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Abstract. Let X, n = 1, be a sequence of independent and iden-
tically distributed random variables and X, ; < X,, <... < X,,, de-
note the order statistics of X;, ..., X,. For any sequence of integers
{k,} with 1 < k, < n and lim,_, ,, min {k,, n—k,+ 1} = oo, if there exist
constants a, > 0, b, € R and some non-degenerate distribution function
G such that (X, ,,—bn)/a, converges in distribution to G, then with
probability one

1 X1 /X, —b,
- vn < = fi 1 c(6),

where C(G) is the set of continuity points of G.
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1. INTRODUCTION

Suppose we have a sequence of random variables {W} which converges in
distribution to a continuous random variable W, ie., W, S Wasno . Many
authors have investigated almost sure versions of distributional limit theorem.
One particular version is the following result:

lim 1
N—-wo IOgN

L I(W ZPW<x) for all x,

where I () denotes the indicator function. For example, Brosamler [4], Schatte
[11]-[13], Lacey and Philipp [10], Berkes et al. [3] among others studied the
case where W, means the normalized sums of random variables. For the case
where W, means the maxima of i.i.d. random variables, we refer to Cheng et al.
[5], [6], Fahrner [7], [8], and Fahrner and Stadtmiiller [9]. A general method
for dealing with logarithmic means is given by Berkes and Csaki [2].
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Recently Stadtmiiller [14] studied the case where W, is order statistics.
More details are as follows. Suppose {X,} is a sequence of i.i.d. random varia-
bles with common distribution function F. Let X, ; <... < X, , denote the
order statistics of X4, ..., X,.

Throughout this paper we assume that {k,} is a sequence of integers
satisfying 1 < k, < n, and there exist constants a, > 0, b, and a distribution
function G such that

Xn,n—k,._bn

(1.1) lim P( < x) =G(x) for all xeC(®),

where C(G) is the set of continuity points of G. Assuming that either
(12) k,foo, k/n—>0, logk,=O0((logn)'~*) for some &> 0,
or

F has a differentiable density at pe(0, 1),
(n—k,)/n= p+0(1/\/1?1_ong) for some &> 0,
Stadtmiiller [14] showed that

(13)

1 Y1 /X,..—Db
1.4 lim i L P R ¢ .
(14) N-wxlogN ,Z:ln ( a, x) () for any x

In this paper we show that (1.4) holds under the following condition:
(1.5) min {k,, n—k,+1} >0 as n- oo,

which is weaker than the conditions (1.2) and (1.3); see Section 2 for our main
results. All proofs are deferred till Section 3. A joint distribution of order
statistics from nested samples is given in the Appendix, which may be of in-
dependent interest.

2. MAIN RESULTS

We first investigate the case of uniform order statistics. Let {U,} be a se-
quence of independent random variables with a uniform distribution over (0, 1),
and U,; < U,, <... < U,, denote the order statistics of U, ...,U, Through-
out this section we assume that (1.5) is true. Hence

(2.1) lim P(-U""‘;—"d" < x) = ®(x)

= ——l——exp(—y2/2)dy for all xeR,
- yis

where ¢, = /k,(n—k,+1)/n*? and d, = k,/(n+1).
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Our first theorem is the almost sure version of the distributional limit
theorem for uniform order statistics.

THEOREM 1. With probability one,

lim — il V=l =d(x) for all xeR
N""OlogNn 1n Cn SY)T .

Next we state the almost sure version for general order statistics.

THEOREM 2. Suppose there exist constants a, > 0, b,€ R and a non-degene-
rate distribution function G such that

2.2) lim P(X"’ka;_b" < x) =G(x) for all xeC(G).

n—*w

Then

nkn bn a.s.
(2.3) 13111:0 loganlnI( - x)-G(x) for all xeC(G).

The condition (2.2) plays an essential role in the theorem. However, the
discussion for the convergence of (2.2) is more complicated. We are not going
further in this direction but will give some examples.

Besides the uniform distribution in Theorem 1, many distribution func-
tions, for example, exponential and Gaussian distributions, are such that (2.2)
holds under (1.5).

