
( replaced by fj = w;. Let us put 

(4.3) H(N,p)=  sup q ( M , p )  and H ( N , P ) =  sup $(N,P]. 
I= l.....N i =  1, ..., N 

Consequently, the first difference between (2.5) and (4.3) is the following: 

However, it is easy to check that Theorem 2.1 remains valid in the case of (4.4). 
The relations (2.w2.8) do not change provided q5 in (1.2) is replaced by 
$ (T)  = ~ e " f .  In this case oi (+ oo) = v2. 

The following proposition is true: 

lim H (N, Clog N )  < di (C), 
N+ca  

where di (C) is determined by (2.7) and (2.8) in terms of 4 (z). We put inequality 
in (4.5) because the parameters of random variables ii are of the order p pro- 
vided i - 1 but decrease to zero when i increases up to N. This is another 
difference between H(N, p) and f(n, p) determined in (2.5). 

In this connection, it would be interesting to develop an analogue of the 
Erdos-Rknyi limit theorem for maxima of and of T.  It is natural to expect 
that lim H (N, Clog N) = oi (C). Of special interest is the study of asymptotic 
behaviour of I I ~ ~ * ~ ~ ~ ~ ~ ) I I ~  also because in the limit C -+ co it is four times 
greater than that of B(C). 

Using the adjacency matrix A(N*pl, it is shown in [lo] that its maximal 
eigenvalue is closely related with the maximal degree A of a random graph. 
Since the asymptotic behaviour of A is fairly well studied, this gives an impor- 
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tant source of information on the spectra of random graphs. It could be in- 
teresting to find the limit of the spectral norm of A(Nlp' in dependence on C, 
where p = ClogN, N + m. 

The behaviour of sums of type (2.5) is interesting by itself in the following 
aspect. Assume that the random variables rli are such that E l i  = p but the 
second moment of hi does not exist. Then it is interesting to know whether the 
border p - logn still remains to be the critical one for the maxima i j (n ,  p). 

- 
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