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Abstract. Let {X,,, n > 1} be a sequence of iid. random varia-
bles and let {a,, n > 1} and {b,, n > 1} be sequences of constants where
0<b,Too. Let X, X@, .. X® be a rearrangement of X, ..., X,
such that |XM > [X®|>...2|X". Consider the sequence of
weighted sums T, = 2 _ a,X;, n>=1, and, for fixed ¥>1, set
O = Z: aXi (X< |X"”’|) nzr+1;ie, T? is the sum T mi-
nus the sum of the X%’s multiplied by their corresponding coefficients
for k=1, ..., r. The main results provide sufficient and, separately,
necessary conditions for b, ' T® —k, -0 almost surely for some se-
quence of centering constants {k,, n > 1}. The current work extends
that of Mori [14], [15] wherein a, = 1.
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1. INTRODUCTION

If {X,,n>1} is a sequence of independent and identically dlstrlbuted
(iid.) random variables which are not necessarily integrable and S, = 2
denotes the n-th partial sum, it is known under suitable conditions that the sum
S, is essentially dominated by the contribution of a small number of its extreme
terms, the remainder being asymptotically negligible. The almost sure (a.s.)
asymptotic behavior of the partial sums S, is strongly influenced by the effect of
the most extreme terms of the sample {|X,|, |X,|, ..., |X,|}. Even though limit
laws such as the strong law of large numbers (SLLN) and the law of
the iterated logarithm (LIL) can fail for the partial sums S,, it has been
shown by various authors that if the most extreme terms in the sample
{IX4l, 1X3l, ..., |X,|} are removed from S,,, then versions of those limit laws can
indeed prevail. These limit laws which then hold when extreme terms are
removed are often referred to as “improved” versions of the classical limit laws.
The partial sum S, with the extreme terms removed from it is referred to as
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a trimmed sum. Trimmed sums are used for reducing variability in connection
with some statistical inference procedures; see Barnett and Lewis [2], Sec-
tion 3.2.1.

The influence of extreme terms on the limiting behavior of S, was apparent-
ly first noticed by Lévy [11] over sixty five years ago. More recently, Feller [6]
and Mori [14], [15] obtained improved versions of the LIL and SLLN, respec-
tively, by removing the most extreme terms from the partial sums. In other
words, Feller [6] and Mori [14], [15] established a LIL and SLLN, respec-
tively, for trimmed sums of iid. random variables.

Let X, X ..., X® be a rearrangement of X, X,, ..., X, in decreas-
ing order of absolute magnitude; ie., | X > |XP|>...> X", n> 1. For
1<r<n,letusset S? =§,—XWP-XP—. . — X Thus S is the partial sum
S, with the r largest (in absolute value) summands removed. Since r is fixed,
S is a so-called lightly trimmed sum. Pioneering work of Mori [14] on the
SLLN problem for lightly trimmed sums S included the following elegant
analogue of the SLLN. For fixed r > 1,

SO/n—k,—0 as.

for some sequence of constants {k,, n > 1} if and only if ﬂf X J(xytldx < oo,
where 3(x) = P(|X,| > x), x = 0. This shows that by trimming off a fixed
number of extreme terms, the a.s. limiting behavior of S, can be improved
since we may have _ﬁf x"J(xy " 1dx < co when E|X,| = co. Mori [15] general-
ized his work in [14] to allow for a more general norming sequence {b,, n > 1}
instead of only the choice b,=n, n>1.

Following the work of Mori [14], [15], there has been a large literature
of investigation of the strong and weak limiting behavior of trimmed sums;
see, for example, the work of Maller [12], [13], Mori [16], Einmahl and
Haeusler [5], Kesten and Maller [8]-[10], Kesten [7], Pozdnyakov [18],
and Cs6rg6 and Simons [4]. In all of these papers, the summands {X,, n > 1}
are iid.

In the current paper, we extend the work of Mori [14], [15] to the case of
lightly trimmed weighted sums of iid. random variables. We are unaware of
any previous work on the SLLN problem for trimmed sums where the sum-
mands are independent but are not identically distributed. We will show that
we can also improve the a.s. limiting behavior of weighted sums by trimming
off a fixed number of extreme terms. Our methods are analogous to those of
Mori [14], [15]; the authors take great pleasure in acknowledging that the
current work owes much to that of Mori [14], [15].

