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Abstract. We consider a time-inhomogeneous Markov family 
(X, P,3  corresponding to a symmetric uniformly elliptic divergence 
form operator. We show that for any rp in the Sobolev space W: n Wi 
with p = 2 if d = 1 and p > d it d 3 1 the additive functional 
X+' = (p(X,)-rp(X,); 0 < s < t}  admits a unique strict decomposition 
into a martingale additive functional of finite energy and a continuous 
additive functional of zero energy. Moreover, we give a stochastic 
representation of the zero energy part and show that in case the dif- 
fusion coefficient is regular in time the functional Xq is a Dirichlet 
process for each starting point (s, x). I l e  paper contains also rectifica- 
tions of incorrectly presented or incorrectly proved statements of our 
earlier paper [14]. 

2000 AMS Subject Clasdiiation: 60560, 60J57. 

Consider a Markov family {(X, P,,,); (s, X) E [0, TI x Rd) corresponding 
to the divergence form operator 

where a: [0, T ]  x Rd + Rd@Rd is a measurable, symmetric matrix-valued func- 
tion satisfying -the condition 

for some 0 < A 4 A (for construction of (X, P,,,) see, e.g., [Ill, [13], [17]). In 
[14] it is announced that for any starting point (s, X)E [0, T) x Rd and any 
continuous cp in the Sobolev space W ;  with p > 2 v d the composite process 
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q ( X )  is a Dirichlet process on [s, 7'-J in the sense of FZillmer [3], that is, 
Xx, = rp(X,)-cg(Xs), t ~ [ s ,  TI, admits a unique decomposition of the form 

where Mf;? is a continuous P,,-martingale on [s, TI and A:;? is a continuous 
adapted process of P,,,-zero quadratic variation on [s, TI. Unfortunately, the 
proof of the last statement in [14] (see 1141, Theorem 2.1) as well as Lemma 1.2 
in [14], which is used in the proof of Theorem 2.1 in [14], is incorrect (see 
Remark 2.6 in [I61 and the remark following Lemma 2.2 of the present paper 
for more details). One of our purposes is to show that the quadratic variation 
of A:;? vanishes if we assume additionally that 

T 

(1.3) max 1 ess sup ID, aij(t, x)l dt = Kl < a. 
1Bi,j4d 0 xeRd 

We show also that under (1.1) for any continuous rp E Wb n W! with p as 
above X9 admits a unique decomposition 

into a continuous martingale additive functional MrP1 (in the strict sense) of 
finite energy and a continuous additive functional AIQ1 of zero energy, where 
the energy of an additive functional A = {A,,, 0 < s < t < T )  of (X, P,,,) is 
defined by 

T T 

e (A)  = lim a2 e, (A), e, (A) = 1 S B[O,T1 (s + t)  e-at E,,, A:,+, ds dt, > 0, 
a+ m 0 0 

whenever the limit exists. Here rn is the Lebesgue measure on R~ and E,,, is the 
expectation sign with respect to Ps,, (a) = j,, P,, (-1 m (dx). Our decomposition 
may be viewed as a strict version of a decomposition of Xq obtained in [12] 
and [19]. If moreover (1.3) is satisfied, (1.4) also holds if we replace the above 
definition of energy by the following: 

1 T-t 

P(A)=lim-Zt(A), Zt(A)= ES,,A~,,+,ds, t€(O,T]. 
t l0 t 0 

Thus we generalize results of 1151 on strict decomposition of time-homogene- 
ous diffusions corresponding to divergence form operators (general time-homo- 
geneous diffusions are considered in [4]-[6]). 

Finally, notice that similarly to [14]-[I61 our methods of proofs allow us 
to obtain the Lyons-Zheng decomposition of A:;? and A::] for each starting 
point (s, x) (results concerning time-homogeneous diffusions can be found in 
191, [loll Clsl, C161). 

We will use the following notation. 



For a process Y on [s, TI we write 

= YTFT+#-,, = z- YT, ~ E [ s ,  TIA 

Let D = C ( [ O ,  TI;  Rd) be the space of continuous trajectories from [O, TI into 
Rd, and X be the canonical proqss on 62. Let us put 

By E , ,  we denote the expectation sign with respect to Let &-(Pa,,) be the 
space of continuous square-integrable Ps,x-martingales on [s, TI vanishing at 
s equipped with the usual norm (Es,z { M } ~ ) " ~ .  