ExampLE 1. Let F(x) =1—e™* for x > 0. Then (2.2) holds with

_ n—k,+1
S+ )k,

b, = logki and G=4¢.

Thus

. 11( i — 108 (1/ky)

1\}1—1»13310gNn=1n <x)a.=s. &(x) for any xeR. . 1

=
J(n—k"+1)/(n+1) Ky
For central order statistics X, with k,/n—pe(0, 1), a very weak con-
dition is needed to guarantee (2.2).

ExampLE 2. For pe(0, 1) define £, = F~ (p), where F~ denotes the gene-
ralized inverse of F, as in the proof of Theorem 2. If F is differentiable at £, and
F'(£,) > 0, then

F'(é,»f } )
nk,._F kn )< _)Q
( »(—p) /) <x )~ 2 )
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under the condition k,/n — p. Therefore,

lim L s ll(w(Xn,knwF_ (kn/n)) < x) = @(x) for any xeR.

N—wlogN , Zin /p(1—p)

3. PROOFS

First we list some notation and two lemmas. For integers 1 < n < m let
U (j; n: m) denote the j-th smallest order statistics of Uy, Uy+y, ..., Up. For
convenience, let us set U(j;n:m)=0 if j<O0, and U(j;n:im=1 if
j>m—n+1. Note that U,; = U(j; 1:n) for 1 <j<n. Let [x] denote the
integer part of x. For any n <m, let us set l,, = [nk,/(m+1)] and define
Vin+1,m) = Ukp—lpn; n+1:m)
if min {k,,, m—k,+1} > (logm)?, and

V(n+1,m)={U(k"';n+1:m) 1f kn < (logm)?,
Ukp—n;n+1:m) if m—k,+1 < (log m)?
(in either case, min {k,, m—k,+1} < (logm)?).

LeMMA 1. If n < mflogm)? and min {k,, m—k,+1} < (logm)?, then
2nmin {k,, m—k,+1}

1 - <
(3 ) E |Um,km V(n+ 1’ m)l (m+ 1)2

for m large enough.
Proof. Note that
Ukw—n;n+1:m) < Uy, < Ulky; n+1:m).

If k,, < (logm)?, then V(n+1:m) = U (k,, n+1:m). Since n < m/(logm)* im-
plies lim,,- ., (n/m) =0, we have, for large m,

km  km _ 2nky
m—n+1 m+1  (m+1)7

ElUp,—Vn+1, m)| = E(U(kp, n+1:m)—Upny,) =

(we refer to the Appendix for the calculation of the expectation of uniform
order statistics). Similarly, if m—k,+1 < (logm)?, then for large m

3 gy Km  km—n
E|Uns, =V @41, M) = E(Upjp = U lkm—m; nt Lim)) = = —
2n(m—k,+1)
(m+1)*

Hence the lemma follows.
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LeMMA 2. If n < m/(logm)* and min {k,,, m—k,+ 1} > (logm)?, then

nk,(m—k,+1) 4
(m+1)* m+1

(3.2) E{Upk,—V(n+1, m) s

for m large enough.

Proof. Note that (V(n+1, m), Uy,,,) has the same distribution as
(Um=ntn—tmn> Umpky) 10t case min {k,,, m—k,,+1} > (logm)>. By applying Theo-
rem 3 in the Appendix with s=m—n, t=n, i=k,—1,,, j=k, and
g(x, y)=|x—yl we get -

E\Ung,,—V(n+1, m)| = E|Un-nim-tsm— Unminl

n.1

= X JEM(1 =Vt tk-1.4)
k=00

—lmn

n
F (1 —u) Vit + Loan = kb — k| Sn—Jem — Lo (4) (k) u*(1—u)""*du

n 1
Z _fE (3= Vi = Lo 4k~ 1, k) Wfen— nk,,.—z,,.,.(u)( )uk(l—u)"_kdu
)

k=0

+ ijE e + =yl — (L — ) frn = nkm—lm,.(u)() u (1 —u)*"*du,

where f;,(u) is defined in (A1) below. Note that n < m/(logm)? implies that
kw—Ilps >0and m—k,+1,,—k >m—k,+1,,—n>0when0 < k <nand mis
large enough. Hence for large m we have

k—lun k—lnn
E(I_Vk,,.—lm,.+k—1,km)_k l,,,,,-l—k v . Ik > 1)
and
lun—k Lun—k
_ — - =_m"— <__ l
EV otk + Ln— Ko lmn—k m—k,,,+l,,.,.—kV0 m—k, +1I(k< mn)

for all 0 < k < n. Therefore, for m large enough

ElUpp,—Vn+1, m)