Assume that {a,, n > 1} and {b,, n > 1} are sequences of constants where
0<b,T . Let

T;l = Z aiXia Tﬁo) = T;n

i=1
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and

TP =Y aX,I(IX| <X =T,— Y a;X: 10X > |XEHY), n>1;

i=1 i=1

ie., T® is equal to T, minus the sum of the X%’s multiplied by their correspon-
ding coefficients for k = 1, 2, ..., r. Adler and Rosalsky [1] provided necessary
and/or sufficient conditions for {a,X,, n > 1} to obey the general SLLN with
norming constants {b,, n > 1}; that is, for the normed weighted sum T,/b, to
converge a.s. to 0. -

For the sequences {c,, n > 1} and {g,, n > 1} defined by

b, b,

=" nz1
n miny <, |ag)’ -

" maXy<,|al’

two main results will be presented. Based on the convergence of

Uj?x'i‘f(C(x))'+1 dx and ojox'i‘i(Q ) dx,

0

where C(x) and Q (x) are extensions of {c,, n > 1} and {g,, n > 1}, respectively,

. we shall provide a sufficient condition in Theorem 1 and a necessary condition

in Theorem 2, respectively, for the stability of the sequence of normed trimmed
sums T¢/b,; that is, for b, ' T®—k, — 0 as. for some sequence of centering
constants {k,, n > 1}. Results of Mori [14], [15] are the special case a, = 1 of
Corollary 1. An example is also given where the conditions of Theorem 2 of
Adler and Rosalsky [1] fail but the conditions of our Theorem 1 hold.

2. PRELIMINARIES

Throughout this paper, let {X,, n > 1} be a sequence of iid. random
variables with common distribution function F and let J(x) = P(X,| > x),
x20. For r>1 and n>r, let X=X, if (X;| is the r-th largest of
[X1l, 1X4l, ..., | X.). More precisely, let M, (j), n = 1, 1 <j < n, be the number
of X;’s satisfying either |X;| > |X|, 1<i<n or |X}| =X, 1 <i<}j, and let
X =X; if M,(j)=r. Let {a,, n>1} be a sequence of constants and, for
n>=1, set

n n
T, = Z a;X;, TE:O) =T, and Tf.') = Z aX; I(X] < fXﬁ,’“)[).
i=1 i=1
Some preliminary lemmas will be established before stating the main re-
sults. The first two lemmas are due to Mori [14] and [15] who stated them
without proof. For completeness we present their proofs.
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Lemma 1 (Mor1 [14]). If 0 < p, < 1, n = 1, and lim,_, , np, = 0, then for
all fixed integers r = 0

> (2) pi(l—p)* ~ l,(np,.)' gs n— .

k=r
Proof. Note that since np, — 0, for arbitrary 0 < ¢ < 1 and all large n we
have np, <& and

BN k+1yq_ k=1
(kH)pn (1‘ D) _ =k, -
k+1)(1—p,)
(¢) a—pye GrDOTR

for 0 < k < n. From Stirling’s formula

n! ~ (ﬁ) 2nn
e
it follows that

ny . n—r n—r
(T) pn(l_pn) = ( )'pn( "'pn)

e © (nfey'/2nn —pr-
ri((n—r)e)’ "/2m(n—r) ! "
— (np")r (n (1 _p")>n—r L ~ M
n

rle n—r —r rt

Then for all large n

D (Z)pﬁ(l—pn)""‘< g ( )p,.(l —pa) T

(p,. g _ (LHo W) mp)
= (1+oM)=5™ Z - (1-9r!

Since 0 < & < 1 is arbitrary,

Py < )p,.(l o)
hIanScE P (np,)/r!

<1
On the other hand,

o Zk r< )pn(l pn) <:l)p;(1_pn)n—r
i RS 3‘»‘2 oy

and the result follows. =

=1
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Let {c,,n>1} be a sequence of positive constants satisfying for some
ae(0, 2)

(1)

c c
—T and sup =2 < oo
n

nz1l “n

and set co = 0, hg =0, h, = c,/n'’*, n > 1. Let H(x) be the continuous exten-
sion of the {h,, n > 0} defined by linear interpolation between integers; that is,

H(x)={hy+1—h)(x—n)+h, for0<n<x<n+l
and define -
) Cx)=x"H(x), x=0.
Properties of the function C(x) are spelled out by the ensuing lemma.

LEMMA 2 (Mori [15]). Let {c,, n = 1} be a sequence of positive constants

satisfying (1) for some «€(0, 2) and define the function C as in (2). Then C is an

absolutely continuous strictly increasing function on [0, co) with C(0) =0,
Cm)=c,,n=1, and

C(x)

_ C(2x)
3 — d } 0 d
3) i is nondecreasing on (0, c0) an :>0 c® < 0
Proof. Only the second half of (3) needs verification. For x > 1, let n be
such that n < x <n+1. Then
C(2x) < C(2n+2) < C(2n+2) C(2n)
Cx)  C@m — Cm+l) Cm’

and so, by (1),

o C2)
o CH)

It is easy to see that supy«,<; C(2x)/C(x) < o0, and hence

supC(2x)/C(x) < 0. m

x>0

For a sequence of positive constants {c,, n > 1} satisfying (1) for some
ae(0, 2), throughout the rest of this paper we define the function C(x) as
in (2).

LemMA 3 (Mori [15]). Let {c,, n = 1} be a sequence of positive constants
satisfying (1). Then for all fixed integers r 2 0 and for every ¢ >0

P{X¢*V > c,e i0.()} =0 or 1

according as the integral |, x"3(C (x))r“dx converges or diverges.
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In Lemmas 4, 7, and 8 we impose the condition
) J is positive and differentiable on [0, o0).