Di = 8/82 is the partial derivative in the distribution sense, V = (Dl, . . ., Dd). 
Cz is the set of all smooth functions in Rd having compact support. L, (respec- 
tively, L,(s, T ) )  is the classical Banach space consisting of measurable func- 
tions on R' (respectively, (s, T )  xRd)  that are p-integrable. W: is the Ba- 
nach space consisting of all elements u of L, having derivatives Diu from L,. 
Let W;*'(s, t) be the Banach space consisting of all elements u of L2(s, t )  
having derivatives Di u from k2 (s, T),  and W$D' Is, T) be the Banach space 
consisting of all elements u of L2 (s, T) having derkatives Di u and time deriva- 
tives (in the distribution sense) D, from & (s, T). By 1) - I ) ,  we denote the norm in 
L,. By (., .) we mean the usual scalar product in Rd, ( 3 ,  - ) 2  the scalar product in 
Lz, and (., -)2;s, the scalar product in L2 (s, T).  

By Sobolev's imbedding theorem, if p > d ,  then every cp E W j  has a con- 
tinuous representative. Therefore we will always assume that cp denotes the 
continuous representative of a given element of W: with p > d. 

2. PRELIMINARY RESULTS 

It is known (see [I] and [a]) that under (1.1) for any SE [0, T )  and q~  EL^ 
there is a unique weak solution P". c p ( . ) ~  wit1 (s, T )  to the Cauchy problem 

In particular, if cp E Wi, then 
i 1 

for all t ~ t s ,  T). Furthermore, in [I] it is shown that there exists a weak 
fundamental solution p(s, x, t, y), 0 < s < t, x, y € R d ,  for L,, and that for any 
cp E L2 we have the representation 

3 - PAMS 22.2 
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The family {PS.*, 0 < s < t 4 T) forms a Markov semigroup of contractions on 
L,, which gives rise to our Markov family (X, P,,,) (see, e.g., [13j). In par- 
ticular, p is the transition density of (X, P,,J. 

THEOREM 2.1. Assume (1.1) holds. Thm: 
(i) there is a constant K 2  > 0 depending only on 1, A, dl T such that 

- 

for all 0 < s <  t < Tand x ,  y s R d ;  
(ii) for each (s, x) E[O, T) x Rd, p(s, X ,  -, a )  E Ll (s, T ;  W;) with any q 

whose HdEder conjugate is greater than 2 v d; 
(iii) if d = 1, then for any 0 < s < T, a > 0 we have 

(p'(s, x, t, y)  denotes the derivative of y w  p (s, x, t, y) in the sense of distribu- 
tions). 

Proof.  For (i) and (ii) see Theorems 5 and 7 in [I]. To prove (iii) we can 
proceed as in the proof of Theorem 5.1 in [15]. 

Let WF1 denote the dual space of W i  when one uses the inner product 
in Lz to define the duality relation and let Wim-l (s, T) = L2 (0, T;  Wyl). The 
space Wi3-' (s, T) is dual to W!.' (s, T)  and the value (v, u),,, of a functional 

v c Wig-' (s,  T )  at u E Wf,' (s, T) is defined by (v, u)., = (u (t), u(t)) dt, 

where ( -, a )  denotes the dualization between W ;  and Wl . 
Let 9" (s, T) denote the space of functions U E  Wfm-' (s, T) having deriva- 

tives D, u from Wi*- ' (s, T) equipped with the norm 

It is known (see, e.g., [20]) that there is a continuous embedding of W(s, T) in 
the space C([s, TI;  L,) of continuous functions on [s, T] with 'values in 
Lz equipped with the supremum norm. Therefore without ambiguity we may 
define the subspace WT(s, T) = { u ~ W ( s ,  T): u(T, .) = 0) of W(S, T). 

For any a 2 0, f EL, (s, T), there exists a unique weak solution 
R, f E WT(s7 T) of the problem 

(a-D,-LJu = f in (s, T)xRd,  u(T, -) = 0, 

that is 

(2.3) a (R, f 7  g)z;,,- (Dt REf, g),, + W R ,  f, Vg),;,, = (f, g),;,, 
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for any g~ w;a1 (s, T )  (see [13], 1171, [ZO]). Moreover, (R,),,, is a strongly 
continuous resolvent on I,, (s, T) having the representation 

for any bounded f E L2 (s, T) (see, e.g., [13]). 

LEMMA 2.2, Assume (1.1) holds. If f E W ! ~ ~ ( S ,  T ) ,  then 

Proof, This is a particular case of a more general result proved in [17], 
Proposition 3.7. rn 

Rem ar  k. In Lemma 1.2 of the author's paper [14], (2.4) is stated for 
resolvents corresponding to operators of the form 

Unfortunately, the proof of Lemma 1.2 in [14] is incorrect (even in the case 
bi = 0, i = 1, . . ., d) .  The statement of Lemma 1.2 in [14] is, however, correct. It 
follows from the cited-above Proposition 3.7 of [17]. 

From Lemma 2.2 it may be concluded that 

for any rp E W i .  Indeed, putting f, g = q in (2.3) we obtain 

Hence 

(see, e.g., [20]). On the other hand, 
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and, by (2.41, 

which gives (2.5) when combined with (2.6). 

