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TIME-INHOMOGENEOUS DIFFUSIONS CORRESPONDING
TO SYMMETRIC DIVERGENCE FORM OPERATORS

BY

ANDRZEJ ROZKOSZ* (TORUN)

Abstract. We consider. a time-inhomogeneous Markov family
(X, P;,) corresponding to a symmetric uniformly elliptic divergence
form operator. We show that for any ¢ in the Sobolev space W, n W}
with p=2 if d=1 and p>d if d>1 the additive functional
X° = {p(X)—(X,); 0 < s < t} admits a unique strict decomposition
into a martingale additive functional of finite energy and a continuous
additive functional of zero energy. Moreover, we give a stochastic
representation of the zero energy part and show that in case the dif-
fusion coefficient is regular in time the functional X® is a Dirichlet
process for each starting point (s, x). The paper contains also rectifica-
tions of incorrectly presented or incorrectly proved statements of our
earlier paper [14].
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1. INTRODUCTION

Consider a Markov family {(X, P,); (s, x)e[0, T]x R} corresponding
to the divergence form operator
d

Y. D;(a¥(t, x) D),

ih,j=1

L=

where a: [0, Tlx R’ - R‘QR’ is a measurable, symmetric matrix-valued func-
tion satisfying the condition
d
LY A< Y di@, )EE<ANE?,  (t, x)e[0, TIxRY, EeR?,
Lj=1

for some 0 < A < A (for construction of (X, P;,) see, e.g., [11], [13], [17]). In
[14] it is announced that for any starting point (s, x)e[0, T) x R? and any
continuous ¢ in the Sobolev space W} with p > 2 v d the composite process
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232 A. Rozkosz

¢ (X) is a Dirichlet process on [s, T] in the sense of Follmer [3], that is,
X2 =0 X)—o(X,), te[s, T], admits a unique decomposition of the form

(1.2) X0 =M +ASP, tels, T], Pg,as,

where M}'? is a continuous P, ,-martingale on [s, T] and A}'? is a continuous
adapted process of P; .-zero quadratic variation on [s, T7]. Unfortunately, the
proof of the last statement in [14] (see [14], Theorem 2.1) as well as Lemma 1.2
in [14], which is used in the proof of Theorem 2.1 in [14], is incorrect (see
Remark 2.6 in [16] and the remark following Lemma 2.2 of thé present paper
for more details). One of our purposes is to show that the quadratic variation
of AF® vanishes if we assume additionally that

T
(1.3) max { esssup|D,a(t, x)|dt = K; < 0.
1<i,j<d 0 xeRd
We show also that under (1.1) for any continuous g€ W} n W1 with p as
above X? admits a unique decomposition

(1.4) X¢, =MW +4%  te[s, T]. P,,-as,

into a continuous martingale additive functional M (in the strict sense) of
finite energy and a continuous additive functional A1 of zero energy, where
the energy of an additive functional 4 = {4,,,0<s<t< T} of (X, P,,) is
defined by

TT
e(d) = lim a?e,(4), e, (4d)=[[lonG+De “E; A2, dsdt, a>0,
s 00

whenever the limit exists. Here m is the Lebesgue measure on R? and Ej, is the
expectation sign with respect to P, () = | Ra P, .(-)m(dx). Our decomposition
may be viewed as a strict version of a decomposition of X? obtained in [12]
and [19]. If moreover (1.3) is satisfied, (1.4) also holds if we replace the above
definition of energy by the following:

T—t

1
E_(A) = hm?ét(A): e_t (A) = j. Es,m Asz,s+tds: tE(O: T]
tl0 0

Thus we generalize results of [15] on strict decomposition of time-homogene-
ous diffusions corresponding to divergence form operators (general time-homo-
geneous diffusions are considered in [4]-[6]).

Finally, notice that similarly to [14]-[16] our methods of proofs allow us
to obtain the Lyons—Zheng decomposition of A¥® and A for each starting
point (s, x) (results concerning time-homogencous diffusions can be found in

[91, [10], [15], [16]).

We will use the following notation.
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For a process Y on [s, T] we write
Yr = Yris-on i}t = 1_ft"_'YTa tels, T]

Let @ = C([0, T1; R% be the space of continuous trajectories from [0, T] into
R% and X be the canonical process on Q. Let us put

Fi=0(X,, uels, t]), Fi=0(X,, uels, t]), tels, T].

By E; , we denote the expectation sign with respect to P .. Let .# (P, ) be the
space of continuous square-integrable P, ,-martingales on [s, T'] vanishing at
s equipped with the usual norm (E,,{(M))"%

D; = 0/0x' is the partial derivative in the distribution sense, ¥ = (D, ..., D,).
C? is the set of all smooth functions in R? having compact support. L, (respec-
tively, L,(s, T)) is the classical Banach space consisting of measurable func-
tions on R? (respectively, (s, T)x R?% that are p-integrable. W} is the Ba-
nach space consisting of all elements u of L, having derivatives D;u from L,.
Let W!(s, t) be the Banach space consisting of all elements u of L,(s, t)
having derivatives D;u from L, (s, T), and W3!(s, T) be the Banach space
consisting of all elements u of L, (s, T) having derivatives D;u and time deriva-
tives (in the distribution sense) D, from L, (s, T). By || - ||, we denote the norm in
L,. By (-, *) we mean the usual scalar product in R, (-, ), the scalar product in
L,, and (', ‘), r the scalar product in L, (s, T).

By Sobolev’s imbedding theorem, if p > d, then every g e W} has a con-
tinuous representative. Therefore we will always assume that ¢ denotes the
continuous representative of a given element of W} with p >d.