Theorem 1 will initially be proved assuming (4) but then this assumption will
be removed.

Suppose {c,, n = 1} satisfies (1). Then, according to Lemma 2, the function
C(x) is absolutely continuous and strictly increasing on [0, o0) with C (0) =0,
C(n) = ¢, for n = 1 and satisfies (3). Since C(o0) = o0, the inverse function D of
C is also absolutely continuous and strictly increasing on [0, co) with D(0) =
and D(w)= o

Let ¥ (x) = /D (x)/3(x), x = 0. Under the assumption (4), i is absolutely
continuous and strictly increasing with i (0) = 0 and y (00) = co. Hence the
inverse function ¢ of y is also absolutely contmuous and strictly increasing
with ¢ (0) = 0 and ¢ (c0) = c0. If [ x rF(C(x)) "' dx < oo, then since J(C)N.,

we have
x\ ! r+1 | r+1 X
() stcwr = (5) scor (x-3)
< I't'S(C(t))'Hdt—»O as x — 0,
x/2 .
and so
5 xJ(C(x))»0 as x>

implying by replacing x by D(x) that
b _ 1
D(x) . /D(x)3(x)

= 0 as X — 00.

Hence we have

o) _ ¥y c(ow) _ (D )
€K Ccwo) cwo) o)
where y = @(x) - 0. Note that the inequality holds by the first half of (3).

The next lemma is a slight modification of Lemma 7 of Mori [15], and its
proof can be omitted.

(6)

1/a
-0 as x— o0,

LEMMA 4. Assume that the condition (4) holds and the sequence {c,, n = 1}
satisfies (1). Let ¢ (x) be defined as above and let N, = #{j: ¢(2") <X},
2™, m=11If
) {x3(C (x))'+1 dx < 0  for some integer r = 0,

0

then P(N,, > 2r+2 i.o.(m)) =0
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In the next lemma, let u(S,) and u(M,) denote any median of S, and M|,
respectively.

Lemma 5 (Stout [20], p. 158). Let {Y,, n > 1} be a sequence of independent
random variables and {b,, n = 1} be a sequence of constants with 0 < b,T co.
Suppose there exist constants ¢ and d such that 1<c<d< oo and
¢ byri/byp<d, k= 1. Let §,= Z,i'=1 Y,n=1, and

Mk = (Szk—Szk—i)/bzk, k 2 1
Then

Sn —H (Sn)

b, -0 as.
if and only if

Y P(My—pMy)|>¢e)<oo for all 6> 0.
k=1

LEMMA 6 (Prokhorov’s inequality [19]). Let Y, Ya, ..., Y, be independent
mean O random variables such that | Y] < ¢, 1 < k < n, for some constant ¢ < oo
and let S=Y,_ Y, and 6> =Y, _ EY}{. Then for all ¢>0

PS>=e< exp(—%sinh"l%).

LemmA 7 (Mori [15]). Assume that (4) holds and that the sequence
{ca, n = 1} satisfies (1). Let ¢ be defined as above. If (7) holds, then

O 8

X" 3D (@) dx = L [ x3(CH) " ax.
’ T+1 0 '

Throughout the rest of the paper, let {b,, n > 1} be a sequence of constants
with 0 < b,1 oo and define the sequence {c;, n > 1} by ¢, = b,/max,<,|@|, n > 1,
.and the sequence of blocks of positive integers {I,,m >0} by I,=
={n:2"<n< 2"} m>0.

LeMMA 8. Assume that (4) holds and the sequence {c,, n > 1} satisfies (1).
Suppose that there exist constants ¢ and d such that 1 <c<d< oo and
¢ < byx+1/by < d, k = 1. If (7) holds, then there exists a sequence of constants
{ky, n = 1} such that

1 n
B Y a; X;1(X} < @())—k.—0 as.
nj=1

Proof. Let X5 be a symmetrized version of X;I(|X;| < ¢(j)),j > 1. Then
EX5=0 and |X} < 2¢(j) and it suffices to show that

1 n
— Y a;X5-0 as.
by &
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By Lemma 5, this is equivalent to

Y P(Y a;Xi>¢bym)<co foralle>0
m=1 jelm-1
since the {X3,j> 1} are symmetric.
For jel,_;, we have E(X3)* < 2E(X?1(X} < ¢(j))) and