THEOREM 2.3. If (1.1) and (1.3) are satisfid, then for m y  rp E W:,  f E Lz (s, T) 
the Cauchy problem 

has a unique solutionfiom Will (s ,  T). Moreover, there is K 3  > 0 depending only 
on A, A,  d and K 1  such that for every t E (s, T) 

(2.81 IlVu (t, ')lIZ + l l ~ l  u11;;s.t < K3 (I1 V ~ l I Z  + IIf IIS;s.t). 

Proof. See Theorem 6.1 and the inequality (6.6) in Chapter 111 in [8]. 

From (2.8) it follows that for any cp E W i  

for all 0 < s < t < T. Moreover, since Ra(t, x) = ea'u(T+s- t ,  x), where u is 
' a  solution to (2.7) with f replaced by g(t, x) = e-a(T+s-t) f (T+s-t, x), the 
inequality (2.8) shows that 

for every a > 0. 

3. DIRICHLET PROCESSES 

Let (s, X)E [0, T) x Rd and let (Xt)tds,Tl be a filtration. We wil l  say that 
X z .  is a continuous ({Xt), Ps,,)-Dirichlet process on [s, TI if it is {A$)-adapted 
and admits a decomposition of the form (1.2), where Mi;? is a continuous 
((z), P,,)-local martingale on [s, TI such that Mi,$' = 0 and At;? is an (%)- 
adapted process of zero quadratic variation on [s, TI, that is, A:: = 0 and 

QtST (AX7C) IAf;z+, - At$l2 + 0 in P,, as n -+ co 
ti€D., 

for every sequence (17, = {to, tl, . .., ti(,))) of partitions of [s, TI such that 
s = to < tl < ... < ti(n) = T and I[IZ,ll = maxlsisi(n)Iti-ti-lI+O as n + m .  

In what follows Vp(s, x ,  t, y) stands for the gradient of y ~ p ( s ,  x, t, y). 
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THEOREM 3.1. Assume (1.1) and (1.3) hold and let rp  E W: with p = 2 if 
d = 1. and p > d if d > 1.  Then for every (s ,  x) E [O, T) x IP there exists a unique 
triple (Mf;?, N,";?, V;;?) such that: 

(i) Mz? is a continuous ((F:), P,,;)-square-intear& martingale on 
[ s ,  TI, N:;? is la continuous (($:I, P,,)-square-integrable martingale on [s ,  TI, 
Vz? is a continuous (Sf]-adapted process of Ps,,-integrable uariation on [s, TI; 

(ii) Xg. is an (is;}, P,J-Dirichbt process on [s, T ]  admitting the decom- 
position (1.2) with 

Moreover, for every t E [s ,  q, 
t t 

(3.21 <Mt;?), = j(aVrp, Vq)(u, X,)du, (N;;?), = {(iivrp, Vq)(u, 3,)dtk 
S 5 

with ii = ( i l i j ] ,  aii(t, x) =aij(T+s-t, x), and 

Proof. Since the proof of uniqueness is standard, we will prove only 
existence d the triple. For this purpose, we first assume additionally that cp E C$ 
and for k~ N we set cpk = kRk cp ,  $k = qk - cp.  By [14], Lemma 1.3, for each 
 EN, 

is an ((93, P,,)-semimartingale admitting the decomposition 

where Mx' is an (is;), P,,,)-square-integrable martingale with the quadratic 
variation process 

For fixed 6 E (0, T -s) let Mi;? denote the martingale Mz,, (s+,l -ME+,, t E [s, a. 
By (3.5) and uniqueness of the decomposition (3.4), 

for all k, ZEN, which, when combined with (2.4)- shows that (Md.'k)k,, is 
a Cauchy sequence in A (P,,,). Since for each k E N a11 trajectories of M;;yk are 
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continuous, from Lemma 4.3.3 of [18] it follows that there is an ($;}-adapted 
martingale M",' E d (Ps,J whose all trajectories are right-continuous such that 
{M;;IPk) converges to MXld in A ( P , , ) .  Furthermore, for any 0 < 6 < CT .: T-s, 

.. For d = 1 the right-hand side of (3.7) is bounded by 

whereas for d > 1, by (2.2) and Holder's inequality, it is bounded by 

where C ,  depends only on p, d, K,. Hence, applying once again Lemma 4.3.3 
of [18], we conclude that in both cases there is an {F:}-adapted martingale 
M:;? such that all its trajectories are right-continuous and {MXm6} converges to 
Mz? in &? (Ps,,) as S 10. Define 

The representation (3.1) can be proved by the same method as in the proof of 
Theorem 2.1 (ii) in [14], and therefore we omit it. Note, however, that from the 
construction of Nt;? in [14] and from [la], Lemma 4.3.3, it follows that we can 
assume that all its trajectories are right-continuous. 