2. PRELIMINARY RESULTS

It is known (see [1] and [8]) that under (1.1) for any se[0, T) and @<L,
there is a unique weak solution P* @ (-)e W9 (s, T) to the Cauchy problem

Di—Lyu=01in (s, T)xR*, u(s,")= .
In particular, if g W}, then
1 t
2.1) (0P 0, 9), =5 [(al, )VP* @, Vo), du
for all te(s, T). Furthermore, in [1] it is shown that there exists a weak

fundamental solution p(s, x, t, y), 0 < 5 < t, x, yeR?, for L,, and that for any
pelL, we have the representation

Plox)= [ o0)p(s, x,t,y)dy, 0<s<t<T, xeR"
RA _

3 — PAMS 222
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The family {P**, 0 < s < ¢ < T} forms a Markov semigroup of contractions on
L,, which gives rise to our Markov family (X, P, ) (see, e.g., [13]). In par-
ticular, p is the tramsition density of (X, P ,).

THEOREM 2.1. Assume (1.1) holds. Then:
(@) there is a constant K, > 0 depending only on A, A,d, T such that

: WY
22 p(s, x, t,y) < Kz(t*s)_dlzexp(_I?;—(tiLs‘D

for all 0 <s<t< Tand x, yeR%;

(i) for each (s, x)e[0, T)xR?, p(s, x, ", )eLly(s, T; W}) with any q
whose Hdlder conjugate is greater than 2 v d;

(iii) if d =1, then for any 0 <s < T, a >0 we have

ff(t—S)“%z(s, X, t, y)dtdy < oo
SR

(p' (s, x, t, y) denotes the derivative of yr—p(s, X, t, y) in the sense of distribu-
tions).

Proof. For (i) and (ii) see Theorems 5 and 7 in [1]. To prove (iii) we can
proceed as in the proof of Theorem 5.1 in [15]. =

Let W; ! denote the dual space of W1 when one uses the inner product
in L, to define the duality relation and let W2 ~1(s, T) = L, (0, T; W3 *). The
space W3 ~1(s, T)is dual to W% (s, T) and the value {v, u), r of a functional
veWd (s, T) at ueWl(s, T) is defined by (v, u)sr = LT(v(t), u(t)) dt,
where {-,-)> denotes the dualization between W3 and W3i.

Let # (s, T) denote the space of functions ue W% ~! (s, T) having deriva-
tives D,u from W$~1(s, T) equipped with the norm

”u”’%ﬂs,]‘) = ”Dtu”%’o-‘l(s.T)‘{' ”u”%‘P’U'l(s,T)-
2

It is known (see, e.g., [20]) that there is a continuous embedding of # (s, T) in
the space C([s, T]; L) of continuous functions on [s, T] with 'values in
L, equipped with the supremum norm. Therefore without ambiguity we may
define the subspace #7r(s, T) = {ue# (s, T): u(T, )= 0} of #°(s, T).

For any a>0, feL,(s, T), there exists a unique weak solution
R,feWy(s, T) of the problem

(a_Dt_Lt)u=f iﬂ (S’ T)XRds u(Ta )=05
that is
(23) a(Ra f’ Q)z;s.r— <Dt Ru.fa g>s,T+%(aVRu fa Vg)Z;s.T = (fa g)Z;s.T
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for any ge W3 (s, T) (see [13], [17], [20]). Moreover, {R,}.>o is a strongly
continuous resolvent on L, (s, T) having the representation

T
Ra f(u) x) = Eu,x II[O,T](u+t)e_atf(u+t! Xu+t)dt9 (u’ X)E[S, T] XRd,
0

for any bounded felL,(s, T) (see, e.g, [13]).
LEMMA 2.2. Assume (1.1) holds. If feWi(s, T), then

(24) | lim [|aR, f~f llwg.my = 0-
Proof This is a particular case of a more general result proved in [17],
Proposition 3.7. =

Remark. In Lemma 1.2 of the author’s paper [14], (2.4) is stated for
resolvents corresponding to operators of the form

d d
Lt =‘% Z Dj(aij(t, X)D,)+ Z bi(t, X)Di.
iji=1 i=1

Unfortunately, the proof of Lemma 1.2 in [14] is incorrect (even in the case
b'=0,i=1,..., d). The statement of Lemma 1.2 in [14] is, however, correct. It
follows from the cited-above Proposition 3.7 of [17].

From Lemma 2.2 it may be concluded that

(2.3) limsupa(g, @ —aR, @)zs,r < 27 AT+1) liollf

for any @ e WL. Indeed, putting f, g = ¢ in (2.3) we obtain

(R, @, )25, 7—<{D: R @, 0>57+27 1 (@VR, 0, VO)3i5,r = (@5 @i,
Hence
(26)  (@—0R.®, )aer =271 (@VR @, V9250 +(Ra 05, *), 9)2,
because

(DR, @, Y51 = (R @(T, "), 9)2—(Ra@ (s, ), 9)2 = —(Ra00(s, ), 0)2
(see, e.g., [20]). On the other hand,

(eR. 0 (s, ), @)a| = ITg Caemu (P g, ), dt|
T-5

< [ ae”® [P oll; lloll. dt < lloll
0
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and, by (2.4),

lim sup |(aV (@R, @), V¢)2;s.1|

&=+

llmsupAl(V(ocR ®— ), V§0)2s1|+/1(|7€0, Vo)as,t < AT”(P”Wis

which gives (2.5) when combined with (2.6).

TaeoreM 2.3. If (1.1) and (1.3) are satisfied, then for any o e W3, feL,(s, T)
the Cauchy problem

2.7 (Di—L)u=fin (s, T)xR?, u(s,")=o,

has a unique solution from Wi (s, T). Moreover, there is K5 > 0 dependmg only
on A, A,d and K, such that for every te(s, T)

(2.8) 172 (t, WE+ 1D, 3 < K (7@l + 111310, |
Proof. See Theorem 6.1 and the inequality (6.6) in Chapter III in [8]. =
From (2.8) it follows that for any @ e W}

2.9) PP @li3 +(—s)"" llo— P> ¢l < K5IV oll3

'for all 0 < s <t < T. Moreover, since R,(t, x) = e*u(T+s—t, x), where u is
a solution to (2.7) with f replaced by g(t, x) = e"*T**7? f(T+s—t, x), the
inequality (2.8) shows that

ID; R, @llzss,r < 2T |Re @llass,r + K52 071 (T ™= 1) [IPgll, < 0

for every a > 0.

