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Abstract. It is shown that the lower and upper critical values of 
the Durbin-Watson (&w) statistic are asymptotically the same for 
the analysis based on M-estimators as for the classical least squares 
analysis. Moreover, the paper offers a possibility to  make an idea when 
the asymptotics may start to work. Considering the B-robust optimal 
$-function, we demonstrate that the differences between the precise 
critical values of Durbin-Watson statistics evaluated for residuals cor- 
responding to the M-estimate and critical values which were found by 
Durbin and Watson for the least squares analysis are rather small evcn 
for moderate sample size. 
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Diagnostics are today an inseparable part of any data processing theory, 
see e.g. Atkinson (1985), Belsley et al. (1980), Geisser (1991), Greene (1993), 
Hauser (1997), Judge et al. (1985), McKean et al. (1991), Peters and Sibbertsen 
(2003), Schall and Dunne (1991), Tukey (1991), Urzua (1996) and many others. 
In fact, without an application of at least some basic diagnostic tools any 
processing of data loses its reliability and trustworthiness, 

The econometrics offer diagnostics which are so rich that one has pos- 
sibility to select for any problem really an efficient tool. Let us remind diago- 
nal elements of a hat matrix (or an extended hat matrix) or many types of 
distances as Cook's, Mahalanobis' etc. which are employed to "discover" the 
influential points. Let us mention the condition indices for looking for col- 
linearity, a lot of tests for heteroscedasticity as well as for the change points of 
model etc.; see Antoch and VorliEkovS (1992), Arslan (2003), Chatterjee and 
Hadi (1988), Cook and Weisberg (1983), Crow and Haesbroeck (1999), Hadi 
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(1992), (1994), b d e r  and Zaman (2003), Judge et al. (1985), Kmenta (19861, 
Markatou and He (1994) or Zvara (1989). 

So it is not surprising that the robust statistics from very early days have 
also attempted to create appropriate diagnostics (Huber (1981), Welsh (1982), 
Harnpel et al. (1986), Rousseeuw and Leroy (1987)), and the attention devoted 
to the topic is increasing (Huber (1991), Portnoy (1991), Stahel and Weisberg 
(19911, Willem et al. (2003)). 

Nevertheless, an inspection of just mentioned references may indicate 
that there are mostly attempts to employ as diagnostic tools the-robust proce- 
dures themselves. Much less attention was however paid to possibility to utilize 
the ideas of diagnostics of classical econometrics based on the least squares 
analysis (Chatterjee and Hadi (1988), Judge et al. (1985)) and to employ or to 
modify them for robust methods (Viiek (1992), (1996b, c)). Maybe that the 
roots of it are in an idea that robust procedures are "self-diagnosing". One can 
in fact trace out the spirit of it in the most papers devoted to the diagnostics in 
Stahel and Weisberg (1991). It is still believed that the application of a proce- 
dure with high breakdown point inevitably brings an indication of what is the 
"true" underlying model (of course, at a cost of some loss of efficiency). How- 
ever, Hettmansperger and Sheather (1992) and Viiek (19941, (1996a, b), (2000a) 
show how misleading idea it is. Among others, in the referred papers the data 
are presented for which the least trimmed squares (LTS) and the least median 
of squares (LMS), both being methods with (possibly) 50% breakdown point, 
give mutually orthogonal estimates of regression models. Moreover, the model 
obtained for the same data by means of min-max bias estimation (see Martin et 
al. (1989)) appears to be completely different from the LTS as well as the LMS 
model and very ''wild" what concerns residuals. But there are even more shock- 
ing results, showing that one can easily find such data that an arbitrarily small 
shift of one observation can imply a "rotation" of the hight breakdown point 
estimate of the regression model about 90 degrees; see Viiek (1996a) or (1997). 

On the other hand, to be frank, the author believes that in the most 
situations some method with high breakdown point may serve very efficiently as 
diagnostic tools and the "final" estimate may be found by means of the ordinary 
least squares after deleting some observations, or by the weighted least squares, 
just weighting adequately down the iduence of some points. The recent results 
of the author hint that one of the most promising methods (let us stress, we have 
in rnind a linear regression) is probably the least weighted squares method (see 
the discussion in Viiek (1999a) or (2001b)). And only in some exceptional 

Notice that we have said the least weighted squares, which differs from the weighted least 
squares in a similar manner to that the least trimmed squares are different from the trimmed least 
squares. In the both cases the latter methods, i.e. for the trimmed least squares and the weighted Last 
squares, the trimming as well as the weighting are given explicitly, i.e. by an external explicit rule, 
while for the least trimmed squares and the least weighted squares the trimming and the weighting 
are given implicitly. 
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cases, when a posteriori diagnostics indicate that the estimate of model has e.g. 
rather "wild" structure of residuals, we should use several robust methods 
with high breakdown point to investigate a11 hidden substructures in data. 

The present paper however will not discuss these tasks in detail (for more 
details see e.g. Viiek (1994), (1996a, b), (19971, (2000a) or (2001b)). 

An instructive application of the robust method for diagnosing data can 
be found in Viiek (1999~) or (2003). 

As one can easily learn, there are natural assumptions of the classical 
(regression) analysis which are accepted in the theoretical considerations of 
robust statistics and employed in applications without any (a postFriori) diag- 
nostic verification. It is simply a consequence of the fact that corresponding 
tools are not yet available. For instance, the independence of the random 
fluctuations for different rows of the dynamic regression scheme for dynamic 
situation or the independence of explanatory variables and random fluctua- 
tions belong among such assumptions; see e.g. Huber (1981), Hampel et al. 
(1986), Boente and Fraiman (1991), Dollinger and Staudte (1991), Hettmans- 
perger and Naranjo (1991), Lawrence (1991), Markatou et al. (1991) and many 
others. And it is well known that a break of the former assumption may cause 
(sometimes serious) decrease of eficiency while a failure of the latter causes 
a bias of the estimation of the least squares. And it is easy to guess, e.g. from the 
asymptotic representation of M-estimators, that in the case of robust analysis 
a failure of just mentioned assumptions may cause a similar damage of results 
as in the case of the least squares. 

Of course, one can object that sometimes (frequently?) it is better to put up 
with a loss of efficiency than to make a correction (e.g. by means of the Prais 
-Winsten transformation, see Judge et al. (1985)) because if we wrongly assume 
e.g. an autoregressive structure of disturbances, we can even worsen the situa- 
tion, see e.g. Mizon (1995). 

There have already been known some results trying to establish diagnos- 
tics for robust methods. We have now at our disposal a robustified version of 
instrumental variables and the Hausman specification test (Vikk (1998a, b) and 
(2000b)), results of the sensitivity studies of some robust methods (Viiek (2000~) 
and (2001a)j and the White test for heteroscedasticity (ViHek (2002b)). 

The present paper brings another result. It shows that under normality of 
disturbances the critical values of 'lower" and "upper" Durbin-Watson statis- 
tics evaIuated for residuals corresponding to an M-estimator are not dramat- 
ically different from those used in least squares analysis, and asymptotically 
they are even the same. For the special case of the optimal B-robust M-es- 
timator of the regression coeficients for the frequently used values of the tuning 
constant they are even only slightly Iower and higher than those given by 
Durbin and Watson for the least squares. 

Of course, to have at all a possibility to compare results by Durbin and 
Watson with those for M-estimators, we had to assume normality of disturb- 



ances. Naturally, in the case when we decide to apply a robust method we 
assume that the normally distributed disturbances were contaminated by 
something, so that we should either delete some observations or weight them 
down to reach again normality. It may seem at a first glance rather restrictive 
or even senseless, since one can claim that the distribution of disturbances is 
something which is objectively given. Let us try to show that it need not be the 
case. Moreover, we shall explain why the normality is very important. 

First of all, let us consider the classical ordmary least squares. Some mono- 
graphs claim that even in the case when the normality of disturbances was 
rejected, the ordinary least squares are still a good estimator, since they are the 
best among all unbiased linear estimators. But the restriction on the class of 
linear estimators is drastic - for a nice discussion see Hampel et al. (1986). So 
in the case when the normality of disturbances is rejected, we should use some 
alternative method, e.g. the maximum likelihood estimator - nevertheless, 
practically all cornmerciaIly available statistical packages use normal likelihood 
anyhow. However, there are only a few results about optimality of alternative 
methods at all. Moreover, the least squares are closely associated with the 
Euclidean geometry we are used to, and hence we would like to employ the 
least squares anyhow. That is why we try to reach the normality ,of disturb- 
ances by modifications of the model, e.g. by transformations of both response and 
explanatory variables. Of course, a philosophical point of view needs at least 
partially leave a "Renaissance" standpoint about objectivity of mathematical 
modelling, see e.g. Kuhn (19651, Popper (1972), Prigogine and Stengers (1977), 
(1984). In other words, we give up an idea of "discovering" (or "revealing") 
something like a "true" underlying model, being satisfied by establishing a re- 
liable forecasting model. 