Our next goal is to show that A:? is a zero quadratic variation process, 
that is 

(3.10) Q:, (At;?) + 0 in P,,, as n c~ . 

In order to get (3.10) we will show that for fixed 6 ~ ( 0 ,  T- s) 

(3.11) Q:+a,T (At:?) + 0 in P,,, as n 4 c~ 

and that 

(3.12) lim lim sup P,, (Q;, + (A;:?) > E) = 0 
dLD n+m 

for every E > 0. Obviously, 



where Mf?' is defined as M'BV". Since AE5s a process of finite variation, 

(3.13) Q;+a,T (A?) + 0 in Ps,, as n + oo . 
Observe now that for any t E [s+ 8, T] 

= lim lirn {(Mz-Mc+u)-(M::+d-Mg;+J] = lim lim (M$-ME+6)  
~ $ 0  k-m sLO k-r m 

(all limits are taken in A(PS3,)) .  Hence Mf;? = MXsd and, consequently, 

13.14) lim lim sup Es,, Q i + W T ( ~ f ; ~  - A@?) < lim E,, (M:;?~-  M"~')~ = 0. 
k + m  n+m k - ' a  

I 
, By the Markov property and (2.2), 

Using once again the Markov property and performing elementary computa- 
tions gives 

for i such that ti E [s+ 6 ,  TI. By (2.1), 
ti + i 

1' = 5 (a(u, ')vPti'"$k(ti+l3 v$k(ti+l, . ) )2d~.  
ti 

Hence, by (2.9), 

( ( + )  with Cz=dAK:i2y 
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which implies 

and 

C '3 C ~ ~ i + ~ ~ ~ i ~ l l ~ t ~ ~ l l ~ ; t ~ , t ~ + ~ ~ l l ~ ~ l l ~ l l ~ ~ ~ ~ I I ~ ; ~ , ~ -  
~+ddti<T s + d S t 2 < T  

Therefore 

limsup C 1~?+~?IaK311~~kll~;s+s,r. 
"-* s+dCt;<T 

From the above, (2.2) and (2.4) we conclude that 

lirn lim sup E,,, Q;+dbT (XSk)  < K2 (CZ +K3) 6-d/2 lim IIP$kll$;s+~,~ = 0, 
k - m  n-m k-r m 

which together with (3.13), (3.14) gives (3.11). Finally, by (3.1), for every E > 0, 

from which (3.12) easily follows. This completes the proof for r p ~  C;. 
To prove the general case, we choose a sequence (fk) c Ci such that 

f, -+ rp in W: and uniformly in compact sets in Rd. Then for each k E N  the 
process X e  is an (is:), P,,J-Dirichlet process having the representation 

Since the decomposition (3.15) is unique, we have 

(3.16) ~ ; , ; f k -  ~ X , f f  = ~ f k - f  1 
~ ; ; f k  - N:;? = N;,fk- f z s,t 8.8 Y 9 ~ E C S ,  TI, 

for k, I E  N.  Hence, by (3.2) and (2.21, 

(3.17) E , ,  ( M : ; ~  - M ; ; ~ ' ) ~  + E,,, (Nc:? - N" s:. f )T C311vCfk-&)ll; 

for some C3 depending only on A, A, d, p and T. Moreover, from the first part 
of the proof it follows that we can assume that for each  EN all trajecto- 
ries of M;;? and ~c;.fk are right-continuous. Therefore there exist an 
((P:), Ps,x)-square-integrabIe martingale M;;? and an ({el, P,,,)-square- 
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-integrable martingale N:;? such that 

Moreover, if we define V;;? by (3.3), then 

(3.19) lim E,,, sup I V:;p- Vi:;PI 
k - r m  sC1ST 

T 

6 lim j I(avp(s, x, u,  9, v(f,-rp)),l du = 0, 
R-tm 

the last equality being a consequence of the assertion (i) of Theorem 2.1 in the case 
d > 1, and the assertions (i) and (iii) for d = 1 because, by the Schwan inequality, 

T T 

< j(t-s)114-(~y X, t ,  ~ ) d t d y ~ ~ ( t - s ) - ~ ' ~ I ~ - c p ) ' ( y ) l ~ p ( s ,  x, t ,  y)dtdy. 
s I? P s R  

From (3.15H3.19) and the continuous mapping theorem we obtain (1.2) and 
(3.1H3.3), so what is left is to show (3.10). Since A;;? has the representation 
(3.1) and V:;? is a process of finite variation on [s, TI, (3.10) will be proved 
once we prove that (M;;?-R;;.'P), = 0. It is easily seen, however, that the last 
assertion follows horn (3.18) and the fact that ( M E : ~ " - N : : ~ " ) ~  = (A:;?), = 0. EI 

We will see in Section 4 that XQ admits a decomposition of the form (1.2), 
(3.1) with Mxl', Nxpy Vx*v satisfying the assertion (i) even if we drop the as- 
sumption (1.3). We do not know, however, whether in this case AX@ is a zero 
quadratic variation process, and, consequently, we neither know that Xp is 
a Dirichlet process nor that the triple is unique. 