D(p(2™) nz o 2D(027) e,
2™ (max;<om |aj|)2(p(2m)2 jerg:‘,lE(aJ XID < 2m§0(2m)2 jeg_,( — g t*d3 (t))
_22@Q") -1y " _D@@),_2x0ypem, 077
= o m1(— g 2d3 () = 0@ (—23@Ee™+2 g t 3(t) dt)
;D;?T%?(—(p(zmy I(e (2“))+2¢(Im)t3(t) dr)
@(2m) ' m\ o(2m)
= D))+ 2LV T s a = o)+ 22 ))q’(f) 30t

by (5) with x replaced by D (t). Note that since /D (£)!/* is nondecreasing, we
have D (¢ (2™)/o(2™)* < D(t)/t* whenever 0 < t < ¢ (2"). Moreover, for arbi-
trary 6 > 0, condition (5) (with x replaced by D (t)) ensures that there exists
to > 0 such that D(t)3(t) < o for t > t,. Hence, for all large m,

m) 9(2m) o2™ [ (2M\e
e | o< o (47 osoa
2 o(2™)

H 26
—_— 1-a 1-a
< (D(zm)z——a [D (to) _(‘; t dt+ 0 2‘; t dt] < 0(1)+—2_u_

Since d > 0 is arbitrary, we have

%}%:_)) MZM) t3I(@)dt — 0,
and hence
2_ (2" (2") (max;<om Iajl)z)
8 El(a; X5 = .
( ) jEI§_ ) (aJ J) o ( D ( ® (2m))

By Lemma 6, for m> 1

P( Y a;X5>ebm) <

Jjelm -1
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< exp (— _ ebym sinh~1 ebym 20 (2™) - MaAXj< om |aj|)
2:2¢(2")- max;<;maj 2 ) E(aX)
jelm—-1

= cxp(—_sg(_zimsinh—lsbz""%ﬂ(z ) MaX;g pm Iajl)
2-2(p(2 ) 2 Z E(an:;z
jelm-1
(i) Suppose, for every m > 1,
1Ebam 20 (27) max;<omla 4 -
2 Z E(an§2 oy

Jelm—-1

sinh~

Then we easily see that

® eC2™ . _ sbzm-Zqo(Z’")-max-szmlaﬂ)
_ h-1 J
Ele"p< 229027 2y E@X)

jEIm—l

[ C(zm) 00 (p(zm) 2a(r+1)— © 1 (P(2m) 2a(r+1)
<3 ov(—gom)< 2 &) =Lz 7=(Gm)

m m=1 m=1nelm—

-] 1 2a(r+1) ml 2a(r+1)
< const- Y. —(M) < const- | _(rp_(x_)) dx

= n\Cn) 0 X\C(x)
< const - Ti_(@)(lla).z‘zb+ l)dx (by (6))

=const: [ x " 3D(p(x))""*dx <o (by (7) and Lemma 7).
0

(i) Suppose, for every m > 1,
sinh -1 ebym* 200 (2™)  max;<,m laj i
2 Y E(a;X9)* &
Jelm—1
Now, for any constant a > 0 there exists a constant k such that sinh ™! x > kx
for 0 <x < a, and so :

sinh~* ebym 200 (2™)  max;<,m|aj] sbym ',2(” (2™): max;<,m|ajl
2 ) E(aX)* 2 Y E(a;X)*

Jelm-1 Jelm-1

gbym* 200 (2™)  max < mlay
2-2" @ (2")? (max;<2m lay))*/D (o (2™)

. C2")D(p(2™)
= ke ——————qu)(zm) .

(by (8)

11 — PAMS 231
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Thus
i sC(2™ . . _ sbzm-2q9(2"‘)-max-<2m|a-|)
exp{ ———————sinh~?! 4 !
m; p( 2-2¢(27) 2 Y E(a; X9)*
jelm~1

© )C2™ . CMD(p(2)
Sm;exp('z-zfp(z'") ke o2 )

ks® _C(zm)ZD(qa(z"')))] -
1""[4( 2o 2"

< (k—sz)h(r+ 1/(2—a) i ( om (p(zm)z )2a(r+ 1)/(2—a)
4 C2"y’D(g(2")

© ( 2m ) (2m)2 )2a(r+ D/2-a)
C@2"D(e2m)

|
M8
[¢]

Ed
I

m=1

= const-
m=1

<const- ) ) H(C(n)z D(e (n)))

o0 2a(r+1)/(2—a) 2-2a(r+1)/(2—a)
< const- | l(_x__) ' (ﬂ@) dx
0 X\D (9 (x)) C(x)

o} 2a(r+1)/(2 —a) (2/2)-2a(r+1}/(2—a)
< const- jl( X ) (M) dx  (by (6)
o X\D (QD (x)) x

m=1 nelpm-1

)2r+2

< const- [ x 273 D(o(x) dx <o (by (7) and Lemma 7).
[¢]

Consequently, we have

Y P( Y a;X5>ebym)
m=1

Jjelm-1
© my\ 2a(r+ 1) 0 m 2 2a(r+1)/(2—a)
<Y (—(p(z )) +const- Y ( 2”927 ) < 0,
m=1\C(2") m=1\C(2"? D(p (2™)

completing the proof of the lemma. =

LEMMA 9. Let {{,, n = 1} be a sequence of i.i.d. symmetric random variables
with E|(;]* < oo for some a€(0, 2). Let {a,, n = 1} and {b,, n > 1} be sequences
of constants satisfying 0 < b,Too and

® Anfby = O (n™11%.
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Then
1

(10) b—ZajCj—»O a.s.
nj=

Proof. Apply the same argument that Adler and Rosalsky [1] used to
prove (20) of their Theorem 2. m

3. THE MAIN RESULTS

With the preliminaries accounted for, the first main result, Theorem 1,
may be established.