Similarly, in the case of using the optimal B-robust M-estimator the nor- 
mality is in fact frequently implicitly assumed since the corresponding $-func- 
tion is (typically) a winsorised logarithmic derivative of normal density. 

However, the assumption of normality, when considering D-W statistic, 
goes much deeper. It stems from the work of Anderson (1948) and of Durbin 
and Watson (1952) who constructed the test by means of the Neyman-Pearson 
lemma so-that to be optimal under normality. It implies that in the case when 
the disturbances are not normally distributed and, as we have already men- 
tioned, we should apply even in the classical regression analysis some other 
method than the least squares, we should also use another statistic (than D-W) 
for testing serial correlation (again, they are not offered in statistical packages). 

Taking into account just discussed reasons for reaching normality in the 
case of employment of ordinary least squares together with the fact that in the 
case of robust methods the most complete results we have at hand for 
M-estimators, we may guess (of course, not prove) that it is better to apply 
some of them, assuming that we depressed an impact of contamination of data 
by weighting down (possibly to zero) the influence of some observations, reach- 



Durbin-Watson statistic in robust rearession 

ing so an approximative normality. On the other hand, M-estimators are not 
generally scale- and regression-equivariant (see the last chapter of the paper) 
and have a bounded breakdown point, see Maronna and Yohai (1981). So, it 
may be preferable to use a method which is asymptotically equivalent to an 
M-estimator and simultaneously is "automatically" scale- and regression-equi- 
variant with assignable breakdown point, e.g. the least weighted squares, see 
Viiek (2001b), (2002b). 

The paper is organized as follows. In the next section we shall introduce 
notational framework for our considerations. Then we recall Durbin-Watson 
results, and in the following section we derive the basic tool for fuither study, 
namely an asymptotic representation of the M-estimators in the setup with 
random explanatory variables. The next step is the explanation of the modifica- 
tions of the approach of Durbin and Watson which are necessary to be carried 
out for robust setup. At the end of the paper we shall give tables showing 
numerical approximations to the difference between the "lower" and "upper" 
Durbin-Watson statistics for the residuals from regression analysis based on 
the least squares estimator and on M-estimators. 

NOTATION 

Let N denote the set of all positive integers, R the real line, and RP the 
p-dimensional Euclidean space. We shall consider for any  EN the linear 
regression model 

where Y = (Y,, Y,, . . ., x)T is the response variable, XT is the t-th row of the 
random design matrix X = (XI, X,, . . ., x,)~, Po is the "true" vector of regres- 
sion coefficients, and e = (el, e,, .. ., eJT is the initial part of the sequence 
(e,),", of independent identically distributed random variables. Sometimes we 
shall use the "matrix7' notation for the regression model 

Further, for any B E  RP let us define the t-th residual as 

(2) rt(B)=E;-XTB and r(n)(fl=(r~(P),r~(P)l...,~n(B)~. 

RECALLING THE HISTORY 

Durbin-Watson statistic which is today offered by many statistical pack- 
ages (STASTICA, SPSS, TSP, RATS, to mention some among others) stems 
from the work by Anderson (1948). Assuming that the random fluctuations e:s 
are governed by the multivariate normal distribution with covariance matrix 



either 1P-l  (under hypothesis) or (under alternative), Anderson showed 
that in the cases in which the vector of regression coefficients is the eigenvector 
of the matrices !P and a, the statistic 

where fl(LSin) is of course the least squares estimator, provides a test which is 
uniformly most powerful against a certain set of alternatives. The evident de- 
pendence of the statistics Z ( / ? (~~I" ) )  on the design matrix (which follows from 
r (@LS+')) = [A  - X (XT X)- l F] e, where A is a unit matrix of type n x n) and, 
consequently, a similar dependence of critical points on the design matrix, 
seemed to denounce the statistic to be a useless theoretical result. Durbh and 
Watson (1952) returned to the statistic for the special case when Y = Nn, i.e. 
when we assume as the null hypothesis the independence of random fluctua- 
tions in the model (1). They slightly changed the notation used by Anderson 
and wrote the statistic as 

and invented a spectacular "trick" which turned the statistic to be one of the 
most frequently used diagnostic tools. The "trick" is described in the following 
lemma : 

LEMMA 1 (Durbin and Watson (1952)). If r a d  e are n x 1 vectors such 
that 

r = Mae, where M = A - X ( X T X ) - l X T ,  

and 

(see (3)), .where A is a real symmetric matrix, then: 
(a) There is an orthogonal transformation e = Hc such that 

where v l ,  v z ,  . . ., vn-p are eigenualues of the matrix M A  other than zeros. 
(b) If n-p-s of columns of X are linear combinations of n-p-s of the 

eigenvectors of A, then a-p- s of v's are equal to the eigenvalues corresponding 
to these eigenvectors; renumbering the remaining eigenvalues so that 

vl  d v 2  d . . .  d v ,  and < A 2  < ... <A,+,, 
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where A's are eigenualues of the matrix A, we have 

For the proof see Durbin and Watson (1952). Specifying then the alternative 
to the independence of e,'s as AR (I) with e, = set- + vt, t = 2, 3, . . ., n (with 
{v,),"=, being of course i.i.d. and (a( < 11, by a straightforward computation we 
obtain 

where the bIank space represents zeros. An "extreme" case, namely a = 1, gives 
then the traditional form of Durbin-Watson statistic: 

For the second "extreme" case, namely a = - 1, we obtain z ( p )  z 2+$. It is 
clear that the statistics resulting from the both extreme cases are able to cope 
with positive (a > 0) as well as negative (a < 0) dependence since both contain 
an estimate of the correlation coefficient. Historical reasons established (7) as 
the usual form of Durbin-Watson statistic (see e.g. Kmenta (1986), Judge et al. 
(1985) or Zvara (1989)) but the consequence is that we use not only the critical 
values "implied" by 

c::: at  tt" n-P , 

(8) z L (fi(~s.n') = and z ,  (fi(LSs") = 
C,=l ~ , + p  t f2  

z:," 9: z;:;c? ' 

say z, and z ~ ,  but also their "mirror reflections", i.e. we reject the hypothesis 
about independence when z ( P L S g n ) )  < zL or z (fl(LS,n))  > 4 - zL,  and we do not 
reject this hypothesis if z (f i (LS,n))  E ( z ~ ,  4-zu). In the other cases the result of the 
test is (unfortunately) not decisive and the evaluation of the precise critical 
value for a given design matrix is advised, see Judge et al. (1985). These lower 
and upper bounds z,  and zu were found by means of an approximation to the 
distribution function of ~ , ( f i ( ~ . " ) )  and of z , @ ( ~ ~ * " ) )  based on the moments of 

I5 - PAMS 23.2 



these two statistics. The moments were established by using results of Pitman 
(1937) or von Neumann (1941), which reads: 

ASSERTION 1. U d s r  the assumption of normality of randomJluctuatiuns in 
the regression model (I), z @(LS,n)) and z:=, {,2 are independent. 

Remark  1. Notice that z, [: is the denominator of Z@Ls7n)). 

COROLLARY 1. Under the assumption of Assertion 1 we kaue 

(We have recalled this result because we s h d  wed it lagr.) 
Details about the Durbin-Watson contribution as well as a genesis of the 

matrix H (see Lemma 1) will be clear from the text generalizing their result 
(which will be presented in one of the next sections). As we have already 
indicated in the Introduction, to be able to study Durbin-Watson statistics for 
M-estimators, we shall need an asymptotic representation of these estimators 
for the framework we have introduced. 

ASYMPTOTIC REPRESENTATION OF M-ESTIMATORS 

We are going to establish an asymptotic representation of M-estimators. 
In order to achieve it, we employ the asymptotic linearity of the normal equation 
for M-estimator. The pioneering paper about the method was written by Port- 
noy (1983). The method was later used many times, see e.g. Jureekova and 
Mali (1995), Jur&kovi and Portnoy (1988), JureEkovS and Sen (1989), JureE- 
kova and Welsh (1990), Rubio and Viiek (1993), or Viiek (1998a, b). The method 
allows us (differently from the method used in Pollard (1991), Rao and Zhao 
(1992) or Yohai and Maronna (1979)) to derive also more complicated results, 
e.g. subsample sensitivity of the estimators; see Vigek (1996~) and (2002a). 

Let us recall that the M-estimator, for an absolutely continuous (and, 
frequently but not necessarily, convex) function Q, is defined as 

n 

(9) B("pn) = arg min C Q (x - B) 
PERF t =  1 

and it is usually found as a solution of the equation 

where $ is the derivative of Q (due to the assumption that Q is absolutely 
continuous, $ exists almost everywhere). Asking for 
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instead of (10) allows us even to include the estimators generated by discon- 
tinuous $-functions (see Rao and Zhao (1992), compare also JureEkova and 
Welsh (1990)). Finally, studentizing the residuals (Huber (1964), (198 1)) 

j Y M v n )  = arg min C Q 
BERP t =  1 

where ~ ( n )  is a (preliminary) &-consistent estimator of a,, which is assumed to 
be scale-equivariant and regression-invariant, we'obtain scale- and regression- 
equivariance of the estimator; see Bickel(l975) and JureEkova and Sen (1993). 