L In this section we give conditions on a and ry under which for each T > 0 
the additive functional (AF) X' = {X$',, 0 < s < t < T) admits a unique de- 
composition into a martingale additive functional (MAF) of finite energy and 
a continuous additive functional (CAF) of zero energy. We begin with basic 
definitions. 

Put 9 = (P,,,: p is a probability measure on a), where &l is a Bore1 
a-field of Rd, P, ,p( . )  = jRdPS,X(-)p(d~) and define B as the completion of 
9% with respect to the family 9, and then 9; as the completion of 9; in B with 
respect to 9 (see [7], Section 1.3, for more details). 

We say that the family of random variables A = (A,,, 0 < s < t < T )  is an 
A F  of (X, P , , )  (on [0, 7'l) if A,,  is 93;-measurable for every 0 < s 6 t < T and 

P,, (As,, = As,u + A,,, s < u < t  < T )  = 1 
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. I for every (s, x) E [0, 7'-J x Ild. If, ifl addition, 

P,, ({w E Q: [s, T ]  3 t H A,, (to) is continuous)) = 1 

for every (s, x )  E [0, T )  x Rd, then A  is called a CAF. 
For an AF A of (X, Ps,J we define e(A) and Z(A) as in Section 1. If 

e(A)  < c~ (e(A)  = 0), we call A an A F  of finite energy (zero energy). 
Changing the variable t ~ a ~  and using Fubini's theorem yields 

m 

(A)  = a J lro,.q (T) e-' C,,, (A) d ~ .  - 
0 

Therefore, if (for instance) supo < (lit) &(A) < a, then applying the Le- 
besgue dominated convergence theorem shows that if Z(A) exists, then e(A) 
exists and e (A),= i?(A). In particular, if 

for some f E Lz (0, T), then using Schwarz's inequality and Fubini's theorem we 
obtain 

Hence e (A) = E (A) = 0. 
We say that M = {M,,,, 0 < s < t < T )  is a continuous MAF of (X, P,,,) if 

it is a CAF such that E,,M:,  < a, Es,,Ms,, = 0 for every 0 < s < t < T, 
X E P .  

Let us remark that if M is an MAF of (X, Ps,x), then M,,. is a ((3;) , Ps,,)- 
-martingale on [s, TI ,  because, by the Markov property, 

for all s < u < t < T and x € R d .  By the Markov property we also have 

for s ,  u, v 2 0 such that S + U +  v < T, and hence, by an elementary computation, 
Eu+, (M) < (lM) + Zv (M) for all u ,  v > 0 such that u + v < T. Consequently, by 
the well-known properties of subadditive functions, d(M) is well defined and 

Notice also that in the case where ( M , . ) ,  = A , ,  and A is given by (4.1) with 
some non-negative integrable f ,  we have 

1 T-t s f t  

(4.3) E(M) = lim- 1 ( 1 Ilf ')Ill d")ds = llf l l l ; ~ , ~ .  
t lo t 0 , 



A decomposition of any CAF of (X, P,,,) into a continuous MAF of finite 
energy and a CAF of zero energy is unique in the sense that we have 

PROPOSITION 4.1. Suppose 1M and 2M are continuous MAFs offinite ener- 
gy  and and 2A are CAFs ofzero energy suck that lM,,t+ lAs,, = 2M8,f + 2AS,t, 
t ~ [ s ,  TI, P,,,-a.s., for a.e. s€[O, TJ. Then 

for every (s, x)E[O, T )  x It". 
Proof .  Fix (s ,  x ) E [ O ,  T ) x R ~  and t ~ ( 0 ,  T-s). Since A4 = ; M - ~ M  is 

a continuous MAF of zero energy, it follows from (4.2) that gt(M) = 0. There- 
fore there is (6,) c ( s ,  T -  t)  such that 6,4 s and E,,,, Min,8,,, = 0, n E N.  For 
each  EN we have 

because 

Since M is continuous, letting n GO in (4.4) we get Es,x M:,+, = 0, and hence 
the desired conclusion rn 

THEOREM 4.2. Assum (1.1) holds and let cp E W j  n Wi with p = 2 if d = 1 
arid p > d if d > 1. Then there exists a unique continuous MAF 
Mlql = {M$l, 0 G s < t G T )  of pnite energy and a unique CAF 
Atql = {A::], 0 < s < t < T )  of zero energy such that (1.4) is satisJied for every 
(s, X) E LO, T )  x Rd. Moreover, 

t 

(4-5) (ML?')t = (avcp, vcp) (u, Xu) du, t E [s,  TI, Ps,,-a.s., 
S 

for every (s,  x ) ~  [0, T )  x Rd. 
P r o  of. First we show that there is no loss of generality in assuming that 

