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Abstract. Let X,, n 2 1, be a sequence of independent and iden- 
tically distributed rmdom variables and X,,, < X,,, < . . . < X,, de- 
note the order statistics of Xi, . . ., X,. For any sequenoe 01 integers 
{k,)  with 1 < k, d n and lim,,,min{&, n-&+ 1) = co, ifthere exist 
constants a, > 0, b , s R  and some non-degenerate distribution Function 
G such that (XnAn-b,)/a, converges in distribution to G, then with 
probability one 

where C(G)  is the set of continuity points of G. 
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1. INTRODUCTION 

Suppose we have a sequence of random variables {W,) which converges in 
distribution to a continuous random variable W, i.e., W,  5 W as n + co. Many 
authors have investigated almost sure versions of distributional limit theorem. 
One particular version is the following result: 

1 5 1  
lim-~nI(Wn~x)~P(W$x) for all x, 

N + m  l ~ g N , , = ~  

where I ( . ) denotes the indicator function. For example, Brosamler [4], Schatte 
[Ill-1131, Lacey and Philipp [10], Berkes et al. 131 among others studied the 
case where W, means the normalized sums of random variables. For the case 
where W, means the maxima of i.i.d. random variables, we refer to Cheng et d. 
[ 5 ] ,  [6], Fahrner [fl, [S], and Fahrner and Stadtmiiller 191. A general method 
for dealing with logarithmic means is given by Berkes and Csiki [2]. 
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Recently Stadtmiiller [14] studied the case where W, is order statistics. 
More details are as follows. Suppose { X , )  is a sequence of i.i.d. random varia- 
bles with common distribution function F. Let X,, 6 . . . d X,, denote the 
order statistics of XI, .. ., X,. 

Throughout this paper we assume that {k,) is a sequence of integers 
satisfying 1 < k, < n ,  and there exist constants a, > 0, b, and a distribution 
function G such that 

(1.1) v+w lim P ( X h n - k n - b n < x ) = ~ ( x )  a n  for ~ U X E C ( @ ,  

where C(G) is the set of continuity points of G. Assuming that 'either 

(1.2) k, t oo , kdn + 0, log kn = 0 ((log n)'-') for some s > 0, 

F has a differentiable density at p E (0, I), 
(1.3) 

(n - kn)/n = p+ o (l/,,/m) far some e > 0, 

Stadtmiiller [14] showed that 

(la4) ~ - + m  h- 1 0 g N n = ,  $ (..,n-kn-bn . . S O  ) = G(x) for any x. 
an 

In this paper we show that (1.4) holds under the following condition: 

which is weaker than the conditions (1.2) and (1.3k see Section 2 for our main 
results. All proofs are deferred till Section 3. A joint distribution of order 
statistics from nested samples is given in the Appendix, which may be of in- 
dependent interest. 

2 MAIN RESULTS 

We first investigate the case of uniform order statistics. Let {U,) be a se- 
quence of independent random variables with a uniform distribution over (0, I), 
and Un,l < U,,, < . . . < U,, denote the order statistics of U . . . , U,. Through- 
out this section we assume that (1.5) is true. Hence 

(2.1) lira P ("n.;n-d" s x) = 
n-r m 

" 1 
= j -exp ( - y2 /2 )  d y  for all x E R, 
-a& 

where en = J m / n 3 1 2  and d, = kJ(n + 1) .  
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Our first theorem is the almost sure version of the distributional limit 
theorem for uniform order statistics. 

THEOFEM 1. With probability one, 

f A I ( u n , k , , - d n  lim - < x ) = @ ( X )  f i r  all X E R .  
~ + ~ l o g N ~ = ~  n en 

Next we state the almost sure version for general order statistics. 

THEOREM 2. Suppose there exist constants a, > 0, b, E R and a mn-degene- 
rate distribution function G such that 

Then 

1 N 1  
(2.3) Jim - ; I  (X.v:n-b' 6 x C(x) jor all x E C (G).  

iv+9rlogNn=, 

The condition (2.2) plays an essential role in the theorem. However, the 
discussion for the convergence of (2.2) is more complicated. We are not going 
further in this direction but will give some examples. 

Besides the uniform distribution in Theorem 1 ,  many distribution func- 
tions, for example, exponential and Gaussian distributions, are such that (2.2) 
holds under (1.5). 

EXAMPLE 1. Let F ( x )  = 1 -e-" for x > 0. Then (2.2) holds with 

J n - k n + l  n 
an = ~in f l )k .  

, b,,=log- and G=@. 
kn 

Thus 

1 . N  1 
lim - c ,I( Xn,h  - 1% (n/kn) 4 x ) ~ Q ( x )  for any X E R ,  
~ + m l o g N . = ~  , / ( n -  k,+ l ) / (n+ I) kn 

For central order statistics Xn,kn with k Jn - + p € ( O ,  I ) ,  a very weak con- 
dition is needed to guarantee (2.2). 