As we shall see later, the asymptotic representations will be a key tool for 
considering the moditication of D-W statistic. We shall find them-using asymp- 
totic linearity of "normal" equations for M-estimators. 

Now, let us describe a range of $-functions for which we shall derive the 
promised results. 

ASSUMPTIONS d. The function $ allows a decomposition 

where: 
$a is absolutely continuous with absolutely continuous derivative $:. 

Denote by $: the second derivative (where it exists) and 

$, is continuous with derivative $: which is a step-function with a finite 
number of jump-points, and ICI, is constant in a neighborhood of - co and 
+ X I .  

$s is a step-function with steps at points r,, r,, . .., r,, i.e. there are 
010, a,, ..., a, SO that $,(z) = a, for ZE(-co, r,), $,(z) = at for z ~ ( r , ,  Y,,~), 
I = 1, 2, ..., m-1, and $s(z) = a, for z ~ ( r , ,  co). 

Moreover, E {$ (el a;')) = 0 and denote by $'(z) the derivative of $(z) 
where it exists. Finally, y = E$'(el 0;') is nonzero and finite. 

Remark  2. The decomposition (13) is due to JureEkova (1988), see also 
JureEkovi and Portnoy (1988). For the discussion that Assumptions d do not 
represent a considerable restriction see e.g. Hampel et al. (1986). 

The conditions on explanatory variables and random fluctuations will be 
as follows. 

A s s m n o ~ s  g. The sequences {XT},"= and fe,),"=, (X, E RP, e, E R) 
are sequences of independent identically distributed random variables 
which are mutually independent. Moreover, X,, = 1, EX,,  = 0, EX:, = 

c r i j € ( O ,  m ) f o r j = 2 , 3  ,..., pandEle l l<oo.  Finally,E[X,XT]=Q, W =  
a,lE[el$'(ela&l)] and E[XfjXfk] exist and are finite for j, k = 2 ,  3, ..., p, 
and put Q, = raw' XTX (where X is the design matrix; see the text below (1)). ' 
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Remark  3. Without loss of generality we could assume that W = 0. 
In fact, it represents a shift of the derivative of $-function in the hori- 
zontal direction, i.e. $' (za; I) = $' ( z o ~ l -  d )  for some d E R. Shifting then the 
t,h-function in vertical direction, simply takingB a modified function 
$ (za,') = $(zcr&') a,'), we may reach E ($ (el u; I)} = 0. The last 
modification does not change derivative p(z), and hence W = 0 will be kept. 
So this assumption is (nearly) of the same type as the assumption that the mean 
influence of the random fluctuations on the response variable is compensated, 
i.e. that Ee, = 0 (which we adopt in the least squares analysis) or 
E {$ (el cr;')) = 0 (which we assume for M-analysis). 

Moreover, since the optimal 8- and Vrobust $-functions are of the shape 

wheref,, (2) is the density of random fluctuations, for symmetrically distributed 
random fluctuations we have $ (- z) = - I++ (z). Although we do not take every 
time the optimal $-function, we usually employ symmetric ones. It implies that 
in the case when we have no reasons to assume asymmetry of random fluc- 
tuations, we can consider W = 0. 

Asymptotic linearity of M-statistics. At first we shall consider 

and we shall put for arbitrary 0 > f 

YB = {TERP, ICE R; max (Ilzll, 1 1 ~ 1 )  < 0). 

In the proofs of the next theorems (which are postponed into Appendix I) 
some constants C;s will be defined. These definitions will be assumed valid 
only within the respective proof. 

THEOREM 1. Let $ be an absolutely continuous function with absolutely 
continuous derivative, i.e. $ = $,, and Assumptions 92i hold. Further, let 

(14) E ($ (el a,')} = 0 and 0 < E [el $'(el c,l)l2 < CO. 

Then for any O > 0 
n 

(15) suplI~,(z, 1 c ) + n ~ 1 ~ y Q , z + n - ~ / ~  W C x , K I I  = Bp(l) as n +  co. 
Se t = l  

Remark  4. Let us observe that for the $-functions which are constant in 
a neighborhood of k oo the assumptions of Theorem 1 hold since I)' as well as 
II/" is equal to zero in this neighborhood. As already recalled, all the optimal B- 
and Frobust estimators are generated by such functions (Hampel et al. (1986)). 
Hence the assumptions of the theorem do not represent a considerable restric- 
tion. 
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It is nearly evident and it will be clear from the proof that the assertion of 
the theorem can use Q instead of Q,. However, for our further purposes it will 
be more convenient to have this form of assertion. 

Remark  5. Let us notice that the proof of the theorem is essentially 
based on the character of the processes (X, XT z$' (et)),,%, (at e, 1JI' (e,)},EFP, 
etc. which are the products of some fixed sequences of random variables and of 
parameters of the processes. It allows us, roughly speaking, to treat the su- 
prema2 of the processes as the products of these sequences of random variables 
and of suprema of parameters. - 

THEOREM 2. Let $'(z) = as for z E ( r ,  r , s = 0, 1 ,  . . ., k, where 
0 = ao, al , . . ., ak = 0 are real numbers, .- oo = ro < rl  < . . . < rk + = co . Let 
Assumptions ii hold and 

max { E  llX11l3, E lell] < co with E { $ ( e l  a,')) = 0. 

Finally, assume that F,, (2) (the distribution of random$uctuations) has a bounded 
density f,, (z). Then for any O > 0 

n 
I 
I (16) s u p ( ~ ~ ~ , ( z , r c ) + n ~ ~ ~ y Q , ~ + n - ~ ~ ~ W ~ ~ ~ ~ ~ ~ ) = ~ ~ ( ~ )  as n+co. 
I 5, t = 1  

THEOREM 3. Let $ (z) = a, for z E ( r ,  r )  s = 0 ,  1 ,  . . ., m, where 
[XO, [XI, . . ., am are real numbers and - oo = ro < rl < . . . < rk < rm+ = CO. Let 
again Assumptions 3 hold and suppose that F,,  (z) has a bounded density f,, (z) 
which is Lipschitz of the jrst order. Finally, pert 

and 

Then for any O > 0 

CONSISTENCY, ASYMPTOTIC REPRESENTATION AND NORMALlTY 
OF M-ESTIMATORS 

THEOREM 4. Let $ = $, + $c and the assumptions of Theorems I and 2 be 
fuljilled. Moreover, let &(n, be a fi-consistent estimator of scale of random 
fluctuations. Finally, let Q (see Assumptions 3) be positive deftnite. Then the 

The suprema over all possible values of the parameter of process, i.e, over z E Ye or K E &. 



equation 

has a &-consistent solution, i.e. there is B(M-nl for which (18) is fiEfiE1ed and 

Remark 6. Notice that the application of (15) and (16) and the assumption 
that Q is positive definite play the key role in the proof of the previous theorem. In 
what follows we shall use the same in a slightly more complicated situation. 

COROLLARY 2. Let E ( X I X r )  = Q be a positive definite matrix and 8tn, 
a &-consistent estimate of o:,. Then under the assumptions of Theorem 4 we 
have 

Remark 7. Notice that the matrix Q has a block-structure of the type 

since E [XljXll] = EX,,  = 0, j = 2, 3, . . . , p. It implies that 

Now having rewritten the right-hand side of (19) into the form 

- 
- n y - l Qh Xt W (log 4,) -log a,,) + o, (1) 

t= l  

and taking into account that except of the first coordinate the vector 
- 

n 'tZ x;=, Xi is bounded in probability while log &(,,-log oe, converges to 
zero, we find that the last but one term in (20) considerably affects only the first 
coordinate of ,,&(fl(M,")- Po). After all, the situation is not surprising because it 
is known that generally we cannot simultaneously very well estimate a location 
and scale (leaving aside that for this moment the question whether the scale is 
really a good indicator of a spread of random variable) without requiring at 
least some weak assumption(s) on the underlying distribution. On the other 
hand, it is also known that an unbiased and efficient estimator of the location 
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parameter may be constructed e.g. in the case when we assume nothing more 
than the symmetry of the underlying distribution (see Beran (19781, Stone 
(1975) or Viiek (1991)) but the symmetry is substantial. But then, using e.g. the 
B-optimal M-estimator, we will have W = 0. 

COROLLARY 3.  Let E { X I  x:} = Q be a positive deJinite matrix, W = 0 and 
let Bf,  be a &-consistent estimate of the variance G:~. Then, under the assump- 
tions of Theorem 4, &($M~*-/30) is a ~ y r n p t ~ f i ~ u l l y  norm1 with zero mean and 
a covariance matrix 

Now let us turn our attention to the case of discontinuous $-functions. We 
are going to define an approximation to the M-estimator for a discontinuous 
$-function and to show its consistency and asymptotic normality. We shall do 
it along similar lines to those in the case of continuous $-function, of course 
with necessary modifications. Let us consider the $-function defined in Theo- 
rem 3 and let K be a positive constant. Then for any  EN and 9 > $ define 

$,,(z) = ~{ (a ,401 , -1 f  (o l , -~s -1 )n9K-1 ( z - r , ) )  

for fz-r,l < ~ n - % d  S E  ( 1 ,  2 ,  . . ., m) 
and 

$,,(z)=$(z) elsewhere. 