THEOREM 1. Let {a,, n > 1} and {b,, n > 1} be sequences of constants where
0<b,t0 and by, =0(b,). Let ¢, = b,/max,<,lay|, n = 1, and suppose that
{cn, n = 1} satisfies (1). If

r+1

(11) [x3(C(x)" dx <oo for some integer r >0,
0

then there exists a sequence of constants {k,, n > 1} such that
(12) TO/b,—k,— 0 as.
Proof. Note at the outset that the first half of (1) ensures that

inf b,,/b, > 1.

nz1
Hence in view of b,, = O(b,) we have
13y 1 < inf by,/b, and supb,,/b, < co.
nz1 n>1
We initially assume that (4) holds. By (11) and Lemma 3,
P(X$*Y > cpe i0.(n)) =0  for every &> 0.

Then, with probability 1, for all large n
T 1 rmax;<,lajl c, e
TS XL < ) < sl G
n nj=1 n

Now, for every & > 0 it follows from (6) that we can choose I; = [, (¢) such that
@ (n) < c, & for n = 2", Then for all large n there exists an integer m > I, such
that nel,, and {9 (0), (1), ¢(2), ..., (2, ..., @(2™), ¢, &} induces a partition
of (0, c,e]. Thus, for j=1,2,...,n, we have

X;1(X) < c8) = X,(I(0 < 1X) < 9 (1)) + Sf(co(Z"‘l)S X} < 0(2))

+1(p 2™ < Xl < cre)).
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Hence

1 1s

b z aJX I(IXJI <c g) Z a.‘.X I(|X]| (P(]))

n = nJ 1

maX;<,|a; . m j
g__;):ﬁcus.#{]; Q2™ < IX) < a8, 0 () < X}
max;g ~_n a; ) i- i j

Snnax;-)snltbl 6N+ 2%6\_"‘?1' (2)-N;_;.

By Lemma 4 we see that P(N; > 2r+2 i.0.(i)) = 0. Then, with probability 1,
there exists a (random) integer I, such that N; <2r+2 for all i >1,. Let
I =max{l;, I,}. Then, with probability 1, for all large n

1 Z a; X;I(X} <c, .*3)—l Y a; X;I(X)] < (p(j))\

"11 "11

-1 e lal
meltle r 0+ 3 P @) @reo+ 3 mak<el8] o .
] 1 n i=1 n

¢@)?2:wm
centt T ecen

<

<er+2)+Q2r+2) Z

_ com cemy. @), Tile@
<(@2r+2)e (1 C(2"‘)+ co "'+C(2"')) 2! com

where, recalling (1),
C(") e =2 la - E
C (2n) 4

Choosing the (random) integer m such that C(2™) > 2! Z:: o (2)/(2r+2)e, we
obtain with probability 1, for all large n,

2 1Z%XI( X < (P(J))’

bn_; 1

< (2r+2)8(1+1+%+(%)2++(%)m_l> C(IZ"’)2I Z (D(Z‘)

<6(2r+2)e.
Thus, since ¢ is arbitrary, (14) and (15) yield

O 10
A ZaXI(IX,I @(j)) =0 as.

(15)

Zla,X (X < cpe)—

".l

nj=
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Now, by (13) and Lemma 8, there exists a sequence of constants {k,, n > 1}
such that

51_ Z} & X, 1(X,| < 0(j))—ks > 0 as.

Thus we have proved assuming (4) that the conclusion (12) holds.

We now remove the assumption (4). This will be accomplished by purtur-
bing each X; by an independent continuous random variable (;, applying the
part of the theorem already proved with the assumption (4) to then arrive at
(16), and finally verifying in (20) that the {; have a negligible effect. Again, by
(11) and Lemma 3, for every & > 0, P(IXY{* Y| > ¢,¢ i.0.(n)) = 0. Let us set

Cf= }/al(€j>0)—|€j|1/a1(£j<0)2 .]; 19

where ae(0, 2) and {£,, n > 1} is a sequence of ii.d. normal random variables
with E¢; = 0, E&2 = 1 and such that {£,, n > 1} is independent of {X,, n > 1}.
Then we see that each (; is symmetric with E [{;|* = E(|¢|"*)* = E|¢ ,I < 0. Let
Y,=X;+(;,j=1 Put I'(x) =P(Y] >x), x>0,and U, = Z 1,
and define UY in a similar way to T®. Since E|(}* < oo, we have
Z _, P > j”“ ¢) < oo for all ¢ > 0, which ensures by the Borel-Cantelli lem-
ma and (1) that for all ¢ >0 there exists a random integer n, such that
IK] < c1jY e < c,e for all n>j>ny. Thus, there exists a random integer
Ny = no such that |l <c,e for all n> Ny, and all 1<j<n Hence, if
|YS* D] > 2¢,¢ for some n > Ny, ie, if |V > 2c,¢ for at least r+1 integers
je[l, n], where n > N, then we have |[X¢*Y| > c,e. Thus

P(YS™ Y > 2¢,¢ i0.() S P(XEHY| > cpe 10.(n)) =0

and [;'x"I'(C ) " dx < 0o follows from Lemma 3.