EXAMPLE 2. For p E (0, 1)  define 5, = F-  (p), where F -  denotes the gene- 
ralized inverse of F, as in the proof of Theorem 2. If F is differentiable at t, and 
F' (5,) > 0, then 



220 L. Peng and Y. Q i  

under the condition k$n + p. Therefore, 

3. PROOFS 

First we list some notation and two lemmas. For integers 1 d n < m let 
U ( j ;  n: m) denote the j-th smallest order statistics of U,, .. ., Urn. For 
convenience, let us set U (j; n : m) = 0 if j < 0, and U (j; n : m) = 1 if 
j > rn -n + 1. Note that UnSj = U (j; 1 : n) for 1 d j < n. Let [x] denote the 
integer part of x. For any n < m, let us set l,, = [nk,/(m+ l)] and define 

if min (k,, m - krn + 1) > (log m)Z, and 

U(km; n+l:m) 
V(n+  1, m) = 

if k, < (log rn)2, 
-n;n+l:m) i f i f - ~ + l ~ ( l ~ g r n ) ~  

(in either case, min {km, m - k, + 1) < (log m)'). 

LEMMA 1. If n < m/(log m)' and min {k,, rn - km + 1) < (log m)', then 

for m large enough. 

Proof.  Note that 

U(k,-n; n+l:rn) < Urn,k, < U(km;  n+l:rn). 

If k, < (log m)', then V (n + 1 : m) = U (k, n + 1 : m). Since n < rn/(log m)' im- 
plies lim,,, (n/rn) = 0, we have, for large m, 

(we refer to the Appendix for the calculation of the expectation of uniform 
order statistics). Similarly, if m - km+ 1 < (log m)', then for large m 

Hence the lemma follows. 
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LEMMA 2. If  n n m/(log ml2 and min {k,, m - km + 1) > (log m)', than 

for m large enough. 

Proof. Note that ( V ( n +  1, m), Urn,,_) has the same distribution as 
(Um-n,k, - !,,, Urn,k,) ifl case min {k , ,  rn - k ,  + 1) > (log m)'. By applying Theo- 
rem 3 in the Appendix with s = m- n, t = n, i = k,- I,, j = km and 
~ ( x ,  y) = lx-vl we get - 

I Um,k,,,- v(n + m)l = E I U m  -n ,hm - I , ,  - Um,k,l 

n 1 

n 1 

+ .!! E ~ - k , i ~ n - k , I m , - R ( l - ~ ) f m - n , k m - l m n ~ u )  uk(l -u)"-kdu, 
h = O  0 @> 

where f,,, (u) is defined in ( A l )  below. Note that n < m/(log m)2 implies that 
k m - b n  > 0 and m-km+Emn-k 2 rn-k,+1,,-n > 0 when0 Q k < nand mis 
large enough. Hence for large m we have 

and 

for all 0 < k < n. Therefore, for m large enough 

EIUm,km-v(n+l ,  m)l 
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Since (;) uk(L - u ) . - ~ ,  k = 0, 1 ,  .. ., n, is a binomial probability function, we 

have 

and 

by Schwarz's inequality. Thus, in virtue of Holder's inequality, for large rn we 
obtain 

and similarly 

& 2Jnk,(rn-km+ I) 
1 3  < u112 -~)~/~frn-n,k,- I,, (u) d~ < 

r n - k m + l o  (m + 
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Since g is bounded, we assume for simplicity that Ig (x)j < 1. Let D 2 1 be 
a constant such that Ig (x) -g Cy)[ 6 D lx -yl. In fact, we have 

(3.41 I g ( x ) - g ( y ) I < 2 D ( l x - y l ~ l )  for all x , y ~ R .  

Let us set 

For integers n < m, it follows from the independence of 5, and Vdn + 1, m) and 
the condition (3.4) that 

V(n+l ,m)-dm)  + E L  ( m , k - m )  LI - g(V(n+l,ml-dm)]/  
Em Cm c,n 

Therefore, it follows from (3.1) and (3.2) that there exists m, > 0 such that for 
1 < n < m / ( l ~ g m ) ~  and m 2 pn, 

and 

in case min (k , ,  m-k,+ 1) > (logm)'. Note that the inequality 

was also used in the estimation of (3.5). 
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Note that 

Since 

we get 

for all large rn. Likewise, we can show that 

hoIds for all large m. Hence the lemma follows from the above estimates of 
I ~ ,  . . ., I ~ .  - 

P r  o of of Theorem 1. The main point of the proof comes from that of 
Theorem 1 of Berkes and Csiki [2], which provides a very powerful tool to 
solve this kind of problem. Unfortunately, the theorem cannot be applied 
directly in our case because it is hard to verrfy the condition (1.9) in Berkes and 
Csiki [2]. 