9 E Ci. To see this, choose a sequence {fk) c Ci such thatfk -P q~ uniformly on 
compact sets in Rd, in Wi and W:. If the theorem were true for functions of the 
class C;,  for each  EN we would have 

for every (s,  X ) E  LO, TI  x Rd, where Mud is a continuous MAF of finite ener- 
gy, AVk1 is a CAF of zero energy and (1.4), (4.5) are satisfied with cp replaced 
by f,. By Proposition 4.1 the decomposition (4.6) is unique. Consequently, 
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M"~]-M[*'~ = MLfk-*'I for k,  ZEN. On the other hand, by (2.21, there is 
C, depending only on A, A, d ,  p, T such that 

E , ,  <M5?-fr1>~ G C3 Il~Cfk-h)II$. 
Therefore, by Doob's inequality, there is a subsequence (k,) c N such that 

for every (s, X ) E  LO, T ]  x R ~ .  Hence, if we set 

as = {O E B: (M$J),,N collverges uniformly in t on [s, TI), 

then P,,, (S2J = 1 for every x E lZd, by the Borel-Cantelli lemma. For given 
SE[O, T) Iet 

and 

(4.8) A$](w)=x$,(~)-M~](u), OEQ, t ~ [ s , T ] .  

From (4.7), (4.8) it follows that M[Q] and ArP1 are continuous AFs satisfying (1.4) 
and (4.22). Moreover, by (4.5) and (4.3, M [ ~ I  is an MAF with 

(4-9) z(Mvl) = (avtp, < CO. 

Since e (Auk]) = 0, 

(4.10) e (Atq1) = e (X' - MrP1) < 3e (Xfk-cP ) + 3e ( M [ ~ ~ ] -  M[+']) + 3e (A[fkl) 

= 3e(Xfk-@)+3e(M[fk1-MIQ1).  

Put gk = f,- tp, k  EN. We have 

and so, by (2.5), 

For k ,  ZEN we also have 

lim e(Xfk-7 = 0. 
k-03 

T-t s+t  

zt (AdEfk1 - ~ U l l )  = j ds j' (a (u, -) V vk -A), V Cfk -A)), du 
0 S 

G A(T-t) ~llVCf,-h)ll~. 



Therefore 

(4.12) lim i?(M[fk] - M[ql) < AT lim lirninf 1 1  V Cfk-fl)l l$ = 0 
k+m k-tm l - t m  

by Fatou's lemma. Combining (4.10)-(4.12) gives e(ALV1) = 0. 
By what has already been proved, it suffices to prove the theorem for 

q E Ci. For this purpose, we define pk, I)~, Mpk,  M " P ~ ,  MXn6 as in the proof of 
Theorem 3.1. In view of (2.4), (3.6) and Doob's inequality we can choose a sub- 
sequence (k,)  c N such that for each 6 E (0 ,  T -  s) - 

P , , (  sup IM~;~kn+l-M~;~knl  > 2-7 < 2-"6-d /2  
sdtdT 

for all n E N. Let "us set 

rt = {OE W: {M;;:".jnEN converges uniformly in t on [s, T I ) .  

By the Borel-Cantelli lemma, P,,(r;)  = 1 for every X E R ~ .  Next, for given 
t ~ [ 0 ,  T-s) let 

M:!; (a)  = lirn M,";Tkn (w), t E [s, q, for o E r: 
a-m 

and 

M:? (o) = 0 for w 4 r:. 
Since P,,,(M:pS = M54, t E [s ,  T I )  = 1, it follows from (3.7H3.9) that there is 
a subsequence (6,) c (0, T -s) such that 6 ,  / 0 and P,,, (r:) = 1 for every 
x E Rd, where 

r,2 = {W E Sa: { M S ~ l ) ,  converges uniformly in t on [s, 17). 

Define now 

'M;;](W)= l i m M ~ ~ j " l ( o ) ,  t ~ [ s , T ] ,  for w ~ T : n r : ,  
m-+ m 

M z ]  (w) = 0 for w $ T i  nTf 

and ArV1 by (4.8). Then obviously (1.4) and (4.5) are satisfied and M['] is 
continuous. Moreover, since Mg: is 9;-measurable for every  EN, M::; 
is 3;-measurable for every 6 ~ ( 0 ,  T-s ) ,  and hence M!:] is also g:-measurable. 
Finally, for fmed 0 < s < u < t < T,  EN and every m ~ l V  such that 
6 ,  <min{u-s, t - u )  we have 
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By (2.2) and (2.41, 

lirn lim sup E , ,  (Mr,?),+,m < lirn lirn sup AKz (U -s ) -d12  I 1  Vqk , l l f  ;","+ 6, 
m+m n+m m+m n+m 

< lim AK,  (u- s)-ldJ2 dm 
m-tm 

IlVvIl~ = 0. 