Since 9 will be assumed to be fixed, we have omitted it in the notation for $,, (z). 

THEOREM 5 .  Let the assumptions of Theorem 3 hold and q (see Theorem 3) 
be positive definite. Then there is a such that 

and 

Theorem 5 allows us to give the definition of approximate M-estimator for 
discontinuous $-function. 

DEFINITION 1. Under the approximate M-estimator for any discontinuous 
$-function we shall understand that solution of equation (21) which was de- 
scribed in Theorem 5. 

Remark  8. Notice that in some sense the construction which was pre- 
sented a few lines above and which was a justification of the previous definition 
also gives an idea how to find the approximate M-estimator. Of course, in the 
case when (21) has more solutions we have to choose one of them, similarly to 



the case when we obtain several solutions of (10). The above-mentioned con- 
struction (namely, the proof of the previous theorem) however indicates even 
more. It  is known (and after all it is clear without any special knowledge) that 
to find the M-estimator generated by a discontinuous $-function need not be 
very simple because it is necessary to solve directly the corresponding extremal 
problem and not only an equation of type (lo), see e.g. Koenker and Bassett 
(1978). From the above however it follows that we may find an approximation 
to M-estimator generated by a @-function with discontinuous $-function in 
a way which is used for finding M-estimators generated by continuous $-func- 
tions (see e.g. Antoch and Vihk (1991)), simply considering E "continuous 
modification" Gn of the function $. At this moment we are not able to show 
formally (after all, this is not the goal of the paper) that this approximation 
to the M-estimator has asymptotically the same properties as the "precise" 
M-estimator (hopefully for finite n and small K). 

On the other hand, for fixed n and for K 4 0, the solutions of (21) con- 
verge to solutions of (10) {with studentized residuals, if such a solution exists). 
It supports a hope that for small K the statistical properties of the approxima- 
tion to "precise" M-estimator will be similar to the properties of that "precise" 
M-estimator. 

Moreover, for some q with discontinuous II/ we may guarantee that a solu- 
tion of (10) exists and that this solution is the solution of the corresponding 
extremal problem (9) (of course, if we have more solutions of (lo), then one of 
them is a solution of (9); see Rubio and ViBek (1996). Then this solution is 
probably nearly the same as a solution of (21) for small K. After all, both 
estimators have in this case the same asymptotic representation. 

Simple consequences of Theorem 5 (and of Definition 1) can be given as 
the following corollary, 

COROLLARY 4. Let q (see Theorem 3) be a positive de$nite matrix and 
6(,, a &-consistent estimate of a,, . Then under the assumptions of Theorem 5 we 
have 

n ,,h (p'sn) - $) = n- ' I 2  q - ' X ,  ($ (e. a; ') - w (log d,) -log a,,)] + o, (1). 
t = l  

Moreover, i fw = 0, A(/?""-8') is asymptotically normal with zero mean 
and a covariance matrix C = q-  E {$2 (el ae; I)) Q [ q -  lIT. 

Finishing preliminary considerations we have at hand sufficient tools for 
the study of Durbin-Watson statistics for M-estimation. 

Modifying Durbin-Watson  trick. In this section we shall show 
that the critical values of Z ( D ( ~ , " ) )  and z(o("*")) are asymptotically the same. 

First of all we give a technical remark. In view of finiteness of Latin 
alphabet and also due to some historical reasons which established some habits 
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in the notation in M-estimation as well as in studies devoted to Durbin-Wat- 
son statistics, some letters in the next text will denote different objects than in 
the previous text. We believe that a misinterpretation is (nearly) impossible. 

We shall need some well-known assertions (the proof of which can be 
found e.g. in Judge et al. (1985) or in Zvara (1989)). 

ASSERTION 2. Let the matrix M be idempotent. Then its rank is equal to its 
trace. 

COROLLARY 5. Let the design m t r i x  X (of type n x p)  be o f i l l  rank. Then 
M = 9 - X  (xTX)-I XT has rank equal to n-p. - 

ASSERTION 3. Let the matrix M be real and symmetric (of type p x p). Then 
there exists an orthogonal matrix L such that L?ML is the diagonal matrix 
A = diag {g,, 52, . . ., qp),  where gl, g2, . . .l g p  are eigenvalues of the matrix M .  

COROLLARY 6. If M is Q projection matrix, then there exists an orthogonal 
matrix L such that i? M L  is a diagonal matrix the diagonal of which consists of 
ones and zeros (only). 

By analogy with (3) let us put for any B E  RP (see also (2)) 

In what follows we are going to modify Durbin-Watson statistics for M- 
-estimators. Due to the fact that there are not (generally) closed formulae for 
M-estimators, our considerations about them will be (inevitably) asymptotic. 
Hence instead of considering one fixed matrix A, we wiIl need a sequence of 
matrices {A'")),",,. Moreover, we shall assume that all of these matrices are of 
type A, (see (6)). To simplify the considerations in the following, let us assume 
that a is a fixed number (a E (- 1, 1)) for all n E N. It will allow us to omit 
superindex a without danger of misunderstanding. 

THEOREM 6. Let Assumptions d and B hold and let the randomJluctuations 
in the regression model (1) be normally and independentiy distributed. Then there 
are z~ (f lM>"))-  and zu (B(M'n)) such that 

and the critical values of the statistics zL (B(Ms")) and zU(B(R'M*")) are asymptotically 
equal to the critical values of ~ ~ ( p ( ~ ~ . ~ ) )  and z,(lS(LS7")), respectively. 

In the rest of the paper we shall give an idea for which n of these asymptotics 
may start to work for a somewhat special, however frequently used setup. In order 
to do this, let us inspect the magnitude of the corresponding terms of (90) (below). 

First of all, let us recall that a is the projection matrix, and hence it is 
decomposable into the product a, .a2-. . :& of p matrices of type 
4-u .uTl where U E R "  (in fact, these vectors u's are the eigenvectors of 



a corresponding to nonzero eigenvalues of R?). Then we may apply the part 
(b) of Durbin-Watson's lemma and we obtain 

First of all, let us give an idea about the moments of variables in (90) (for 
the definitions of the variables see (87)). We will assume that e;s are indepen- 
dent and identically distributed according to a symmetric distribution function 
(around zero) and that $ is a 3-optimal function, i.e. that it is asymmetric 
($ (-2) = - $ (2)). It  implies that Eel = 0 as well as E$ (el) = 0. The evalua- 
tion of moments of is nearly the same as in Durbin and WatTon (1952) and 
very similar to the evaluation of 5, which we shall start with, since it is the 
simplest. The evaluation for the other variables (a and 3) will be similar. Firstly, 
we will be interested in the second and the forth moments of cis and in covari- 
ances of [: and [z  (for t # s) because they are relevant for the first and the 
second moment of z. 

For the second moment of [, we have (remember that E? is orthonormal) 

and Table 1 shows that the values of E[el-$(e1)/yl2, and hence also the 
value of E[? for the Huber $-function and the frequently used values of tun- 
ing constant are really rather small (the Huber $-function is given by $(z) 
= max { - const, min {z, const)) and const > 0 is frequently called a tuning 
constant). (Let us recall that in our framework Et? = 1 and that moreover in 
the numerator of (90) we sum n-p of 5:'s while only p of 1,2's.) 

For El: the situation is sIightly different from that one for E t f ;  see Durbin 
and Watson (1952). Since Z;=, & = 1 (for t = 1, 2 , .  .., n), we have 

n - Zj=,  h$ = 1, and so 

Consequently, for var (5;) we have 

{ [ "q4 [ "lq2, ..l[el $;1)l2}. (24) var (c;) < max E el -- -E2 el -- 
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Further we need to estimate an upper bound for ~a r (E ;=~- ,+ ,  v, [f). First of 
aIl, from (22) we have 

Then for t # s (keep in mind that z=, h;, % = 0) - 

Since the mean value of 5; is given in (23) and does not depend on t (and s), we 
have 

Now let us consider an extremal problem: 

For u, VER", llull = 1, llvll = 1, uTv = 0, find 

- max {a: C uj4 + 2~ a, C uf v: + a: C vj4). 
j=  1 j =  1 j= 1 

A straightforward computation for n = 2 shows that the maximum is 
attained for 

and is bounded by $(a; +a:). One can easily verify that the same solution is 
valid for any n just putting uj = 0, v j  = 0 for j = 3 , 4 ,  . . ., n. (Any other "dis- 
tribution of mass" among the coordinates, by the restriction that llull = 1 and 



llvll = 1, decreases the maximum.) But then we have a little bit more general 
extremal problem: 

FOT u l ,  U Z ,  . . ., up E Rn, u:ut = ast, s, t = 1,  2, . . . , p ,  vt 2 0, find 

The solution of this problem gives an upper bound of the maximum equal 
to 4 z:=, vf , and hence 

C C v,v. $Cjc;  v: .  
t = n - p + l  s = n - p f l  j=l  t = n - p t l  

This yields 

Table 1 again indicates that the values of var([:) as well as the values 
of cov (a, 4:) are not very large, and hopefully also var (x:= - + , v ,  5:) will not 
be large. Similarly for variables from the last but one term of the numerator 
of (90): 

One can see that derivations of (23) and of (27) are very similar, and hence in the 
derivation of further expressions (which are analogical to (24) and (26)) the details 
will be omitted. Keeping in mind that we have assumed that Eef = 1, we obtain 

{ { [ "l)]}', E [el -yr +2E2 {el -y]}}, < max E el el -- 

which means that 





This concludes the study of two last terms of the numerator of (90). To give an 
idea about moments of random variables from the second term of the numera- 
tor of the fraction in (90) let us put - 

Z =  A-e = (el-e2, 2e,-el-e,, ..., en-enl)T.  