3. DIRICHLET PROCESSES

Let (s, x)e[0, T) x R? and let {3}, be a filtration. We will say that
X?. is a continuous ({#,}, P, ,)-Dirichlet process on [s, T] if it is {s#}-adapted
and admits a decomposition of the form (1.2), where M3}'? is a continuous
({#£}, Ps,)local martingale on [s, T] such that M5:? = 0 and 43 is an {5£}-
adapted process of zero quadratic variation on [s, T], that is, A7 =0 and

Qrp(A¥%) = ) A%, —A¥*>0in P, asn- o0

ticlly,

for every sequence {II, = {to, t1, ..., tim}} Of partitions of [s, T] such that
S=ty<ty <..<timy=T and |[T,|| = max,<i<imlti—ti—1] >0 as n— oo.
In what follows Vp(s, x, t, y) stands for the gradient of yr>p(s, x, t, y).
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THEOREM 3.1. Assume (1.1) and (1.3) hold and let oe W} with p=2 if
d=1and p>dif d> 1. Thenfor every (s, x) [0, T)x R? there exists a unique
triple (M%?, N3®, VE®) such that:

() M¥® is a continuous ({F3}, P,,)-square-integrable martingale on
[s, T], N3? is a continuous ({3}, P, ,)-square-integrable martingale on [s, T],
V? is a continuous {F;}-adapted process of P; -integrable variation on [s, T,

(ii) X2. is an ({F3}, P, )-Dirichlet process on [s, T admitting the decom-
position (1.2) with '

3.1 AP = %(—M;‘,;"’-l_—ﬁz’,"'— Ve, tels, T1, P,,x-a;sT

Moreover, for every te[s, T],

(32) <M§:~q’>t = I(quJ, V(P)(ua Xu) du: <N:,,ﬂm>t = f(dvﬁo, V¢) (ll, Xu) du

 with @ = {a¥}, a’(t, x) =a"¥(T+s—t, x), and

t
(3.3) Ve =({p~ ' (aVp, Vo)(s, x, u, X,)du.

Proof. Since the proof of uniqueness is standard, we will prove only
existence of the triple. For this purpose, we first assume additionally that ¢ € C3
and for ke N we set @, = kR, ¢, ¥, = @, —¢. By [14], Lemma 1.3, for each
keN,

Xg’t‘ = (pk(t’ Xt)_(Pk(Sa Xs): tE[S3 T]:

is an ({#}}, P, ,)-semimartingale admitting the decomposition
1
(34 XT = M+ [ (u, X,)du = ME+ A%, te[s, T,

where M2* is an ({#}}, P, ,)-square-integrable martingale with the quadratic
variation process :

t

35 (M2, = [ @V i, Vo) (u, X,)du.
For fixed 6&(0, T—s) let M2#* denote the martingale M, (.5 —M%%, 5, te[s, T].
By (3.5) and uniqueness of the decomposition (3.4),

(36) Es,x <Mg,’_¢k —_ Mg:“)?’ - Es,x <Mg:?’k—¢!>T

T
=E;x | (aV(o—0), V(0ox— @) (1, X.)du < AK5 67|V (90— @) dsss.r

s+é

for all k, Ie N, which, when combined with (2.4), shows that {M?®%<}, v is
a Cauchy sequence in .# (P, ,). Since for each ke N all trajectories of M9 are
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continuous, from Lemma 4.3.3 of [18] it follows that there is an {%;}-adapted
martingale M*? e .# (P, ) whose all trajectories are right-continuous such that
{M?2:#<} converges to M*% in # (P, ). Furthermore, forany 0 < 6 <o < T—s,

(37  E  AM*—~M®")r < lim E; , (M3%*— M%)
k— o0

s+a s+o

= lim Es,x 5 (aV(Pk: V(Pk)(u: Xu)du < A _f _‘l W‘P (y)lz p(S, X, U, y)dey

k= s+ 3+d R4

For d =1 the right-hand side of (3.7) is bounded by

s+o

(3.8) AK,|Voll} | (u—s)""2du = 24K, ("2 —6'2) |V oll3,

s+

whereas for d > 1, by (2.2) and Holder’s inequality, it is bounded by
3.9 Cy(a®~ 2 — 5= 07) |7 g2,

where C; depends only on p, d, K,. Hence, applying once again Lemma 4.3.3
of [18], we conclude that in both cases there is an {#}}-adapted martingale
M?Z? such that all its trajectories are right-continuous and {M*?} converges to
M?? in M (P;,) as 6 0. Define

Af = X3, —Mg?, tels, T).

The representation (3.1) can be proved by the same method as in the proof of
Theorem 2.1 (ii) in [14], and therefore we omit it. Note, however, that from the
construction of N3-? in [14] and from [18], Lemma 4.3.3, it follows that we can
assume that all its trajectories are right-continuous.

Our next goal is to show that AF? is a zero quadratic variation process,
that is

(3.10) Qir(A7®)-»0in P,, as n—oo.

In order to get (3.10) we will show that for fixed 6e(0, T—s)
(3.11) Qs r(A59)»0in P, asn—>o

and that

(3.12) Io]fg 1i1:1_)s°1;1p P, (Q8s45(A37) >8) =0

for every &> 0. Obviously,
05y 5,7 (AT?) = Q4 5,7 (X Y5+ MZ— MT? + A
< 300545, 7 (XY + 3054 5,7 (M52 — M3?)+3Q5 1 5,7 (AZY),
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where M2? is defined as M*® Since Ag* is a process of finite variation,
(3.13) Q+67(A89)—>0in P, as n— 0.
Observe now that for any te[s+4, T]

MeP—Msdis = liﬂ:)l (M7 — M3Yy)
g

= lim lim {(MZ%— M2, ,)— (MZ% 45— M72%, )} = lim lim (M —MZ%+s)

6lO0 k= olO0k—w

= lim M7® = M?°
al0

(all limits are taken in .4 (P;,)). Hence M2® = M*® and, consequently,

(3.14) lim limsup Eg; 0.5, (M3 — M2?) < 11111 E,x (M3 — M)y = 0.