Since I satisfies (4), we have by the portion of Theorem 1 already proved
that

(16) U ba—ky >0 as.
for some sequence of constants {k,, n > 1}. Moreover,
() U= TO <5 U= i+ (U= U~ (- T9)

1
b >, a;¢j

nj=1

+bil(U..—U£.")—(Tn—Ts")i.

Since, recalling (1),
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it follows from Lemma 9 that
1 n
(18) b_ Z {;—0 as.

Note that

T,—TO =5 a;X;1(X}| > | X ¢+
S
and

U,—UY =} a;GI(Y} > |Y5*Y).

i=1

Now for all large n and 1 <j<n:
() If V;=X;4+{;=Y®, where 1 <k <rand X;= X with h >r+1,
then

Y9 < IXTHO1+10] < 2ene,
whence
&y GIAY) > Y O)—a; X1 (X, > IXE V)| < 2lajlcue.
(i) If ¥; = X;+{;=Y®, where l <k <rand X;=XP with 1 <h<r,
then
|aj YjI(|Yj| > [Yg+1)|)_anjI(|Xj|.> |X.(»;'+1)|)| = |aj| 1§51 < |ajl (:2
(iii) If Y; = X;+ ;= Y®, where k > r+1, then |X;| <|YT" V| +I{}] < 2¢,
whence
|aj VGI(Y > |YS* ) —a; X;1(X)| > |X5n'+1)|)| < 2lajlcpe.
Since
|a; GIQY) > |YS* V) —a, X, 11X, > | XS] >0

for at most 2r values of je{l, 2, ..., n}, we have for all large n
1
(U~ U)~(L=TY)

(2r)(2max <nlajcae) (2rymax;<,lajc,e (2r)(2max;<,laj ¢, €)
b, b, b,

= 10re.

Since &> 0 is arbitrary,

(19) by (U= U —(T,—TP) >0 as.
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Thus, by (17)19),
(20) by LlUP—TH -0 as.
Hence by (16) and (20) the conclusion (12) holds. &

Remark. Since C(x)/x'/* is nondecreasing, C (x) < eC (x/&%) for x > 0 and
0 <& < 1. Then, by (11),

jx I(eC(x/e9) " dx < Tx'S(C(x))’“dx < o,
0

and so, by a change of variables,

[ %" 3(eC ) dx < oo

0
Then, arguing as in the proof of (5), we obtain xJ(eC(x)) — 0 as x — co. Then,
by applying Lemma 1, we obtain for all k> 1 and 0 <e< 1

P(XP| > c,0) =), (7)5‘5(@, ey (1 -S(c,,s))"_j ~ %(nﬁ(c,, e))k -0 as n— 0.

i=k
Thus |X®)/c, 50 as n— oo for all k> 1, and therefore

T(r) <
ZaX —k, Lk, +wz [ X%
nJ 1 bn bn
T(r)
= —k, + Z 1IX® 5 0.
bn ﬂk 1
Hence, recalling (1), the sequence {k,, n > 1} can be chosen as
1 n
k,,=l—7—ZaEXI(|X b,ja), n=1
nj=1

(see Chow and Telcher [31, p. 356). In particular, if E|[X,| < oo, then we can
choose
EX, &

a; n=1.
b" jgl 1

kn =

The next main result, Theorem 2, is a converse to Theorem 1. Let

b,

qp=——""—"", n=1l.
min <, |

Now, if for some aec(0, 2) {g,, n > 1} satisfies

21) 4+ and  sup 2 < oo,

1/a
n/ nz1 qn
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then as in (2) and Lemma 2 we can define an absolutely continuous strictly
increasing function Q on [0, o0) with Q(n) = g, for n =1, 2, ... and satisfying
for some ae(0, 2)

2(x) . 0 (2x)
T is nondecreasing and :1:13 00 <

Note that if the first half of (1) holds, then the first half of (21) also holds.

TueoReM 2. Let {a,, n > 1} and {b,, n > 1} be sequences of constants such
that ¢, = b,/max, <, |a|T o and gn = b,/ming <, la|, n > 1, satisfies (21). If

22)

(23) T®O/b,—k,— 0 as.
for some integer r >0 and some sequence of constants {k,,, n> 1}, then
(24) [ 3(Q@M) ™ dx < 0.
(4]
Proof. If r =0, then since ¢, oo, we have
ay, 1 P
(Z a; X;— 2 a; X)) = 5 Xnl S IXl 0.