S Z } L ufm—,.,k,,,—zmn(u)<z>u"(l—u)""‘du

k=00 km

N N -~
+k§0£m kp +11 u)f"‘_”""""mn(u)<k>“ (I—w)" “du
1

> }(lk—md+lnu—lm,.l)ufm-n,km_,m,,(u)(Z) k(L ™+ du
0

kmk=0
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, +m km+]-kzo£(lk nu|+|nu lmnl)(]- u)fm ~Rkm Lmn(u)( )u"(l—u)" "du

11 n "
_j”f"‘"*m*'mn(”){z |k—m¢|( )u"(l—u)""‘}du
S ky o i

k=0

+ki}|nu_l"'"l ufm—n,km-lm"(u){zn: <n> uk(l—u)"_k} du
m 0

k=0

Tkt 1 k1 +1j(1 u)f,,, nokim lmn(“){z lk— nu|< )u"(l—u)"_"}du

1

_f Inu— lmnl (1 _u)fm—n,km—lmn (u) { i (Z) uk (1 _u)"_k} du

+m
m—kn+1j, Foar

=:Il+12+13+14.

Since (Z) w(l—uw % k=0,1,...,nis a binomial probability function, we

have

- n k n—k __
k;o (k)u 1—u*=1
and
} i lk — nu| (Z)u"(l—u)"‘" < i |k—nu|2<2)u"(1—u)"_" =./nu(l—u)

by Schwarz’s inequality. Thus, in virtue of Holder’s inequality, for large m we
obtain

~lmn

(u) du = \k/—; EU'::/E Bkm = lmn (1 - Um—n,km— lmn)llz

m

1
I, < —\/—r—l_fua/z =) ke
km o
*/_ EU2
km ( m—n,km

1 o= L) (g — L+ D\ (m—n—k,,,+l,,,,,+1)‘(m—n—k,,,+z,,,,,+2)>1/4
"k, \(m—n+1)(m—n+2) (m—n+1)(m—n+2)

)3/4 (E (1 _ Um—n,k,;. )2)1/4

—lmn ~Imn

nk,(m—k,+1) < 2./nk,(m—k,+1)

(m—n+12 = (m+1)? ’
and similarly
! ’ 2 —k
13 < ﬁ ju1/2 (1 _u)alzfm—n,km—lm,. (u) du < nkm (m m+ 1)

m—kn,+13 (m+1)?




224 L. Peng and Y. Qi

Since g is bounded, we assume for simplicity that |g(x)| < 1. Let D> 1 be
a constant such that |g(x)—g ()l < P|x—y|. In fact, we have

34 lgx)—g| <2D(x—y|A 1) for all x, yeR.

Un - dn Un n dn
&, = g(L>_Eg (;_)
Cn Cn

For integers n < m, it follows from the independence of £, and V{n+1, m) and
the condition (3.4) that

6,6 = B P22 )

='Er§,,g(v(n+lc’ ) d'”)+Eén{g<U'""‘g' d”)—s}( (n+c’m) dm)}l
U — 1, m)—
=\E€,.[g( o d"')—g<V(n+C’m) d"‘)]

cappUmm=Votlml

Let us set

Therefore, it follows from (3.1) and (3.2) that there exists m; > 0 such that for
1 <n<mflogm)? and m > m,

(3.5) |EE, Enl < < 4Dn if min {k,,, m—k,+1} < (logm)*
and
12D f 8D /m+1
3.6 E¢ ¢,
(3.6) I | < ,—~— h——k P
1zuf 8D/m+1