k=0 n—oo
By the Markov property and (2.2),

E, Q8 sr(X") = Z EgxEgrs.x005Wi(tiv 1, Xopy ) — W (ts, X)I2

s+o€t;<T

< K2 5—"/2 Z Es+6,m|!l’k(ti+13 Xt.'+1)_‘/’k(ti’ Xt‘-)lz'

s+o<ti<T

Using once again the Markov property and performing elementary computa-
tions gives

ErsmW v 1, Xopy )= (ts, X, )12
= Egtam {P*"* Y (tiv 15 Xo) =20 (6, Xo) PP 4 (611, Xo)+ Y2 (6, X))
= (W& (v 1, VAV 6 ) =2t ) P (tirys ), 1),
=2k iv1s ) Valtin s, ) =P Y (tg g, )2
+2 (Y (8, V=Y (i 1> )s Wiltiv 1, ) =P Y (i 1, '))2
+(¢k(ti+1a V=Y (ts, ), Vi tin s, ) — ¥ (s, '))2 |
=I}+17+1}
for i such that t;e[s+4, T]. By (2.1),

fi+ 1

I} = j (a(u, VPP Y (tivt, ), V(i s, ))2 du.

ti
Hence, by (2.9),
I < Co(tiv 1 —t) IV (tir, M3 with C, = dAKY?,
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which implies

limsup Y | < CollVull3is+s.r-

B0 4+ 5SHu<T

Clearly,
7] < B+ i1y ) =P etin g, I3

By (2.9),

W (Eiv 15 )= P (G 1, M3 < K (v 1 — ) WPk tin 1, I3,
and

Z I Y, (tie1—t)|ID; (01:”%;:,,:”1 < L - 11D; @ell3is, -

s+osu<T s+ogu<T

Therefore

limsup Y, |P+1}| < K;3|IV¥ill3is 48,7

LUt IRPRY P §

From the above, (2.2) and (2.4) we conclude that

lim lim sup E; , Q5457 (X' < K, (C2+K3)5_d/2 lim ”lek”%;shS.T =0,
k—+ o

k0 n—w

which together with (3.13), (3.14) gives (3.11). Finally, by (3.1), for every ¢ > 0,
Ps,x (Q;‘,s+6(A:,’.¢) > .8) < Ps,x (Q:,s+a(Mf,'.'p) > 28/3)+Ps,x (Q:.S+6(N:','-¢) > 26/3)
+Ps,x( s+s(V38) > 28/3),

from which (3.12) easily follows. This completes the proof for @e Cj.

To prove the general case, we choose a sequence {fi} = C% such that
fi = @ in W} and uniformly in compact sets in R%. Then for each keN the
process X7 is an ({#3}, P ,)-Dirichlet process having the representation

(3.15)  X[fr = MES+ ARS%, AR =4(—ME/ + N5le—VEY,  te[s, T1.
Since the decomposition (3.15) is unique, we have

(.16) M/~ Mz/'= M, Na/—N3/'= N3/<7,  tels, T1,
for k, leN. Hence,b by (3.2) and (2.2),

(B17)  Eg M3 =M+ B  (NTTF— N2 r < G IV (=AM

for some C; depending only on A, A4, d, p and T. Moreover, from the first part
of the proof it follows that we can assume that for each keN all trajecto-
ries of MP/ and N¥/* are right-continuous. Therefore there exist an
({#:}, P, )-square-integrable martingale My>? and an ({Zi}, P,.)-square-



Time-inhomogeneous diffusions 241

-integrable martingale N¥? such that

(3.18) E M —M5*>1 -0, E, {N¥/*—Ni®);—0.
Moreover, if we define Vi? by (3.3), then

(3.19) llrn E,. sup |Vi/«—VZp

s<txT

lim”an(s X, 4, ), V(fi—0))2 |du-—
the last equality being a consequence of the assertion (i) of Theorem 21 in the case
d > 1, and the assertions (i) and (iii) for d = 1 because, by the Schwarz inequality,

(S X, t, y)dtdYH(t ) A — @Y 0P p(s, x, £, y)dt dy.

From (3.15H3.19) and the continuous mapping theorem we obtain (1.2) and
(3.1)-(3.3), so what is left is to show (3.10). Since A:'® has the representation
(3.1) and V*¢ is a process of finite variation on [s, T, (3.10) will be proved
once we prove that (M%? — N®), = 0. It is easily seen, however, that the last
assertion follows from (3.18) and the fact that (M=/*— N¥/iy, = {AZ/S . = 0. =

We will see in Section 4 that X? admits a decomposition of the form (1.2),
(3.1) with M™®, N*?, V*¢ gatisfying the assertion (i) even if we drop the as-
sumption (1.3). We do not know, however, whether in this case A*? is a zero
quadratic variation process, and, consequently, we neither know that X? is
a Dirichlet process nor that the triple is unique.

4. ADDITIVE FUNCTIONALS

In this section we give conditions on a and ¢ under which for each T > 0
the additive functional (AF) X¢ = {X?,,0 <s <t < T} admits a unique de-
composition into a martingale additive functional (MAF) of finite energy and
a continuous additive functional (CAF) of zero energy. We begin with basic
definitions.

Put Z = {Ps,,,: u is a probability measure on %}, where # is a Borel
o-field of RY, P, ()= paPsx(")u(dx) and define & as the completion of
F% with respect to the family £, and then %; as the completion of %7 in & with
respect to 2 (see [7], Section L3, for more details).