In what follows, let I t j  denote elements of the matrix I? (notice that in 
order to simplify the next considerations we have denoted the ( t ,  j)-th element 
of I? by b instead of I*). Then 8 = LT 8 can be written as 4, = z:_, b4, and hence 

Using the Cauchy-Schwarz inequality we arrive at 

and so from (31) we obtain 

(On the other hand, for the special case of Huber's $-function, el -+(el)/y 
is nearly- zero for lell smaller than tuning constant, and hence 
E {el [el - $ (el)/y]) w 0; in fact, it is less than lo-' for all the values of tuning 
constant. That was the reason why it was not included into Table 1.) Similarly 
we have 
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We shall give only examples of terms obtained from (32). Firstly we obtain the 
mean value of squares of the corresponding terms. The first one is 

the second one equals - 

and the third is simijar to the second one. Further we obtain "cross-terms". The 
term which is the mean value of the product of the first and the second term 
from (32) has the form 

The product of the first and the third term from (32) is similar while the 
product of the second and the third one has coefficient 2 instead of - 4 but the 
rest is nearly the same as (35). Now let us recall that we have assumed that 
Eef = 1 and that from the orthogonality of the matrix L it follows that 1; $ 1, 
t ,  j = 1 ,  . . ., n, and hence 

Taking into account (32)-(36) (and similar relations valid for other terms) we 
conclude that 

and hence 



In a similar way we may find that (for t # s) 

[ "')I2 { [ "l'])} + E  el-- + E 2  e l E  el-- y 

and hence again 

Finally, we can find similar inequalities for the terms 

and inequalities for the sums of terms from (39) which would be analogical to 
(37) (or (38)). They would have however instead of coefficient 16 the coefficients 

n  

C 1, (the first term), 

It 

(41) 4& (the second and the third ones), 
t=n-p+l  

(42) 2 ( A )  ( ) (the forth and the fifth ones). 
t = p  t = n - p i -  1  

Now taking into account (25), (26), (28)-(30), (37), (38) and (40)-(42) we obtain 
the term 
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which, together with the Durbh-Watson expression for var (x::: v, g) (see 
(44) below), gives an upper bound for the variance of the numerator in (90). 
In a similar way we may find a lower bound for the numerator. Of course, to 
find similar bounds for the denominator is much easier. The results of these 
steps for the special case of Huber +-function will be given later in Table 2. 
Earlier, however, we give mean values of variables which enter the previous 
inequalities. 

Table I. Mean values of the random variables which are relevant for the estimate-of bounds of 
the mean value and of variance for Durbin-Watson statistic (since E lei [el - $ (el)/y] 1 < 10- for 

aU values of tuning constanf we have omitted it in the table), 

2'(e1) = N ( 0 ,  I), $ - Huber function, for y see Assumptions d.  

The considerations presented above lead to the conjecture that the be- 
havior of Durbin-Watson statistics for r pM?")) may be similar to that one for 
j(Ls,n). The values gathered in Table 1 give a hope that especially the mean 
values of the "upper" and the "lower" statistics z, and z, (see (8)) for r(fl(M,n)) 
and r (flLS*")) will be nearly the same. The difFerences of variances (of the statis- 
tics evaluated for the least squares and for an M-estimator) can be expected to 
be somewhat larger. Table 2 shows lower and upper bounds for Ez (fi(M'n)) and 
varz@(M."l) obtained from (90) and evaluated so that we have assumed ap- 
proximate independence of z(B(~*")) and its denominator and evaluated mo- 
ments of z(/?(~*")) in the same way as Durbin-Watson did that. In fact, for 
hding bounds of the mean value of z I$(~."))  we have used the relation (6) from 
Durbin and Watson (1952), which reads 

Tuning constant 

B [ e l - y y  

E[el-yr 
E {el [el -?]}' 

1 "-P 
Ez @*(LS,"I - v, = f (say), 

together with the Durbin-Watson lemma (see (5) and (22)) and then we have 
carried out the corrections implied by (90) for Ez ($(M*"l). Similarly, when look- 

16 - PAMS 23.2 

1 .O 

0.1073 

0.0785 

0.3179 

1.1 

0.0880 

0.0664 

0.3429 

1.2 

0,0718 

0.0559 

0.3077 

1.3 

0.05805 

0.0467 

0.2729 

1.4 

0.0466 

0.0386 

0.2392 

1.6 

&Om 

0.0315 

0.2072 



ing for the bounds of var (z (PMi"))) we have employed (7) from Durbin and 
Watson (1952), i.e. 

2C::(v,-f12 
var z ( j P S q n ) )  = 

(p l -~) (n-p+2) '  

(9, (22) and again "corrections" which follow from (90) and which were for the 
upper bound given (for the numerator) in (43). (Of course, Table 2 is given 
assuming the Huber $-function.) - 

Table 2. Lower and upper bounds of the mean value and ofvarianoe for Durbin-Watson statis- 
tics z(flM.")), ie. for statistics evaluated for residuals corresponding to f l ( M l n ) ,  

2 (el) = N (0, I), $ - Wuber function with tuning constant c. 

The rows of this table which start with the value of tuning constant c correspond to D-W statistic evaluated for the Huber 
M-estimator with this tuning constant. At the laat row of every table the values of bounds of IFW statistic for the least squares are 

given for comparison with other rows. 

upper 2.10 0.425 2.36 0.722 263 1.117 

lower 
c = 1.3 

- upper 

lower 
c = 1.4 

upper 

lower 
c = 1.5 

upper 

z @**") 
lower 

Upper 

1.88 

2.10 

1.89 

2.10 

1.89 

2.11 

1.89 

2.11 

0.260 

0.397 

0.252 

0.370 

0.244 

0.346 

0.157 

0.200 

1.63 

2.36 

1.63 

2.36 

1.64 

2.36 

1.65 

2.35 

0.322 

0.663 

0.305 

0.607 

0.289 

0.556 

0.101 

0.249 

1.35 

2.63 

1.36 

2.63 

1.36 

2.63 

1.38 

2.62 

0.424 

1.017 

0.392 

0.923 

0.362 

0.835 

0.048 

0.313 
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n = 40 



USING SCALE- A m  REGRESSION-EQVARIANT M-ESTIMATORS 

As we have already mentioned the M-estimators dehed by (9) or (10) are 
not scale- and regression-equivariant. To achieve it one can employ (12) with 
scale-equivariant and regression-invariant estimate of scale &(n), and conse- 
quently we may write the asymptotic expansion for p M s n )  in the form 

It means two things. At first the effect of the fust term in the parentheses 
(in (45)) on the value of residuals is of order I/&, since (l/fi)E, X, $ (et/cro) 
is bounded in probability as follows from CLT. Similarly, the effect of the - - 

second term is also of order 1/Jn because & (log - log (a,,)) = 0, (1). 
This means that the effect of the both terms (in the parentheses of (45)) on the 
value of residuals is of the same order I/&. At the first glance, it may seem 
strange but it is necessary to realize that we have 

which indicates that r(fl(M*n)) is equal to e plus some additional terms of order 
I/& etc. 

Secondly, repeating the arguments of Remark 7, we should stress that due 
to the shape of the matrix Q-I (and the fact that Q;l + Q-l), the second term, 
1.e. 

has a considerable effect only on the intercept of /?M1n). So, if we restrict ourselves 
to tbe Durbin-Watson statistic given by (7), it is clear that the moditication 
of the asymptotic representation of flMsn', i.e. when we employ (45) instead of 
(74), does not affect the numerator of (7) because the effect of the modification 
in (451, namely the term containing the estimate of scale, on the residuals is the 
same for all of them, and hence it disappears. The ef'fect of the modification in 
(45) on the denominator of (7) does not disappear, however, as we have shown 
above it is hopefully rather small. 
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CONCLUSION 

The present paper shows that under the assumption of normality of ran- 
dom fluctuations in the regression model (I), Durbin-Watson statistic evalu- 
ated on the base of residuals from robust regression analysis (carried out by 
means of an M-estimator) has asymptotically the same critical values as Dur- 
bin-Watson statistic for the analysis based on the least squares. Moreover, it 
demonstrates that in the case where the Huber $-function is employed, the 
differences in the moments of zL@LS*n)) and z,@"-")), and of z~(#? [~~ ' " ) )  and 
~,(fi("~"]) (and hence also in their critical value) are even for modeTate sample 
sizes as n = 20, 40 and 60 rather small (in the case of the mean, which plays of 
course a crucial role for the magnitude of the lower and the- upper critical 
value, the differences are negligble). 

