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Absbact. An SorS random vector X is pserbstable, or < f l  d 2, 
if X: Y e i M  for some symmetric /?-stable random vector Y, 8 3 0 
a random variable with the Laplace transform exp {-@), Y and 
B are independent. We say that an SaS random vector is maximal if it 
is not B-substable for any /I > w.  

In the paper we show that the canonical spectral measure for 
every SaS, bsubstable random vector X, f l >  a, is equivalent to the 
Lebesgue measure on S,,-l. We show also that every such vector ad- 
mits the representation X = YtZ, where Y is an SctS sub-Gaussian 
random vector, Z is a maximal SES random vector, Y and Z are 
independent. The last representation is not unique. 
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Let us remind first the welf-known definitions of symmetric a-stable ran- 
dom variables, random vectors and stochastic processes, a E (0, 21. The random 
variable X is symmetric a-stable if there exists a positive constant A such that 

Eexp (itX) = exp { - A  ltla). 

A random vector X = (XI, . . ., X,) is symmetric a-stable if for every 5: = (11, . . ., c,) 
the random variable { F ,  X) = x=, r ,  X, is symmetric a-stable. This is equiva- 
lent to the following condition: 

It  is well known that if X is an SuS random vector on Rn, then there exists a finite 
measure v on Rn such that 

(*I I3 exp (i  ( 5 ,  X)) = exp { -j.. . I  l(C, x>la v (ax ) ) .  
R" 
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The measure v is called the spectral measure for an SaS random vector X. If v is 
concentrated on the unit sphere S , - ,  c Rn, then it is called the canonical spec- 
tral measure for X. The canonical spectral measure for a given SaS vector X is 
uniquely determined. 

An SmS random vector X is /3-substable, a < b < 2, if there exists a sym- 
metric b-stable random vector Y such that 

where 0 2 0 is an a/p-stable random variable with the Lapiace transform 
exp {-tUJ8), Y and O are independent. 

DEFINITION 1. An SO~S random vector X is maximal if for every 2 a and 
every Sj?S random vector Y, and every 8 independent of Y the equality 
X A YB implies that a = fl and O = const. 

A stochastic process (X,: t~ T) is symmetric a-stable if all its finite- 
-dimensional distributions are symmetric a-stable, i.e., if for every  EN and 
every choice of t,, . . ., t , ~  T the random vector (X, , ,  .. ., Xtn) is symmetric 
a-stable. 

For more information on stable random vectors, processes and distributions 
see [2]. Almost all S d  random vectors and stochastic processes stu&ed in litera- 
ture are maximal; and even more, almost all of them have pure atomic spectral 
measure. In [lj one can find some results on characterizing maximal SaS 
random vectors in the language of geometry of reproducing kernel spaces, 
however, except some trivial cases, these results are given only for infinite- 
-dimensional SaS random vectors. The following, surprisingly simple theorem 
characterizes maximal symmetric a-stable random vectors on Rn: 

THEOREM 1. Assume that a random vector X = (XI, . . ., X,) is symmet- 
ric a-stabb and P-substable for some f l ~ ( a ,  21. Then the canonical spec- 
tral measure v for the vector X has a continuous densityfunction f (u) with re- 
spect to the Lebesgue measure on the unit sphere S,,- c Rn, and f (u) > 0 for 
every UES, -~ .  

Proof .  From the assumptions we infer that there exists a symmetric 
&stable random vector Y = (Yl , . . . , Y,) such that X A YO 'I@, where O > 0 in- 
dependent of Y is a/fl-stable with a Laplace transform exp {- t@}. Assume that 

This means that for every 5 we have 

( ~ , Y ) ~ c ( Q Y , ,  where Eexp{it%)=exp(-Itla). 

In particular, 
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Since u < 8, we have c- ' = E I & l a  < co and c ( { )a  = cE I({, Y)Ia.  Calculating 
now the characteristic function for the vector X we obtain 

E exp (i (t , X)) = E exp { i  <{, Y B1/B)j 

= exp {-cEl<t, VI") 

where &(x) denotes the density function of the SPS random vector pl: This 
means that the function c&(x) is the density of a spectral measure for the 
random vector X. 