We say that the family of random variables 4 = {4;,, 0 <s<t< T}isan
AF of (X, P,,) (on [0, T]) if A;, is %;-measurable for every 0 <s <t < T and

sx(Ast—Asu+Au!aS<u T)_l
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for every (s, x)e[0, T] xR If, in addition,
P, .({weQ: [s, T]15t+ A,,(w) is continuous}) = 1

for every (s, x)e[0, T)x R?, then A is called a CAF.
For an AF A of (X, P,,) we define e(4) and &(A4) as in Section 1. If
e(A) < oo (e(A) =0), we call A an AF of finite energy (zero energy).
Changing the variable t+—ar and using Fubini’s theorem yields

a?e,(A) = a [ 1o, (t) e "8, (4) dr.
. 1]

Therefore, if (for instance) supg<:<r(1/t)&(4) < co, then applying the Le-
besgue dominated convergence theorem shows that if €(A) exists, then e(A)
exists and e(A4)= é(A). In particular, if

1
@.1) Ay =[f@, X)du, 0<s<t<T,

for some feL,(0, T), then using Schwarz’s inequality and Fubini’s theorem we
obtain

T—t s+t
A< [ e(f If @, N3du)ds < | fl30.r
V] s

Hence e(A) =2&(4) = 0.

We say that M = {M,,, 0 < s <t < T} is a continuous MAF of (X, P;,) if
it is a CAF such that E,,M?, < 0, E,,M,, =0 for every 0<s<t< T,
xeR?,

Let us remark that if M is an MAF of (X, P;,), then M, is a ({%4;}, P;)-
-martingale on [s, T], because, by the Markov property,

Es,x (Ms,t| b)) = Es,x (Ms,u+Mu.t|gi) = Ms,u+Eu,Xu Mu,t = Ms,u
for all s<u<t<T and xeR’ By the Markov property we also have
Es,m Msz,s+u+u = E.s.mMs,s+u + Es+u,m M.52+u.s+u+v

for s, u, v > 0 such that s+u+v < T, and hence, by an elementary computation,
2,+.,(M) < é,(M)+é,(M) for all u, v > 0 such that u+v < T. Consequently, by
the well-known properties of subadditive functions, (M) is well defined and

4.2) e(M) = ogggrt'lét(M)-

Notice also that in the case where (M, ), = 4,, and A is given by (4.1) with
some non-negative integrable f, we have
1 T—t s+t

4.3) E(M)=1,if§? §(f If @, )N du)ds = liflls;0,r-

0
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A decomposition of any CAF of (X, P, ,) into a continuous MAF of finite
energy and a CAF of zero energy is unique in the sense that we have

ProrosiTiON 4.1. Suppose ;M and ,M are continuous M AFs of finite ener-
gy.and 1A and ;A are CAFs of zero energy such that M, + A, = :M;,+ A4,
tels, T], Py p-a.s., for ae. se[0, T}. Then

Ps,x (lMs,t = 2Ms,n lAs,t = 2As,t, IG[S, T]) =1
for every (s, x)e[0, T)x RY.

Proof. Fix (s, x)e[0, T)x R? and te(0, T—s). Since M = M —,M is
a continuous MAF of zero energy, it follows from (4.2) that e,(M) = 0. There-
fore there is {8,} = (s, T—t) such that §,|s and E;, , M3 ;. +. =0, neN. For
each ne N we have

(44) Es,x M.is+ t < 2Es,x Msz.é,. + 2Es,x Mgn,s +1 = 2Es,x Msz,ﬁ,,a
because

Es.x Mg,.,s +t = Es,x (Es,x (Mg,,,s +t I gs")) = Es,x (EE,.,Xd" Mg,..s+ t)
S jdE&,..y (M§",6"+t)p(s’ X, 611: Y) dy = 0'
R

Since M is continuous, letting n 1 oo in (4.4) we get E,, M2, = 0, and hence
the desired conclusion =

THEOREM 4.2. Assume (1.1) holds and let pe Win Wi withp=2ifd=1
and p>d if d>1. Then there exists a unique continuous MAF
MO = (M) 0<s<t<T} of finite energy and a wunique CAF
APl = {4191 0 < s <t < T} of zero energy such that (1.4) is satisfied for every
(s, x)e[0, T)x R%. Moreover,

t
4.5) (MU, = ((aVo, Vo) (u, X,)du, te[s, T1, P.as,

for everj/‘r(.s, x)e[0, T)x R?.

Proof. First we show that there is no loss of generality in assuming that
@€ C}. To see this, choose a sequence {f;, } = C§ such that f; — ¢ uniformly on
compact sets in R? in W3 and W}. If the theorem were true for functions of the
class CZ, for each ke N we would have

4.6) X[k = MY+ AVH,  te[s, T], P, as,

for every (s, x)e[0, T] x R‘; where MU is a continuous MAF of finite ener-
gy, AV is a CAF of zero energy and (1.4), (4.5) are satisfied with ¢ replaced
by fi. By Proposition 4.1 the decomposition (4.6) is unique. Consequently,
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MUY _ pMUd = MU= for k, IeN. On the other hand, by (2.2), there is
C; depending only on 4, 4, d, p, T such that

E, (MYI05 0 < Co IV (=l
Therefore, by Doob’s inequality, there is a subsequence {k,} = N such that
P, . (sup |MYenrid— MUl > 27" 27"
s<tST
for every (s, x)e[0, T] x R’. Hence, if we set -
Q, = {weQ: {MY},.x converges uniformly in ¢t on [s, T1},
then P,,(Q) =1 for every xeR’ by the Borel-Cantelli lemma. For given
se[0, T) let
(4.7) MY (w) = lim MY (), weQ, MENw)=0, 0¢Q, tels, T],

and
(4.8) A () = X2, (0)— M (w), we, tels, T].

From (4.7), (4.8) it follows that M®! and A“! are continuous AFs satisfying (1.4)
and (4.22). Moreover, by (4.5) and (4.3), M™® is an MAF with

4.9) E(M") = (aVo, V)01 < 0.

Since e(AV) =0,

(4.10) e(A") = e(X?—M¥)) < 3e(XT+™ %)+ 3e (MU — M9]) 4 3¢ (4VH)
= 3e(X?)+ 3e(M[fk]_M[‘P])_

Put g, =fi—@, ke N. We have

T T—3
o® e, (X9%) = 202 j ds I e " (gr, g— P> ' gi)2 dt < 200(gy, gr— R, 9i)2;0,T>
) 0

and so, by (2.5),

4.11) ‘ lim e(X/*~9) = 0.
k— o0
For k, le N we also have

T-t s+t

eMUH—MUY) = { ds { (au, )V (h—f), V (i—f))2du

s

< A(T=DtV (f—-HIE.
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Therefore

4.12) lim &(MY4— M) < AT lim liminf ||V (f,—£)II2 = 0
k—* o k

o0 l—w

by Fatou’s lemma. Combining (4.10)(4.12) gives e(A¥) =0.