One may object that we usually employ M-estimators just in the case 
when there is a suspicion that data are contaminated, and hence not normally 
distributed. As we have already discussed, in such a case we should weight 
down the influence of suspicious observations so that the random fluctuations 
are approximately normally distributed (and we should verify it a posteriori, i.e. 
after estimating the model). Consequently, we may hope that our results are 
still acceptable in the sense of approximately efficient forecast. 

It also hints what the next step of the research should be, namely to study 
the behavior of Durbin-Watson statistic evaluated on the base of residuals 
obtained in regression analysis performed by the robust method with high 
breakdown point, e.g. the least trimmed squares bLTs or the least weighted 
squares pWS. Recent results describing the Bahadur representation of pLTS as 
well as of pws may allow us to do it (see Viiek (1999a)). 

APPENDIX L PROOFS OF THEOREMS AND L E W  

Proof of Theorem 1. Without loss of generalitylet a,, = 1. First of all 
let us write for K E R, 1x1 < O 

where h E 14 n-'I2 exp (-n-1/2 @), $n-lI2 exp (n-lI2 @)I and also 

[eet-nn1/2XT~] e ~ p ( - n - l / ~  rc) 

and finally 

(47) X, {$ ([e, - n - 'I2 XT z] exp (- n- 'I2 rc)) - $ (el)] 
- - -n-1/2Xr(XTz+e,tc)@(et) 

+n-1X,(X~~~+he~-n-1/2~~z~h~~2)@(e,)+~,~,,(z, rc), 



where the remainder term can be written in the form 

for some tp) for which we have I{J")-e,l a n- lJ2 IXT T+ et XI. Now, for any fixed 
j, k ~ ( 1 ,  2, . . ., the sequences 

{xdx,$'(et)-E[XtjXtk$(et)l];"=l and (Xtj[etm$(e3-E[et'9'(e;)~])~1 
- 

are sequences of independent identically distributed random variables with 
zero mean and finite (positive) variances. Hence the Lindeberg-Lkvy form of 
the central limit theorem allows us to find an no E N such that for any E > 0 we 
may find C, < oo so that for any re > no 

as well as 

Taking once again into account that for any j = 1, 2, . . ., p 

are sequences of independent identically distributed random variables with fi- 
nite mean and applying Kolmogorov's law of large numbers we again find that 

n-' max ( xtj e, $'(ex)( = &),(I) 
l d j < p  t = l  

and . -  

Due to the fact that $' is absolutely continuous we may write 
rjn) 

v (55"') - $' (et) = j $' (4 d z ,  
et 

and hence for any n we have 
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On the other hand, applying Holder's inequality we obtain 

and hence there is a constant Ci such that 

sup lIxtR,t(~, ~)l l  d n-l 8' CI $:up llxh12 {IIXtll+ letl). 
F* 

Now, it is again suffcient to take into mount that (IIXtI13)z and {IIXd12 le,l),"= 
are sequences of independent identically distributed random variables with finite 
mean values, and to apply Kolmogorov's law of large numbers onee again to 
find that 

n 

(52) sup ll C XtRnt(~, KIII = @,U). 
Fs t = l  

Now the theorem follows from (48H52). 

P r o  of of The o r em 2. Not loosing generality let us again assume that 
D,, = 1 and notice that due to the character of the function t,b (z) the assump- 
tions (14) are fulfilled and the second derivative (where it exists) is equal to zero. 
Finally, let us put 

and r = max {lrlf, Irkl). 
The problem induced by the fact that the derivative @ is a step-function 

is that we cannot use the relation (47) in the case when there is an 
so E (1, 2, . . ., k) such that one of the following conditions holds: 

So the idea of proof is to withdraw from S,(z, rc) the sum of all g,'s for which 
(53) takes place, then to show that the sum of the terms which were withdrawn 
from S,(z, rc) is small in probability, and finally to add to the "reduced" sum 
Sn (z, IC) for all indices t which were in the previous step withdrawn appropriate 
terms (the sum of them will be shown to be also negligible in probability) to 
reach the assertion of the theorem. 

In order to fulfill the just sketched plan, let us denote the event given by 
(53) by B,,(t, z, rc) and its indicator by Is,(,,.,,. Since the left and the right 
inequality in (53) are successively equivalent to 

r,, d e, < r,, exp (la- + n- 'I2 XT z 

and r , , e ~ p ( - n - ~ / ~ u ) + n - ~ / ~ X ~ ~ < e ~ ~ r , ,  

and due to the assumption on the upper bound of the density of random 
fluctuations, there is a constant C, such that the conditional probability of 
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3, ( e ,  r ,  rc) for given X, is bounded by C1 ( n  ' I 2  ~ x T  t i+ r lexp (n-'I2 IC)- 11) 
(starting from some no). Now 

Then there is a constant C2 such that for z, K E the corresponding probabili- 
ty is bounded by nL1I2 C2  {IIXtII + 1). Similar considerations-lead to the exist- 
ence of a constant C, such that 

J $ ( ~ e , - n - 1 ~ 2 ~ ~ ~ ~ e x p ( - n - 1 t 2 ~ ) - $ ( e t ) )  < n - l l 2 c 3  (llxtll+ let13 . 
Then 

for appropriate constants C, and C,.  Now we have 

and using Chebyshev's inequality for the nonnegative random variable, we 
obtain 

II 

On the other hand, x:=, gt (1 - b,(t,T,w)) can be treated in the same way as the 
Sn(r,  K) in the proof of Theorem 1. To finish the proof we need to add to 

n 

(55) - C n- ' I 2  Xt (XT T+ et 4 C)' (et) ( 1  -IB,{~,T,K)) - 
1= 1 

the sum 
n 

n- ' I 2  Xt (XTr f et C)' (et) i~n( t , r ,w)  
t = l  

to obtain the expression given in (lti), namely n1l2 Q , z+n- l i2  W x= l X* 11-- 
However, along similar lines to those we arrived at (54) we may find that 

sup 1 1  i n- '" Xt (XTr + et 4 Y (et) ~B~( t , , ,~) l l  = 
q7 t = 1  

so that we can add this to (55). That completes the proof. H 
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P r o  of of Theorem 3. Without loss of generality let us assume that 
m = 1 (write r instead of r , )  and ol, < a , ,  and put 6 = al - ao.  According to the 
assumptions, there is C1 < a such that fe, (2) < C1. Let us write 

4.,(n, z ,  K )  = $ ( [ e , - n - 1 / 2 X : ~ ]  ~ ~ ~ e x p ( - n - ~ ~ ~ u ) ) - ~ ( e , ~ ~ ' )  

and assume that a,, = 1. It is clear that &(n,  z, K) # 0 only if either 

(56) e , < r < [ e , - n - 1 / 2 ~ ~ ] e x p ( - n - 1 1 2 u )  

o n - 1 / 2 ; y T ~ + r e x p ( - n - 1 / 2 ~ ) <  e, < r 
or 

(57) [ e , - n - 1 / z ~ ~ ~ ] e x p ( n - 1 / 2 x ) < r < e ,  

o r  < e, c n - 1 / 2 ; y T z + r e x p ( n - 1 / 2 ~ ) .  

Denote the events described in (56) and (57) successively by Blkl(n, T, K), 
k = 1, 2. First of all, observe that (56) can take place when 

and similarly (57) can hold if 

(59) n - l J 2  XT z + r exp (n-'l2 K) > r.  

Fix an E E  { I ,  2 ,  . . ., p)  and denote successively by ~ ? ( n ,  z ,  K ,  I ) ,  j = 1,  2,  3 ,  4 ,  
the events 

{w E a: {n-'I2 XT z +I  exp (n-'I2 K) < r )  n {X,!  > O ) ) ,  

(w E 8: (n-'l2 XT T + r  exp (n-ll2 K )  2 r )  n { X t l  > 0 ) ) .  