Therefore letting nTco and then m f  co in (4.13) we get M s l =  
+ +$I Ps,,-a.s. From this and (4.5) and (4.9) we see that M ~ V ]  is an MAF of 

finite energy. By (4.8), ACpl is a CAF, so we only need to show that e (ALp1) = 0. 
I To see this, we first prove that 

(4.14) lim sup lim sup b: (t,bk, $k - ER, $k)2;0,T = 0. 
k + m  a - t m  

By (2.3) we have 

i Since \ C I k ,  Ra $ik E WT (0, T), we have 

1 (see, e.g., [20]) and, consequently, 

(4.16) l imsupl imsuPI(a~(~~~$k) ,  v$k)2;O,TI 
k - t m  a+m 

since 2 <Dt $h, $k)0.T = -($A (0, -1, $k (Oy using (2.4) we also get 

because $k7 a R a $ k - $ k ) ~ , ~ l  G ~ ~ D t $ k ~ ~ ~ q ~ - l ( ~ , ~ )  llaRa$k-$kllW8~1(0,T). Ob- 
serve now that 

T 

lIaRa $k (09 '1, $k (0, -1)21 = ]I ueprn (p0"$k ( t ,  '1, $11 (or '))2 dtl 
0 

T aT 

6 1 ae-" Il$k(t, ')ll2. I/$k(o? ')ll2dt = 1 e-' If$k(t/a, ')I12 II$k(O, ')I12 d t -  
0 0 



Since $k E - / y ( O ,  T )  and '#'" c C([O, TI; Lz), H$k (t/a, ')I12 + Il$k (0, ' )Ha as 
a + m. At the same time, for any S E  [0, T), 

so applying Fatou's lemma gives 

Moreover, 

Clearly, (9 - 9, cp), < 2 I[qII; and, by (2.1), (rp - Po3'lk q, cpI2 + 0 as k + cc , 
so applying once again Fatou's lemma we obtain 

Combining (4.1 5)-(4.19) gives (4.14). We have 

and hence, by (4.14), 

(4.20) lim sup lirn sup a2 e, (X*") 
k+m a - t m  

< 2 lim sup lim sup a (t+hk, $k - aRa $k)2;0,T = 0. 
k + m  a+m 
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Furthermore, for any t E (T-s)  and S ~(0, t )  we have 

By Fatou's lemma, 

< lim inf j E,,, ( M ~ : ; ? I -  MQ'"- s,s+! ) ds < lim i n f j  E , .  (MC;:~)' ds. 
l + m  0 l+m 0 

On the other hand, by ('3.5) and Fubini's theorem, 

and 

From the above and (2.4) we get 

and hence 

again by (2.4). Finally, since $ k ~  L2 (0, T), we have e(Aqk) = 0. Thus (4.10) holds 
with fk. replaced by cpk and, consequently, (4.20) and (4.21) give e(A[qI) = 0. 

The zero energy part of the decomposition (1.4) admits a unique represen- 
tation of the form (3.1). More precisely, we have 

homsrno~ 4.3. Under the assumptions of Theorem 4.2, for every 
(s, X)E [0, 7') x Rd there exists a unique triple (Mt;?, Nt;?, Vf;?) satisfying the 
assertion (i) of Theorem 3.1 and such that 

Moreover, the triple can be chosen so that (M:?), (Nf;?) are given by (3.2) and 
V:;? by (3.3). 
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Proof .  Uniqueness of the triple is a consequence of uniqueness of the 
decomposition of a continuous process into a continuous martingale and a con- 
tinuous process of finite variation. 

Existence of the triple can be proved by the same method as in the proof of 
Theorem 3.1. Indeed, for fixed (s, x) E LO, T )  x Itd, (p E Ci let (M;?, N;,?', V:;?) 
be the triple constructed in the first part of the proof of Theorem 3.1 (to 
construct the triple we did not use (1.3)). Comparing its construction with the 
proof of the decomposition (1.4) we see that (4.22) is satisfied. Take now a se- 
quence {fk} considered at the beginning of the proof of Theorem 4.2. Since 
if,} c Ci, it follows from the above observation that for each  EN there is 
a triple (Mt:f i ,  N z f i ,  V:?) satisfying the assertion (i) of Theorem 3.1 and such 
that (3.2), (3.3) and (4.22) hold withfk in place of q. The last property together 
with Proposition 4.1 implies (3.16), so letting k -t oo proves existence of the 
representation (4.22) for general cp. ra 