By what has already been proved, it suffices to prove the theorem for
@€ C3. For this purpose, we define ¢y, ¥, M®*, M>?<, M*™? as in the proof of
Theorem 3.1. In view of (2.4), (3.6) and Doob’s inequality we can choose a sub-
sequence {k,} = N such that for each de(0, T— s) =

Py (SUp M3 — Mage] > 27 < 276792

sSt<T
for all neN. Let us set
I's = {weQ: {M{f=},.y converges uniformly in ¢ on s, T1}.

By the Borel-Cantelli lemma, P, ,(I'}) =1 for every xeR% Next, for given
te[0, T—s) let

MY (@) = lim M3pe(w), tels, T], for wel;

and
MCl(w)=0 for w¢rIt.

Since P, (M®® = MY, te[s, T]) = 1, it follows from (3.7)-(3.9) that there is
a subsequence {4,} = (0, T—s) such that 4, )0 and P,,(I'?)=1 for every
xeR?, where

r’={weQ: {MY},y converges uniformly in ¢t on [s, T1}.
Define now

"M% (@) = lim MU(w), tels, T], for welinI?Z,

M (w)=0 for w¢I'inI?

and A" by (4.8). Then obviously (1.4) and (4.5) are satisfied and M is
continuous. Moreover, since M?: is #;-measurable for every keN, MY
is ¥5-measurable for every 6 (0, T—s), and hence ML is also %;-measurable.
Finally, for fixed 0<s<u<t<T, neN and every meN such that
Om < min {u—s, t—u} we have

4.13) , Mm@ = Mim®en 4 Miro®o+ M@, 5, .
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By (2.2) and (2.4),

dj2 I

lim limsup E; , (M35, 45, < lim limsup AK, (u—s)""? ||V ||3:0u+s.,

m—+®w n—w m—o 1o

< lim AK,(u—s)"*6,|IVell3 = 0.

m— oo

Therefore letting nfoo and then mfoo in (4.13) we get MW=
M@+ M P, -as. From this and (4.5) and (4.9) we see that M?1is an MAF of
finite energy. By (4.8), A®) is a CAF, so we only need to show that e(4) = 0.
To see this, we first prove that

4.14) lim sup lim sup a (Y, ¥ — R, ¥i)a.0,r = 0.
k— a— oo

By (2.3) we have

o (Ry Wi Yi)az0,r— (D Ry Wi VDot +271 (@VR Wi, VWi)z0,r = ks Wi)2s0,7-
Since Yy, R, Y. #7(0, T), we have

(DR, '1/1u ‘l’k>O,T = —<Dr wka Rz lf’k)u,T‘“(Ra ‘/’k (0, '), l»bk (O, ))z
(see, e.g., [20]) and, consequently,
(4-15) oYy, Y —aR, l//k)z;o.T =271 (al7 (@R, Y1), V‘/’k)z;o,T +{D: Y, AR Y07
+(05Ra ¥ (0, ), ¥, O, '))2-
By (2.4),

(4.16)  limsuplimsup l(@¥ (Ra¥s), Vi¥i)2:0.1]

< Aﬁlgl_)so}jlp {liﬂsgp I(V(“Ra Vi~V Vlf/k)z;o,TI + (V. V'//k)z;o,r} =0.
Since 2<D Yy, Yipo,r = —(Wx(0, ), ¥4 (0, -)),, using (2.4) we also get
4.17) 3{_11; {De¥i, aR Y10, 1 = Dy ¥, Yido,r < 0,

because <Dy, xR, Y —YiDo,7| < ||Dy !//k||wg--1(o,r)||“Ra '//k—'#kuwg-l(o.r)- Ob-
serve now that

|(“Ra V0, ), ¥ 0, ))ZI = ” Q"e_m‘(l:’o.t Y (t, *), i (0, ))2 dt|
T al
< gae_'“”lﬁk(t, Nz e ©, N2dt = § e /o, Mz 10, Il de.
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Since Y, e# (0, T) and # < C([0, TT; L), | (t/ot, )l = [Yw (0, ")l as
o — 00. At the same time, for any se[0, T),

T—s T-s
(s, NB=§ | § ke ™ EcopXorddt dx < | ke ™ Egmlo (Xosdl? < lloll3,
RZ 0 0
so applying Fatou’s lemma gives

(4.18) Limsup (@R Y5 0, *), ¥ 0, *))o| < Ee"lll//k(O, Wz dt = [ 0, )3

Moreover,

T T
§ [T ke™ Eo (0 (X)— o (x))dt]” dx < [ ke ™ Eo o (X)— o (Xo)2 dt
0

Rd O
T kT
=2[ke (@—P% ¢, @)dt =2 [ e "(9p—P"" ¢, p), dt.
Q 0

Clearly, (o —P*"* ¢, ¢), < 2|l¢ll3 and, by (2.1), (o —P*"* ¢, ¢), >0 as k » oo,
so applying once again Fatou’s lemma we obtain

(4.19)  limsup [, 0, I3

kT
<limsup(4 [ e~ (p—P>" @, @), dt+2e~*"||oll3) = 0.
0

k—+

Combining (4.15)+(4.19) gives (4.14). We have
T—s

[ e ™ E;pm(X¥%. ) dt
0

< T e ) valoott, ek e s, ), s, D

—2 [ e (WYls, ), Pt (s +t, ) dt

— [ e Ut Db+ Dadi— [l ), Vel e
21— M s, ), s, D200 Reins, s

and hence, by (4.14),

+

(4.20) lim sup lim sup a2 e, (X¥*)
k— a0 a—+oo

< 2lim sup lim sup & (Y, Yx—oR, ¥i)z.0,7 = 0.
k—+ oo &—>w
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Furthermore, for any te(T—s) and 6€(0, t) we have
Esm M.g,s+t M.E?;]+t)2 3Esm(Mss+t M?s+6_M£(,ps]+t+M£?s]+a)2
+ 3Es,m (Mg}-l—b)z + 3Es,m Mg?;]-ké)z .