Further, denote by 7ciAk)(n, z, u ,  I) ,  j = 1 ,  2 ,  3 , 4 ,  k = 1 ,  2, the probabilities of 
the events -B$~) (n, z, K )  n D!) (n, 2, K, I).  For any n E N, j = 1, 2 ,  3 , 4  and 
k =  1,  2 we have 
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and hence there is a constant C2 such that 

Of course, the lower and upper bounds of the integral in (60) should be inter- 
changed if 

r < n- '1' [XT z + r exp (n- K)] 

but (61) holds for any combination of j and k. Now, we shall study the sum 

Since u:=, Dr ( n ,  r , K ,  I )  = a.s, we have 
4 

and hence 
4 

(421 Ett  (n, 2, u) = x E Ctt (n, 7, 4 i ~ ~ ~ l ( , , Z , K , , ) l m  
j=  1 

Then 

Now consider X ~ I  [ t t  (n, 2, u)  in:1)(n,r3,,t) - E [St (n, r ,  u) i ~ i l ) ( ~ J ~ , l ) l ]  We easily 
find that (for 6 see the second line of the proof of Theorem 3) 

= d X t g ( l - z i l , l ) ( n ,  T ,  u ,  1)) = - d l ~ ~ ~ I ( l - n i l * ~ ) ( n ,  7, u ,  l ) )  > -dlXtfi 

with probability d ' , l ) (n ,  T, K ,  1 )  

and 

(65) X t ~  [t t (n ,  z? K) l ~ ~ l ) ( Z l , Z , K , f )  - [ S t  (n? T, K )  iD~l) (n .z ,K,~l ]  

= Sxtl nilJ)(n, T, K, 0 = 6 IXtlI d l J ) ( n ,  z ,  u ,  1)  < &-'I2 C2 lXtll. [E llXtll + 11 

with probability 1 - zjl"' (n, z, u ,  I). 

Taking into account the expressions after the first sign of equality in (64) and in 
(65), and the corresponding probabilities, we immediately find that 
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(Notice that the last equality cannot be found as a consequence of taking the 
conditional mean value of the expression given in the square brackets). So, 
putting for any H E N  and t = 1, 2, ..., n 

and btl(n, 2, K) = S IXtll n{lai1 (n, z, u, 1 ) ,  

we may use Lemma A.2 (see Appendix 11) and define p f ) ( n ,  z, rc), the time for 
Wiener process to exit the interval ( -at, (n, T, 4, b,, (n, z, K)). Then we obtain 

- 

xti [lt(nY '2 '1 '@l)(n,r,K,~) -' [ l t  ( n Y  T, K)lDil'(#t,z,~,i)]] ' (A!) (ny T, K)), 

where means equality in distribution. Similarly, for j = 2, 3 and 4 we find 

Finally, putting ptl (n, r, IC) = fiv3(n, r. K) and taking into account (631, we 
obtain 

n 

n-lJ4[Snl(~, K)-ES.~(T, K)] = n-lJ4 Xti[tt(n, T ,  u)-E<,(n, z, 41 
t = l  

Now, let us take into account inequalities which are given in (61), (64) and (65), 
and put ctl = 6 [XtlI and dtl = n-lI2 6C2 lXtrl. [E IIXtIJ + 11. Defining 

(66) (n, 8) - the time for Wiener process to exit the interval (- c,,, d,,), 

we obtain 

and therefore 
n 

(67) sup n- 'I4 ISn1 (2, K)- E Snl (z, K ) I  sup I W (n-'I2 z ptI (n, z, x))l 
s;, F e  t = l  

Moreover (see again Lemma A.2), we have from (66) for any r ,  KEY@ 

EPtl (n, 8 )  < 4nM1I2 C2 EX:. [E ((X,l(+ 11 for all n E N ,  



It means that for any positive E there is a constant Cj and n, E N such that for 
any n > n, 

and then there is also C4€(0, a) such that 

- 
see e.g. Csorgo and Rkvksz (1981). By (67)-(69), we get 

P {sup n-lI4 IS,! (T, K )  -EXnl (z, u)I > C4) < e, 
y e  

which means that also 

is bounded in probability. We shall complete the proof if we show that 

We have already shown that Ee, (n, 7, K )  = z;= E [Ct(n, r ,  x) IDp+n,T,K,o] (see 
(62)). On the other hand, we have 

(Again, the upper and lower bounds of the integral should be interchanged if it 
is appropriate.) The last expression is equal to 

- 6E (Xt [n- XT z + r (exp (n- ' I 2  u) - I)] fet (r)) + ER,T, (z , K) ,  

where 

Moreover, 
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and hence we have 

Finally, 

= n-lJ4 SUP [I E R ~ ( T ,  rc)II + o (n-314) < .-'I4 sup I[ER&(z, rc)ll-+ 6 
t = l  5 t = 1  

Recalling thatf,, (2) is Lipschitz, we have for z E [n- 'I2 XT K: + r exp (n- rc), r]  

and hence 

for some constant C6 (again the upper and the lower bound of the integral 
should be interchanged if it is appropriate). So we have 

which completes the proof. BS 

Proof of Theorem 4. Firstly, let us realize that the assumption that 
Q is positive defmite implies that the determinant of this matrix is positive 
(keep also in mind that the matrix Q is of type pxp). Let us realize that 
determinant-of matrix is a continuous function of the elements of the matrix. 
Secondly, the sequence of matrices {Qn)nm=i converges to the matrix Q in proba- 
bility. Hence we can find for arbitrary positive numbers E and S an  EN so 
that for all n > no the probability of the set on which the determinants of 
matrices Q, differ from the determinant of matrix Q less than S is at least 1 - E.  

Assume that S is smaller than the determinant of Q. Then, for the correspon- 
ding n and a's, Q, are also positive defmite and regular. 

Secondly, we are going to use Theorems 1 and 2 with properly selected 0. 
First of all, let us fix cl > 0. Due to the &-consistency of &tn, (w) we may find 
nl EN,  nl > no, so that for all n > nl there is a set D, such that P (D:) < and 
for any w ED,, we have 6 18;) - c:,l e L for some L > 0. Then of course for 



any WED,, also &~;;IC?~,~-O~J c L* for some L* > 0, It means that we can write 
8(,, (a) = a,, exp (n-ll2 K) for some rc = K (w), where [lc (w)l < p. Finally, select 
any t3 > L*. Now, using (15) and (16) we obtain 

By Assumptions 3 and the assumptions on the functions rl/; and $, it is 
possible to verify that the assumptions of the Lindeberg-LBvy theorem are 
fulfilled for the sequence of random variables (X, $ (e, a: I)), and from the 
assumption that E$(el a,') = 0 and X, and et are mutually ~ndependent it 
follows that 

n 

n-'t2 C Xt$ (e, u,') 
t = l  

is bounded in probability (of course, independently of z and rc). It means that 
for any c2 > 0 there is a constant C1 > 0 and n2 EN, n2 > nl, such that for any 
n > nz we have 

n 

P(BJ > 1 -c2 for B, = {W E Q: \In- l iz Xt $ (e, a;l)ll < Cl) . 
t = l  

Further, for any A > 0, let n3 > n, be selected so that for all n > n, there is 
a set Ci  such that for all o~ Cf the term o,(l) in (70) is smaller than A and 
P (C;) > 1 -c2. Without loss of generality, let us assume that y > 0. Taking 
into account the linearity in z of 

n 
ZT n- 112 CX,$(e,a,') and z T W E X 1 ~ ,  

t= 1 

we may find for any C2 > 0 and any fixed KE(O, C2) a constant Cj > 0 SO that 
for any n > n,, co~B,nC;  and any z€RP, llzll= C,, we have 

(since we have assumed that the matrix Q is positive definite and y > 0). Final- 
ly, applying Assertion A.4 (see Appendix 11) for any n > n2 and w E B, n C,d n D, 
we find z€RP such that llzll < C3, z = ~ ( u ,  a) and 
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Writing r(u, w) = &@(us w)-$) and using once again &-consistency of 
&I,,, we complete the proof of the promised assertion. 

P roof  of  Corol lary  2. Let us recall that by the previous theorem we 
get 

and by the assumptions of this corollary we also have 

Moreover, 

So using (15) and (16) for r = ,,h (fi(M*n)- $) and K = & (log -log o ~ , ) ,  we 
obtain 

which yields (19). 

Proof of Coro  11 a ry  3 directly follows from the previous corollary. rn 

P roof of T h eor  em 5. Similarly to considerations in the proof of Theo- 
rem 3, without loss of generality let us assume that m = 1 (i.e. the function ~ has only one discontinuity), r = 0, o12 = -al = *S. Fixing in an appropriate 
way O (see the second paragraph of the proof of Theorem 4), let us consider for 
llzll < @ Y  1x1 < @ 

n 

C X, {$ (Let - n-'I2 XT Z] D; exp (- n- K)) 
t = l  

-$([et-n-1/2x~] a , l e ~ ~ ( - n - ~ / ~  rc))). 