\/Ez+1 J[(m+1)/2]mm{km,m Ko+ 1}

12.Df 8./2D
\/m+1 ﬁiin {km, m—kp+1}

in case min {k,, m—k,+1} > (logm)>. Note that the inequality

k(= kg 1) > T3

min {k,,, m—kn,+1}

was also used in the estimation of (3.5).
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Note that

1 1

I, = “’;"j‘ |nu"lmn| ufm—n,km—lmn(u)du
m 0

_n

k E |Um—n,km—lmn“(lmn/n)l Um#n,km—lm,.

n
<N E U=kt = G/ 1) EU =

n
- k,, \/(Var (Unm=niom—tmn) T (E (U m =k = L) — lm,,/n)z) EUZ .0 1. .

_n \/{(km—m,.)(m—n—km+tm+1) (km~lm zm)Z}(km—zm)(km—lmH)

K (m—n+1?(m—n+2) m—n+1 n) | (m—n+1)m—n+2)
n_ kn /km(m—k,.ﬂ) i — (1 + 1) I 2
L ——7 + .
knm—n+1V (m—n+1)> nm—n+1)
Since
nk,,
0 < nky—(m+1) by < nk,,,-(m+1)< —1) <m+,
m+1
we get

e T knm—kn+1) — m+1 ] Mk (n—k+1) | 2
2 S m—n+1 m—n+1 nm—n+1f m+1?  m+1

for all large m. Likewise, we can show that

<,/nkm(m—k,,,+1)+ 2

Lo < (m+1)? m+1

holds for all large m. Hence the lemma follows from the above estimates of
I 13 sey I 4.

Proof of Theorem 1. The main point of the proof comes from that of
Theorem 1 of Berkes and Csaki [2], which provides a very powerful tool to
solve this kind of problem. Unfortunately, the theorem cannot be applied
directly in our case because it is hard to verify the condition (1.9) in Berkes and
Csaki [2].

Like in Berkes and Csaki [2] (or see, e.g., Lacey and Philipp [10]), it
suffices to show that for any bounded Lipschitz 1 function g: R— R

. 1 N 1 Un,k" - dn Un,k,. - dn
6y lm ,,;1 - {g <c—) —Eg (C— —0 as.
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Additionally, the trivial estimation |E¢,¢&,| < 4 holds for all 1 <n
Now define

Sy = {me[m;+1, N]: min {k,,, m—k,+1} > (logm)?}
and
Ty = {me[m;+1, N]: min {k,, m—k,+1} < (logm)?}.
Let us set
jm=min{k,, m—k,+1}, i,=m/j, and g, = [m/logm)*].
Then, as N is large enough, -

() (20

1

<2 Z Z IE€,.€,..I 2 Z Z IEénémI+2 Z Z IEfn€m|
m=1p=1M m=1n=1M mm1+1n1
N m 1 1
<8y Z—+8 > ¥ liy Z—IEf.,i,..l
m=1n= 1 m=my+1n= qm+1mn m=m;+1n= 1
N
<smirg 3 loE(niaw
m=my+1 m
+2 ) Z |E£n€m|+22 Z IEénéml
meTyn= 1 mESNn 1
1
< 9(logN)(loglog N)+2 ). Z IEé..émI+ZZ Z —|E&, &l
meTpn= 1 meSy n= pmn

=:9(log N)(loglog N)+ A+ A4,.
It follows from (3.5) that

<8D ¥ m

meTy n= 1 m+1 meTNm(m+1),
which is bounded for all N. Finally, from (3.6)

A;=4D Y qumn<\/r% \/\9

—4p ¥ E(menTﬁ r:\al)

<24D Y */‘ —+16,/2D 3 logm

meSy M meSN m jm

meSy n=1

meSny n=1

< 24D10gN+16ﬁD y ;<(24+16\/§)DlogN

meSn

<m.
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for N large enough. Therefore, as N is large enough,

Var ( %‘ l{g (M> —Eg (U"k+_d")}> < 10(log N) (loglog N).

n=1 n Cn n
The rest follows by the arguments in Lacey and Philipp [10].
Proof of Theorem 2. Define the generalized inverse of F by
F~(u)=inf{x: F(x) >u} for ue(0, 1).