By Fatou’s lemma,
T—t

2
jEs.m( oert—MZ% s— Mg?s]+:+M£ﬁ]+5) ds
0

T-t Tt
llm1]1f j Esm(M.(sW§+;m M‘SP;§+?)2dS llmlllf 5 Esm(M.;v,;;;m)zds-
- = w
On the other hand, by (3.5) and Fubini’s theorem,
T—t T—t s+t

g Es,m(Mg’,’;-I?l)zdS__' g ds j (aV((Pk_qJI)(u’ ')7 V((Dk—qgl)(us '))Zdu

s

T
tj‘(aV((Pk @), *), V(pr— @) (u, '))2 du < tA |V (@ —@)ll30,7
0
and
T—1
I sm((Mss+6)2+(M£??+ﬁ)2)ds < oA (lIVq’kII%,O,T+TI|V(P||%)
0

From the above and (2.4) we get

e(M*—M") < 34 Ii{ginfllv((/’k_fpl)“%mj = 341V ill3;0,r»
and hence
4.21) lim &(M®— M) = 0

k— 0

again by (2.4). Finally, since Y, € L, (0, T), we have e(A4%%) = 0. Thus (4.10) holds
with f; replaced by ¢, and, consequently, (4.20) and (4.21) give e(A®)=0. =

The zero energy part of the decomposition (1.4) admits a unique represen-
tation of the form (3.1). More precisely, we have

PrOPOSITION 4.3. Under the assumptions of Theorem 4.2, for every
(s, x)€[0, T) x R? there exists a unique triple (MT®, NZ?, V9) satisfying the
assertion (i) of Theorem 3.1 and such that

(4.22) M = MZ?, A9 =L(—MZP+N=P—V=9), te[s, T, P,.-as.

Moreover, the triple can be chosen so that {M3%), {NT'?) are given by (3.2) and
Ve by (3.3).
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‘Proof. Uniqueness of the triple is a consequence of uniqueness of the
decomposition of a continuous process into a continuous martingale and a con-
tinuous process of finite variation.

Existence of the triple can be proved by the same method as in the proof of
Theorem 3.1. Indeed, for fixed (s, x)€[0, T) x R?, @ C3 let (MZ®, N2?, V*?)
be the triple constructed in the first part of the proof of Theorem 3.1 (to
construct the triple we did not use (1.3)). Comparing its construction with the
proof of the decomposition (1.4) we see that (4.22) is satisfied. Take now a se-
quence {f;} considered at the beginning of the proof of Theorem 4.2. Since
{fi} = C4, it follows from the above observation that for each ke N there is
a triple (M>/%, N¥/*, V%/%) satisfying the assertion (i) of Theorem 3.1 and such
that (3.2), (3.3) and (4.22) hold with f; in place of ¢. The last property together
with Proposition 4.1 implies (3.16), so letting k — co proves existence of the
representation (4.22) for general ¢. =

Let us set % = [0, o) x R? and suppose that a: ¥ — R*®R’ is symmetric
and satisfies (1.1) for all (¢, x) € #%. Then one can construct a time-homogeneous
family {(Y, P,); ye %} by putting Y;((s, @) = (s+t, X,+.(»)) and P, ,,(I') =
P, . ({w: (s, w)eTI'}) (for a construction of such a family by using Dirichlet
forms theory see [11] and [17]). Let Y? = ¢ (Y)—¢@(Y,), t = 0. Since the de-
composition (4.22) is unique, without ambiguity we can set

M (6 = (5, ©) = M (0),  All(@) = (YP— M) (@) for 5,120

such that s+t < T, where M™*T is the MAF of Theorem 4.2 on [0, T]. For
B:=Y° M, 4”1 we then have P,(B,;, = B,+B,00,) =1 for any 5,¢ >0,
ye%, where 0, (Gs, cu) (s+t ). Moreover, if we denote by E;,, the expec-
tation sign with respect to P, (-) = f g P (-)m(dx), then

TT Tt
e(X?) = [ [ Lioms+)e " E,n(Y?)dsdt, &M¥)= [ E,,(MP)ds
00 0

Therefore (1.4) may be viewed as a strict version (i.e. for every starting point
y€%) of the decomposition of the functional Y/ with f (¢, x) = 10,1y (¢) ¢ (x)
obtained in [12] and [19]. Note, however, that the results obtained in [12] and
[19] lead to a decomposition of Y’ for general time-inhomogeneous diffusions
(Y, P,) and general time-dependent f.

THEOREM 4.4. Under the assumptions of Theorem 4.2, if moreover (1.3) is
satisfied, €(A"%) =0

Proof. We first prove that
(4.23) e(X?) = (aVe, V@)so,r

4 — PAMS 222
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To this end, we write

T—1 T—t s+t
&(X9) =2 [ (¢, p—P**@)ds= [ ds | (a(u, )VP*p, Vo), du
0 1] s

T—t s+t

3" fls,wyds+ | ds | (au, )Ve, Vo), du

u— s

= _t[duljf(s, u)ds+}:du
0 0 t

=L ({O+LO+1:(),

where  f(s,u)=(a(u, )V (P p—0), Vp),. It is easily seen that
lim,,o ¢t~ I (t) = 0. By (2.9), {P** ¢ — ¢} is bounded in W} and P**¢p—¢ — 0
in L, for any {s,} =(u—t,u) such that s,Tu. Therefore the function
(u—t, u] 35+ f (s, u) is continuous, and hence t* . __ f(s, u)ds — f (u, u) =0
as t | 0. From this and the dominated convergence theorem we conclude that
lim, ot~ 11,(t) =0. Finally, since I;()=¢&(M™), by (49) we have
lim, ot~ I5(t) = @Ve, V¢)z.0,r, and (4.23) is proved. Following the proof of
Theorem 4.1 in [15] we now show that