Let us set 5Y = LO, a) x P and suppose that a: !Y -, Rd@P is symmetric 
and satisfies (1.1) for all (t, X) E g. Then one can construct a time-homogeneous 
family {(Y, py); y E %'} by putting K ((s, w)) = (s + t ,  X,+, (w)) and py =(,,, (r) = 
P,,, ({a: (s, O) E I-}) (for a construction of such a family by using Dirichlet 
forms theory see [11] and [17]). Let Y;P = y (x)-cp(Yo), t 3 0. Since the de- 
composition (4.22) is unique, without ambiguity we can set 

~ f " l ( d = ( s , ~ ) ) = M ~ ~ $ ~ ( ~ ) ,  A ~ ~ I ( C ~ ) ) = ( Y ~ - M { ~ ~ ) ( C ~ ) )  for s, t 2 O  

such that s + t  < T, where MLplpT is the MAF of Theorem 4.2 on [0, TI. For 
3 : = Y9, M[+", A[q1 we then have @, (B,,, = B,+B,o 8,) = 1 for any s, t 2 0, 
y EY, where &((s, a)) = (s + t, o). Moreover, if we denote by I?,, the expec- 
tation sign with respect to p(s,,) (-) = L, P,,, (.) myx), then 

T T T-t 

e b ( x 3  = j J ~,,,,(s + t )  e-"fE,,m (Y?)' ds dt ,  zt (M[v]) = SS,, ( ~ 5 ~ 1 ) ~  ds. 
0 0 0 

Therefore (1.4) may be viewed as a strict version (i.e. for every starting point 
y E g) of the decomposition of the functional Y* with f (t, x) = lEO,Tl (t) q~ (x) 
obtained in [12] and [19]. Note, however, that the results obtained in [12] and 
[I91 lead to a decomposition of Yf for general time-inhomogeneous diffusions 
(Y, P,) and general time-dependent f. 

THEOREM 4.4. Under the assumptions of Theorem 4.2, ifmoreover (1.3) is 
sati$ed, Z(A[~]) = 0. 

Proof .  We first prove that 

4 - PAMS 22.2 



250 A. Rozkosz  

To this end, we write 
T-t T-t s + t  

&(XQ) = 2 1 (rp, cp-PS~S+tcp)2ds = j ds j (a(u, .)VPs+"cp, ~ r p ) ~ d u  
0 0 s 

t u T u T - t  s + t  

= j d u j  f (s, u)ds+ldu J f (s, u)ds+ J ds j (a(u, .)Vq, Vrp),du 
0 0 t u-L 0 S 

= 11 (t) + 1 2  (t) + 13 (0, 
where f (s, u) = (a (u, -) P (Ps-' rp - cp), v ~ ) ~ .  It is easiry seen that 
limrJo t-I Il It) = 0. By (2,9), {Pn4cp - q7] is bounded in W i  and Pha" q - q~ + 0 
in k, for any Is,) c (u-t, U) such that s,?u. Therefore the function 
(u-t, u]3s1+ f (s, ~)iscontinuous,andhence t-lj:-, f (s, u)ds-, f (u, a )=  0 
as t .j+ 0. From this and the dominated convergence theorem we conclude that 
limIJo t - i2 (t) = 0. Finally, since i3 (t)  = Et ( l l / I [ V 3 ,  by (4.9) we have 
limtJo t-I I 3  (t) = ( Q V ~ ,  Brp)2,0,T, and (4.23) is proved. FolIowing the proof of 
Theorem 4.1 in [lS] we now show that 

for any cp E C ~ .  To this end, we first use Theorem 3.1 and (4.22) to deduce that 
for every (3, x) E [O, T )  x p, t E (0, T-s] there exists the integral J:" A!:: dAt$ 
as the limit in P,,, of Riemann sums, and moreover 

where 

and 

Clearly, 

ESP, (cp (Xs + 3 MP2+ t) = E S , ,  (X$ + r Mi$'+ t) 



and, since cp (X,+J is a (Xu,  u E [s + t, TI) = F$-,-measurable, we obtain 

We have also 
s + t  

E,,, j X:,s+tdV:u = 01 
5 

because, by the Markov property, 

By the above calculations, we get 

and hence 
T-r 

Zz (Xq)  = (MLP1) + Zt (ACq1) + 2 J Es,m (A:::+ ML'psl+ t )  ds = Zt (Mrql) - Zt (Artp1) 
0 

for every t E [0, TI. Obviously, this gives (4.24) and proves the theorem for 
cp E Cg when combined with (4.23). To prove the general case, we approximate 
cp in Wi by a sequence {f,) c Cg and use the estimate 

which follows from uniqueness of the decomposition (1.4), the fact that 
2(Awk1) = 0 and (4.9), (4.23). H 
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