Then {X;, i > 1} is distributed in the same way as {F~ (U}), i = 1}. For sim-
plicity we assume that X; = F~ (U;) for i > 1. In this case, X, = F~ (U,4).

It follows from (2.1) that
P (U—"c;d < x) — & (x)

I(Xn,k,._bn < x) = I(Un,k,._dn < F(anx'*'bn)“dn),

ay Cn Cn

lim sup =0.

n—ow x

Since

the condition (2.2) implies that
lim @ (F (@, x+by)—d,

n—w

)= G(x) for any xeC(G).

This, together with Theorem 1, gives Theorem 2.

APPENDIX: JOINT DISTRIBUTION OF ORDER STATISTICS
FROM NESTED SAMPLES

Let {U,} be a sequence of independent random variables with a uniform
distribution over (0, 1) and U, < U, <... < U,, denote the order statistics
of Uy, ..., U, It is well known that the density function of U, is given by

A) S = n(Zji)xk-lu—x)"-k for xe(0, 1)
and we have

_k _ k(k+1) _ k(n—k+1)
E(U,y) = T EU2%) = @2 and Var(U,,) = EFSITYS )

See, e.g., Balakrishnan and Cohen [1].

Let s> 1 and ¢ > 1 be integers. Then U,; and U, ; are order statistics
based on the sample U,,...,U; and Uy,..., U, Usiyq, ..., Ugy,, where
1<i<s and 1<j<s+t. We are interested in the joint distribution
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of U, and Uy, ;. Since both the marginal distributions of U,; and U,.,;
are known, we derive the conditional distribution function of Uj,,; given
Us,i' .

Let K (u) = ZT: L J(U;<u). Then 0 < K(w) <t if ue(0, 1). Obviously,
K (u) is a binomial random variable. Let H (u, k) = P(U,; <u, K(Us;) = k).
Then

H(du, k) = f.,(u) P (K (u) = k) =ﬁ,i(u)(Z)u"(1—u)s"‘du fork=0,1,...,t

For any integers n and r with 1 <r < n, let V,, be independent of U,,, m > 1,
but have the same distribution as U,,. .
Given {U;=u, K(Us;) =k} ={U;; =u, K(u) =k}, we observe that
Us..,,; has the same distribution as uV;, ;in case j < i+k since Uy, ; is the j-th
smallest term among the i+k random variables whose values are less than
u, Ugypyj=u in case j=i+k, and U,,,; has the same distribution as
u+(1—u) Vg j—x—: in case j > i+k since U,,,; is the (j—i—k)-th smallest
term among the s+t —i—k random variables whose values are greater than u.
So the conditional distribution of Us.,; given {U,; =u, K(U;) = k} is
(A2) Us+t,jéuVi+k—1,j+(1_u)Vs+t—i—k.j—i—k-
Here we employ the conventional notation: V,, =0 whenever m <0 and
V,.m = 1if m > n. Note that only one of ¥;,;-1,;and Viy,—;—g j-i—x is random.
We remark that (A2) is extremely useful for the calculation of the expectation of
any function related to both Uy; and Us.,; such as the covariance.

We conclude immediately the following theorem which is a generalization
of Lemma Al in Stadtmiiller [14] when the underlying distribution is uniform.

THEOREM 3. For any bounded function g(x, y) defined over (0, 1) we have
Eg(Usi> Ussr))

t 1
= Y, JEg(u, uVisp— 1+ (1 =) Ve g i jmi- k)fs,(u)() u*(1—u)~*du,

k=00

where f,; is defined as in (Al). Further,
Eg(u, uViri—1,;+ (1= Vs rmi i j-i-1)
fo g, ut) fisn-1, (@) do if j<i+k,
=49, u) if j=i+k,
j;g(u,u+(1—u)v)j;+t,,-_,‘,j_,-_k ()dv if j>i+k.

If one selects g(x, y) = I(x < wy, y < wy), then the joint distribution of U,; and
Us+.,j is obtained.
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