Hence, by (23) (with r =0) and b,T,

bk bt (k"_5>+b,_1<:rn_1_kn_l>+T,.—Tn_l50_

bn bn bn bn -1
Thus k,—k,—1b,-1/b, —0 and again using (23) we obtain

an _7;.—7;.—1_7:: by—1(Th-1
bn)('l B bn B bn kn bn <bn—1

Then

b,-

—kn—1>+kn_kn—1 -l

b, -0 a.s.

i P(|X,] > b,/a,) <

n=1

follows from the Borel-Cantelli lcﬁlma. Moreover, -

b, b
X, > Pl |X,|> < 00,
(l | min, <, |a kl) g (l ol )

and then, by the Borel-Cantelli lemma and Lemma 3 (with {c,, n > 1} replaced
by {g.,n>1} and C(x) replaced by Q(x)), we have

[v]s

n=1

J(Q(x))dx < .

Q ey, 8
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Next, suppose r > 1. Then

(25)
max |ay - min {| X, 1 4], 1XO) =TS, —TO| > ,ff’ifl |a| - min {| X, 4, 1IXP[}.
=n

=n

Hence _
(26) bty TS — T 5 0.
It follows from (23) and (26) that
bn -
kyi1—k b —0.

Applying this to (23) again gives
1

bn+1
Suppose that ([ x"J(Q ()" P dx = co. Then, by Lemma 3,
P(X$*Y > Q(n)e io.(m) = 1.

(27) |ITS , — T -0 as.

Let r+1 < n; < n, <... be successive indices n with [XU}Y| > |XE+Y. Tt is
easy to see that |X, . > |X$*"Y| and

XG4 = min (X, 4], 1XO).
Furthermore, [|X{*V] > Q(n)e io.()] = [IX$ 1Y > Q(n;+1)e io.(j)], and

hence P(IX$4 Y| > Q(n;+1)&1io0.(j)) = 1. Thus, recalling (25), with probability 1,
for infinitely many j we have

1 1
XCED > ————— O+ 1)e =e.
b"j+1 | 'lj+1| Q(nj+1)Q(nJ+ )8 €
Hence P(ITY,;—TP| = b,41¢ i.0.(n)) = 1, which contradicts (27). m

Combining Theorems 1 and 2 yields the following corollary.

mink<n,+1 laxl

(T, T8 > T
nj+1

COROLLARY 1. Let {a,, n > 1} be a sequence of constants such that \a,| is
bounded from above and bounded away from 0 and let {b,, n > 1} be a sequence
of positive constants such that for some ae(0, 2)

b b
(28) —1 and Sup—* < 0.

n* nz1 On
Let B(x) be defined in a way determined in (2). Furthermore, let
¢, = b,/maxy<,|ay, n = 1, be such that c,/n'*1. Let r be a nonnegative integer.
Then there exists a sequence of constants {k,, n > 1} such that

29) | TO/b,—k, >0 a.s.
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if and only if
(30) Tx'S(B ) dx < .

Proof. It follows from (28) that b,,/b, > (2n/n)*/* = 21/* > 1, n > 1. Note
that for all & > 0 the condition (30) is equivalent to

(31) })x'S(B(x)e)'de <o
o _

since by (28) and Lemma 2 we have B(s*x) < ¢B(x) < B(x) if0<e<1 and
B(x) < eB(x) < B(¢*x) if ¢ = 1. Suppose 0<m<|ak|<M< 0, k = 1. Then,
for all n>1,

b, b,
> "

=" > b, < 2’1
maxg<, g = M

and =
T miny <, [l S m

Moreover, c,/n'/*t and (28) ensure that {c,, n > 1} satisfies (1) and {g,, n > 1}
satisfies (21). Since (31) with ¢ = 1/M guarantees that

jx I(CE) dx < Tx'S(BA(/I))erx < o0,

the sufficiency part follows from Theorem 1.
Conversely, suppose that (29) holds. Then, by Theorem 2,

Tx’S(M)rﬂdx < ]'Ox'S(Q(x))erx < o0,

0 m s
proving (31) with ¢ = 1/m, and hence (30) holds. =

The work of Mori in [14] and [15] follows from Corollary 1 by taking
a, = 1.

In Example 3 of Adler and Rosalsky [1], it is shown for an arbitrary
sequence of i.i.d. random variables {X,, n > 1} with E|X,| < oo that if g, = 1
or 1/n according to whether n is odd or even and b, =n, n> 1, then

1 n
— Z aJ(XJ_EX]_) -0 as.
bn j=1
Note that in this example we have ¢, = n, n > 1, and so (1) holds with o = 1
and b,, = O(b,) also holds. Suppose

x>e, where0<f<1

Then E|X,| = oo (hence Example 3 of Adler and Rosalsky [1] is not applica-
ble), but f; x" I (x)"** dx < oo for all integers r > f~*—1. Applying Theorem 1
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we thus obtain, for all integers r > =11,
T®/b,—k, >0 as.

for some sequence of constants {k,, n > 1}. This example shows that Theo-
rem 1 can indeed be applicable when E|X ;| = oo thereby characterizing the a.s.
limiting behavior of the lightly trimmed sums T®. Moreover, it follows from
Theorem 2 with r =0 that there does not exist a sequence of constants
{kn, n > 1} such that b, ! T,—k,— 0 as.