(4.24) é(A") = e(M?)—e(X?)
for any ¢ € C3. To this end, we first use Theorem 3.1 and (4.22) to deduce that
for every (s, x)€[0, T) x R%, te(0, T—s] there exists the integral j‘:HAEf’,} dA}
as the limit in P, of Riemann sums, and moreover

s+t

(A% =2 | (AR — A dAS

s+t s+t

=2 | (0(Xes)— 0 (X.)dAY—2 | (M%) — M{Z) dAL

s+t

= (p(Xs+t)(_M£‘?S]+t+st+t)_ j (p(Xu)d(_Mgﬁl]-l'ﬁgu)

s+t s+t

— | X2oredV8u—2 § ARAM,

where
s+t " T _ -
[ oX)dN?, = — | o(X)dANZ,—<XZ., N¢ >4
s T—t
and
(X2, N2 gy = (M@, N2> = (M.
Clearly,

Egm(0 Xor) M) = Eq (X250 MI7,)
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and, since ¢ (X;4,) is 6(X,, ue[s+t, T]) = F5_,-measurable, we obtain
Es.x((p (Xs+t)N~g,,s+t) = Es,x {(P (Xs+t)(Es,x(N‘g‘—t_N?')lﬁ%—t)} = 0

We have also
s+t

Es,m j -Xz’,s-kth:’,u = 0,

because, by the Markov property,

s+t

Es,:c j. p_l(an: V(P)(S, X, U, Xu)Xt‘f,s+tdu

s+t

= [ E,.{p™ (@Vp, Vo)(s, x, u, X,) E, x XCsr:}du

s+t d

={1 ,Zlaij(“’ M D;p(s, x, u, y) Do ) (P o — ) (y)dudy.
s Rii,j=

By the above calculations, we get
E (A% ) = Egm(— XZs s ML 4+ (MY, L)
= Es,m(_A.[v?s]+t M£‘§+t+(M£‘?.s]+t ? + <M.5?-]>s+t) = —Lsm (Ag?:v]+t M&P;I_'_t s

and hence

t

T_
2(X%) = & (M) +&,(A")+2 | E, (4% M¥.)ds = & (M) —¢,(4'%)
) .

for every te[0, T]. Obviously, this gives (4.24) and proves the theorem for
@ € C} when combined with (4.23). To prove the general case, we approximate
@ in W} by a sequence {f,} = C% and use the estimate

2(A) < 3e(XT%7%)+ 3e (MU + 3e(AVH) = 6 (aV (fi— @), V (i~ @))2i0.75

which follows from uniqueness of the decomposition (1.4), the fact that
é(AV") =0 and (4.9), (4.23). =

Acknowledgement. I would like to thank the referee for valuable comments
on the paper, particularly for pointing out an error in its first version and for
calling my attention to papers [17] and [19].

REFERENCES

[1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup.
Pisa 22 (1968), pp. 607—693.

[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.

[3] H. Follmer, Dirichlet processes, in: Stochastic Integrals, D. Williams (Ed.), Lecture Notes in
Math. 851, Springer, Berlin 1981, pp. 476-478.




252 A. Rozkosz

[4]1 M. Fukushima, On a strict decomposition of additive functionals for symmetric diffusion
processes, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), pp. 277-281.

[5]1 M. Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric
Markov process, in: Dirichlet Forms and Stochastic Processes, Z. Ma, M. Rockner and J. Yan
(Eds.), Walter de Gruyter, Berlin—-New York 1995, pp. 155-169.

[6] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov
Processes, Walter de Gruyter, Berlin-New York 1994.

[71L L Gihman and A. V. Skorokhod, The Theory of Stochastic Processes. I1I, Nauka,
Moscow 1973; English translation: Springer, New York-Heidelberg 1975,

[8] O. A. LadyZenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasi-linear
equations of parabolic type, Nauka, Moscow 1967; English translation: Transl. Math. Mono-
graphs, Vol. 23, Amer. Math. Soc., Providence, R. L., 1968.

[9] T. J. Lyons and L. Stoica, The limits of stochastic integrals of differential forms, Ann,
Probab. 27 (1999), pp. 1-49. :

[10] T.J. Lyons and W. A. Zheng, On conditional diffusion processes, Proc. Roy. Soc. Edinburgh
115A (1990), pp. 243-255.

[11] Y. Oshima, On a construction of Markov processes associated with time dependent Dirichlet
spaces, Forum Math. 4 (1992), pp. 395-415.

[12] Y. Oshima, Some properties of Markov processes associated with time dependent Dirichlet
forms, Osaka J. Math. 29 (1992), pp. 103-127.

[13] A. Rozkosz, Weak convergence of diffusions corresponding to divergence form operators,
Stochastics Stochastics Rep. 57 (1996), pp. 129-157.

[14] A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form opera-
tors, Stochastic Process. Appl. 63 (1996), pp. 11-33.

[15] A. Rozkosz, On Dirichlet processes associated with second order divergence form operators,
Potential Anal. 14 (2001), pp. 123-149.

[16] A. Rozkosz and L. Stominski, Extended convergence of Dirichlet processes, Stochastics
Stochastics Rep. 65 (1998), pp. 79-109.

[17] W. Stannat, The Theory of Generalized Dirichlet Forms and Its Applications in Analysis and
Stochastics, Mem. Amer. Math. Soc. 142, No. 678 (1999), viii+ 101 pp.

[18] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer,
New York 1979.

[19] G. Trutnau, Stochastic calculus of generalized Dirichlet forms and applications to stochastic
differential equations in infinite dimensions, Osaka J. Math. 37 (2000), pp. 315-343.

[20] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, G-convergence of parabolic operators,
Uspekhi Mat. Nauk 36 (1981), pp. 11-58; English translation: Russian Math. Surveys 36
(1981), pp. 9-60.

Faculty of Mathematics and Computer Science
Nicholas Copernicus University

ul. Chopina 12/18

87-100 Torun, Poland

E-mail: rozkosz@mat.uni.torun.pl

Received on 18.4.2001;
revised version on 20.5.2002