To get the canonical spectral measure vo for the Sols random vector 
X from this spectral measure it is enough to make the spherical substitution 
x = ru and integrate out the radial part. Consequently, for every Bore1 set 
A c S,- we obtain 

where w is the Lebesgue measure on S,- Sincefs is Liniformly continuous on 
Rn and fa > 0 everywhere, g ( r )  is a continuous function and g ( r )  > 0 every- 
where. The uniqueness of the canonical spectral measure implies that the func- 
tion g(u) is the density of the measure v,, which completes the proof. 

COROLLARY 1. Every random vector with a pure atomic spectral measure is 
maximal. In fact, for maximality of the SaS random vector it is enough that its 
spectral measure p is zero on a set in S,-, of positive Lebesgue measure. 

COROLLARY 2. Let (E, g, p) be a a-jnite measure space and let Y = 

{ Y  (B);  B E  9, p(B) < ao) be an independently scattered SaS random measure on 
( E ,  98) controIZed by the measure p. We say that a stochastic process 
X = (X,; t E T )  is a set-indexed SaS-process if there exists a map S P o m  T to 
&' such that 

Every set-indexed SaS-process is maximal. 

Proof. Notice that any finite-dimensional marginal distribution of a set- 
-indexed SaS-process has a pure point spectrum. For example, the 3-dimen- 
sional marginal characteristic function is 
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= exp ( l z l lUp(S1  n S"a SSC3)+lzZlap(S: n S ,  n S5) 

Some of important Sols-processes are set-indexed processes: for example, 
multiparameter Levy motion, multiparameter additive proc?sses, generally 
linearly additive processes, a class of self-similar SMS-processes (see, e.g., 
[3]-[6]). Moreover, all these processes have very interesting properties, called 
d etemzinisms. 

COROLLARY 3. If an SaS random vector X is not maximal, i.e., if X is 
8-substable for some /I > a, then there exist a symmetric Gaussian random vector 
Z and a maximaI SorS random vector Y such that 

where 6) 3 0 has the Laplace transform exp {- taI2), 2, Yand O are independent. 

P r o  of. Since every continuous function attains its extremes on very com- 
pact set, we have 

where g (u) is the density of the canonical spectral measure for X obtained in 
Theorem 1. Now it is easy to see that X 26)li2 + Y for the Gaussian random 
vector Z with the characteristic function exp ( -A1/" zi =, t;), and the S j S  
random vector Y with the spectral measure given by the density function 
f (u) = g ( ~ ) - A .  s 

Remark  1. The representation obtained in Corollary 3 is not unique. In 
fact, for every SaS P-substable random vector X and every symmetric Gaussian 
random vector Z taking values in the same space R" there exist a constant 
c > 0 and a maximal SaS random vector Y such that 

where O as in Corollary 3, I: Z and O are independent, 

P r o  of. The representation (*) for the characteristic function of an SaS 
random vector holds for every a ~ ( 0 ,  21 including the Gaussian case. However, 
for a = 2 we do not have uniqueness for the spectral measure v. In fact, v can 
always be taken here from the class of pure atomic measures on S,- but such 
a representation is not useful for our construction. We will use the measure 
v, constructed as follows: 
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Let v = v1 be the uniform distribution on the unit sphere S , - ,  c Rn, and 
let &7 = (U1, . . ., U,) be the random vector with the distribution v. Then we 
have 

exp (-J. .. [1<5,  u) lZcnv(du))  = exp {-$<t, t)), 
S m -  1 

where c; = 2EkJf. Now let 2 be the covariance matrix for the random vector 
Z and let Z = AAT. We denote by v ,  the, distribution of the random vector AU. 
Then 

- 

which is the characteristic function for the Gaussian vector 2. It is easy to see 
now that for a suitable constant a > 0 

exp ( - j - .  . {I(S, x)lac,vl (dx))  = exp {-a((t, ZOY '~ } ,  
R" 

which is a characteristic function of the sub-Gaussian vector Z0112. We define 
now the measure v,  as the projection (in the sense described in the proof of 
Theorem 1.) of the measure vl  to the sphere Sn- and we obtain 

Since vl is absolutely continuous with respect to the Lebesgue measure, vA has 
the same property and vA (da) = fA(u) w (du) for some continuous positive func- 
tion fA. If g(u)  is the density of the spectral measure for X, then there exists 
c, > 0 such that 

Now it is enough to define the maximal Sols random vector X by its canonical 
spectral measure absolutely continuous with respect to the Lebesgue measure 
with density h(u) = g(u) -cofA(u)  and put c = c:Ia. rn 
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