Acknowledgements. The authors are grateful to the referee for careful
reading the manuscript and for some very perceptive and substantial comments
which enabled them to improve the paper. The research of Tien-Chung Hu was
partially supported by the National Science Council, Taiwan, under Contract
Number 90-2118-M007-003.

REFERENCES

[1] A. Adler and A, Rosalsky, On the strong law of large numbers for normed weighted sums of
iid. random variables, Stochastic Anal. Appl. 5 (1987), pp. 467—483.

[2] V.Barnett and T. Lewis, Outliers in Statistical Data, 2nd edition, Wiley, Chichester, Great
Britain, 1984.

[3] Y.S.Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martin-
gales, 3rd edition, Springer, New York 1997.

[4] S.Cs6rgd and G. Simons, A strong law of large numbers for trimmed sums, with applications
to generalized St. Petersburg games, Statist. Probab. Lett. 26 (1996), pp. 65-73.

[5] J. H. J. Einmahl and E. Haeusler, On the relationship between the almost sure stability of
weighted empirical distributions and sums of order statistics, Probab. Theory Related Fields 79
(1988), pp. 59-74.

[6] W. Feller, An extension of the law of the iterated logarithm to variables without variance,
J. Math. Mech. 18 (1968), pp. 343-355.

[71 H. K esten, Convergences in distribution of lightly trimmed and untrimmed sums are equivalent,
Math. Proc. Cambridge Philos. Soc. 113 (1993), pp. 615-638.

[8] H. Kesten and R. A. Maller, Ratios of trimmed sums and order statistics, Ann. Probab. 20
(1992), pp. 1805-1842.

[9] H. Kesten and R. A. Maller, Infinite limits and infinite limit points of random walks and
trimmed sums, Ann. Probab. 22 (1994), pp. 1473-1513.

[10] H. Kesten and R. A. M aller, The effect of trimming on the strong law of large numbers, Proc.
London Math. Soc. 71 (1995), pp. 441-480.

[11] P. Lévy, Propriétés asymptotiques des sommes de variables aléatoires indépendantes ou en-
chainée, J. Math. Pures Appl. 14 (1935), pp. 347-402.

[12] R. A. Maller, Asymptotic normality of lightly trimmed means — a converse, Math. Proc.
Cambridge Philos. Soc. 92 (1982), pp. 535-545.

[13] R. A. Maller, Relative stability of trimmed sums, Z. Wahrsch. Verw. Gebiete 66 (1984),
pp. 61-80.

[14]1 T. Mori, The strong law of large numbers when extreme terms are excluded from sums,
Z. Wahrsch. Verw. Gebiete 36 (1976), pp. 189-194.




172 Tien-Chung Hu et al.

[15] T. Mori, Stability for sums of iid. random variables when extreme terms are excluded,
Z. Wahrsch. Verw. Gebiete 40 (1977), pp. 159-167.

[16] T. Mori, On the limit distributions of lightly trimmed sums, Math. Proc. Cambridge Philos.
Soc. 96 (1984), pp. 507-516.

[17] S. V. Nagaev, On necessary and sufficient conditions for the strong law of large numbers, Teor.
Verojatnost. i Primenen. 17 (1972), pp. 609-618 (in Russian). English translation in: Theory
Probab. Appl. 17 (1972), pp. 573-581.

[18] V.1 Pozdnyakov, On the strong law of large numbers for reduced sums, Vestnik S.-Peter-
burg. Univ. Mat. Mekh. Astronom., vyp. 2 (1994), pp. 20-25 (in Russian). English translation
in: Vestnik St. Petersburg Univ. Math. 27, No. 2 (1994), pp. 16-20.

[19] Yu. V. Prokhorov, An extremal problem in probability theory, Teor. Verojatnost. i Prime-
nen. 4 (1959), pp. 211-214 (in Russian). English translation in: Theory Probab. Appl. 4 (1959),
pp. 201-203. .

[20] W. F. Stout, Almost Sure Convergence, Academic Press, New York 1974.

Tien-Chung Hu and Chiung-Yu Huang Corresponding author:
Department of Mathematics Andrew Rosalsky
Tsing Hua University : Department of Statistics
Hsinchu University of Florida
Taiwan 300, R.O.C. Gainesville, Florida 32611, U.S.A.
E-mail: tchu@math.nthuedu.tw E-mail: rosalsky@stat.ufl.edu

Received on 2.7.2002;
revised version on 24.2.2003