Like in Berkes and Csiiki [2] (or see, e.g., Lacey and Philipp [lo]), it 
suffices to show that for any bounded Lipschitz 1 function g: R + R 
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Additionally, the trivial estimation ( E t ,  d 4 holds for all 1 6 n < m. 
Now define 

SN = ( m ~ [ m ~ + l ,  m: min(km, m - k , + l )  > ( l ~ g m ) ~ }  
and 

TN = { r n ~ [ r n , + l ,  w: min(km, m-km+l) ~ ( l o g r n ) ~ ) .  
Let us set 

j,,, = min (k , ,  m - k, + I),  i, = m/j, and qm = [m/(log rnI2] .  
Then, as N is large enough, - 

var (. C 1 - { g (":n- ") - ("*:m- -"))I) = V- (' t 

=: 9(logN)(loglogN)+A1+A,. 

It follows from (3.5) that 

which is bounded for all N. Finally, from (3.6) 

< 240 C log m 
J;;; + 1 6 & ~  - 

~ s ,  rn Jm+l m E ~ ~  m 
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for N large enough. Therefore, as N is large enough, 

Var x - :{ g ("Y")-E~("~';-~~)}) 6 LO(logN)(loglog N ) .  

The rest follows by the arguments in Lacey and Philipp [10]. 

Proof  of Theorem 2. Define the generalized inverse of F by 

P-(u)=inf{x: F ( x ) > u )  for UE(O, 1). 

Then { X i ,  i 2 I ]  is distributed in the same way as fFU (UJ, i >, 1). For sim- 
plicity we assume that Xi = F -  (Ui) far i 2 1. In this case, X,,, = F -  (U,,,). 
It follows from (2.1) that 

Since 

the condition (2.2) implies that 

lim 8 (F (an x lnbn) - d)--d, =G(x) for any XEC(G). 
n+ m 

This, together with Theorem 1, gives Theorem 2. 

APPENDIX: JOINT DISTRIBUTION OF ORDER STATISTICS 
FROM NESTED SAMPLES 

Let (U,) be a sequence of independent random variables with a uniform 
distribution over (0, 1) and U,,, < U,,z d . . . < U,,, denote the order statistics 
of U1, . . ., Un. It is well known that the density function of Un,k is given by 

and we have 

.L,~(x) = n ( ; ~ : ) ~ k - l ( i - X ~ - k  for XE(O, 1) 

k k(k+ 1) k(n-k+1) 
E(Un,3 = ;;l;il E w i d  = (n+ @+ 2) and Var(U ) - "lk - (n+1)2(n+2)' 

See, e.g., Balakrishnan and Cohen [I]. 
Let s 2 1 and t 2 1 be integers. Then Us,i and Us+,,j are order statistics 

based on the sample U1, ..., U, and U1, ..., Us, Us+1, ..., Us+,, where 
1 < i d s and 1 < j < s + t. We are interested in the joint distribution 
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of USvi and Us+,4j. Since both the marginal distributions of Us,i and Us,,,- 
are known, we derive the conditional distribution function of given -- 
us,i- 

Let K (u) = x;::+, I ( U j  < u). Then 0 < K (u) b t if u e (0, 1). Obviously, 
K (u) is a binomial random variable. Let H (u, k) = P (Us,i G u,  K (Us,,) = k) .  
Then 

H(du, k)  = f , , i ( ~ ) P ( K ( ~ )  = k )  =f, , ; (u)  ~ ~ ( l - u ) ~ - ~ d u  fork = 0, 1, ..., t .  (3 - 
For any integers n and r with 1 < P < n, let V,,, be independent of U,, m 2 1, 
but have the same distribution as U,,,. 

Given {Uspi = u,  K(USai )  = k )  = = u ,  K ( u )  = k) ,  we observe that 
Us+,,j has the same distribution as u F + ~ , ~  in case j < i+ k since is the j-th 
smallest term among the i + k  random variables whose values are less than 
U ,  = u in case j = i+ k, and has the same distribution as 
~ + ( 1 - U )  K + k , j - k - i  in case j > i + k  since is the (j-i-k)-th smallest 
term among the s + t - i - k random variables whose values are greater than u. 
So the conditional distribution of given {Usmi = u, K(U,,;)  = k) is 

Here we employ the conventional notation: T/',,, = 0 whenever m 6 0 and 
K,, = 1 ifm > n. Note that only one of F+k- l , j  and K+r-i-k,j-i-k is random. 
We remark that (A2) is extremely useful for the calculation of the expectation of 
any function related to both Us,i and such as the covariance. 

We conclude immediately the following theorem which is a generalization 
of Lemma A1 in Stadtmiiller [14] when the underlying distribution is uniform. 

THEOREM 3. For any bounded function g ( x ,  y) de$ned over (0, 1 )  we have 

where is defined as in (Al) .  Further, 

If  one selects g ( x ,  y) = i ( x  < w l ,  y < wz), then the joint distribution of Us,i and 
Us,,,j is obtained. 
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