Since + (2) = gn(z) for 121 2 Kn-*, the difference 

$([q-n-112XTr] ~ ; ~ e x p ( - n - ~ 1 ~ 1 c ) ) - $ ~ ( [ e , - n - ~ / ~ ~ T z ]  a;' e~~( -n - l /~ rc ) )  

is nonzero only in the case when 

I[et-n-112X~~]~e;1exp(-n-1/2rc)l < ~n-', 



i.e. when 

According to the assumption of Theorem 3 there is 3 > 0 such that f, (z) < J .  It 
means that probability of the event (71) is bounded by 2JKn-" (notice that the 
presence of X, in the boundaries of the interval given in (71) does not play any 
role). For the notational simplicity let It be the indicator of the set 

- 
(a: $([et-n-1/2~:z] a & l e ~ p ( - n - ' / ~ u ) )  

# $,, (Let-n-'I2 XT Z] ne,l exp (- n-lI2 IC))). 

Then 

E {x, {$ ([e, - n- 'I2 XT 51 0;' exp (- n- 'I2 K)) 

- ~ ( [ e , - n - 1 ~ 2 ~ ~ ] c r , ; 1 e x p ( - n - 1 1 2 ~ ) ) } )  

= E (x, {$ ([e,-n-l /Z~Tz] a , ' e ~ ~ { - n - ' / ~  K)) 

- qn ( [e ,  - n-'l2 X: z] 0; exp (- n- '1' K ) ) )  I;) 

< E IIX,II - 8 .  J K n 8 .  

Since 9 > i, it implies that for any E > 0 

An analogical way leads to 

Applying (17) we obtain 
n 

SUP Iln-1/2 C X, {$,, ([e,-n-lI2 XT 21 G G ~  exp (-n-lI2 K))- @A (e, a,')) 
r e  t =  1 
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But it states that we may use the same idea which was used in the proof of 
Theorem 4, since we have 

n 

(73) n-1/2 C X, gn ([e, - n- I j 2  XT z] a,' exp (- n u)) 
t = l  - 

(compare (70) and (73)). Since it is clear that for the function $ (this is really $, not 
qn) we can verify (as in the proof of Theorem 4) the assumptions of the Lin- 
deberg-Ltvy theorem, so that again for any E > 0 we find a constant C1 and 
no E N  such that for any n > no we have 

P(Bn) > 1 - 8  for 3, = { u E ~ :  z x,~cI(~, u,l)ll < CI]. 
t - 1  

Using (72) once again we can find an nl 2 no such that for any n > n, we have 
A 

P(B,)>I-ZE for E n = { w ~ ~ :  l l n - 1 / 2 z ~ t & n ( e r g ~ 1 ) i i < ~ l ) .  
t=  1 

Accomplishing similar modifications in the rest of the proof of Theorem 4 we 
complete the proof of Theorem 5. rn 

Proof  of Theorem 6. For simplicity, let us assume at first that the 
corresponding $-function is continuous, W = 0 and a,, = 1. The asymptotic 
representation of b(Ml") may be written as (see (19)) 

where q is a p-dimensional random vector of order O,(n-I). Then 

(75) 
( j ( ~ , n ) )  = y-X . B(M,~I = xfj0 + e - ~ f i ( ~ ' " )  = e - X  @(M5n1 -go) 

Let us recall what we have already known about the magnitude of the terms in 
(75) (under the hypothesis of independence). The vector of random fluctuations 
e has of course the coordinates of order 0,(1). The second term 

1 
-Y-'XQ;' i xt$w n t =  1 

17 - PAMS 23.2 



has its coordinates of order Op(n-1/2), since the assumptions of the Linde- 
berg-L6vy theorem (see (14)) hold for the sequence {X, Il, (e,)],"=, of independent 
identically distributed random variables with zero mean and finite positive 
variance, and hence n-'1' r=, X, I) (et) is bounded in probability. Finally, co- 
ordinates of the term Xg are of order O,(n-I).  Let us put 

1 n 

K = ~ - - - Y - ~ - W Q ; ~  Xtl(/(et) and z = X - y .  
n t = l  

Then for any positive semidefinite matrix A we have - 

rT (B(M,nl) Ar = K ~ A K  + u T A ~  + r T A ~  + z ~ A z .  

From what we have just stated on the order of coordinates of-u and T, it is clear 
that the leading term rcTArc is about n1I2 times greater than any other term in 
the last equality. That is why we shall take in the next considerations into 
account only the term tiTAu in the numerator of Durbin-Watson statistic 
evaluated for r(b(M*n)). Since the situation of the denominator is similar, we 
shall consider the statistics 

tcTAk- 
rcTIc 

as an approximation to the precise value of z (fl(M.")). Since uTrc is not neghgible 
in probability, we have 

Let us put 

!P(e)=(t(e,),)(eJ, . . . ,$( en))l, ~ = [ ~ - x ( x ' x ) ' x ~ ] ~ = M . ~  

and 

176) 4 = x ( x T x ) - l x T  [ e-- y : ] = ~ [ e - ~ ]  (say,. 

Then - 

(77) u = q + 4  and M . @ = o ,  

so that 

qT .d  = 0, 

which implies that 
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Using Assertion 3 let us find an orthogonal matrix L (i.e. I?. L = A) so that 

where D is the diagonal matrix and the diagonal elements are just the eigenvalues 
of the matrix M. (Notice that due to the fact that L is orthogonal, and hence 
regular, it has the left inverse matrix equal to the right inverse one, and so we have 
also LJ? = Y,.) Let us recall that the matrix L is created from the eigenvectors of 
the matrix M and that M is the projection matrix (into the space &(M), the 
vector space generated by columns of the matrix M.) This implies that it is 
idempotent (Ma M = MI, and hence D contains only ones and zeros. Since 
rank (D)  = rank (M) = n-p, we may arrange the columns of L so that 

where 0 stands for a zero matrix with appropriate numbers of rows and 
columns. Now we may write 

where 

is the appropriate partition of the real symmetric matrix EAL. Now returning 
to (79) we may notice that 

Similarly, returning to (80) we infer that for a = X(XTX)-lXT (see (76)) 



Let N ,  and N2 be orthogonal matrices diagonalizing 3, and B4,  respectively, i.e. 

and 

where the blank spaces represent zeros, v l ,  v,, .... v,-, are eigenvalues of 
..... B ,  (and of course also nonzero eigenvalues of MA) and v,-,+ v , - ~ + ,  v, 

are eigenvalues of B4 (which are equal to nonzero eigenvalues of MA). Then 

is orthogonal and for fi = L . we have 

and 

Further, we obtain - - 

(83) I T ~ M A M E ?  = EIT~I?I?T~HF~fj = 

"1 

v2 

: 0 
vn-p : . . . . . . . . . . . . . . .  

- 0 0- 
and 
(84) gTl\;iAUfl = BTA2ElAT~E?fiTl\;irT 

- - 

- 
0 - 0 
. . . . . . . . . . . . . . . . . . .  

V.-pfl 

vn-p+2 

0 :  
- 
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Notice that by (83) we have rank(MA) = n-p. Since due to the right part of 
'(77) the "cross-term" in the denominator of (78) has disappeared, it seems quite 
natural to expect that similarly the "cross-term" in the numerator may disap- 
pear in view of the equality 

Unfortunately, (85) is not generally true, as the following example shows. Let 

0 0 
M E [ ;  ;I, a=[(, and A = [ ;  :I. - 

Then 

It causes that the anaIysis of the numerator of (78) will be somewhat more 
complicated. First of all, let us recall that M = 4-M, and hence 

Further, let us put 

Y ( 4  e- Y (e) (87) r= a, 9. = OAe, 8= ~ [ e - - ~ ] ,  [ = P [  1, 
and let us recall that fl is orthogonal, i.e. that we have also fir= e and 

= e - !P (e)/y, Keeping in mind that Xi's are independent and identically 
distributed, notice that due to character of the matrices PA, LT and I?T all 
coordinates of the random vectors 9, # and [ are bounded in probability, and 
this holds uniformly with respect to n, i.e. with respect to the number of obser- 
vations. Of course, we do not speak about the maximum of coordinates of 
these vectors, i.e. about e.g. maxIbtbn but we claim that we can find for all 
E > Oaconstant K > Osuch that,forall n ~ N a n d  1 < t < n,P(1$,1 > K) < &(it 
will be clear from the following that we shall need to know something about 
simultaneous behavior of the last p coordinates). Then we have 

and 



Now using (781, (81H84)' (86), (88) and (89), we obtain 

It is clear that generally z(piM'nl) and the denominator of (90), i.e. 
rT(/?M*n))r(fl(M*n)), are not independent, and hence it is not possible to use 
directly the approach for Durbin-Watson which was based on Pitman's or von 
Neumann's result (see Pitman (19371, von Neumann (1941)). 

In the further analysis let us restrict ourselves on the matrix A l  given 
in (6). Von Neumann (1941) has already shown (see e.g. Durbin and Watson 
(1952) or the original paper by von Neumann (1941)) that 

and so (see (5)) v,'s are bounded from above by 4 and from below by 0. Since 
M = 9 -X (XT X)-I XT has rank n -p (as we have already mentioned ealier, 
this follows from (83)), there are n - p  of its eigenvalues which are different from 
zero. Then ezploying the Durbin-Watson lemma, we may see the following. 
Having a fixed ~ ~ c i e n t l y  small positive number 6, there is an no EN such 
that for all n > no the value of the most of v,'s is greater than that S. Taking 
into account the transformation which defines namely r = RTe, we con- 
clude that has independent coordinates. Then using the Lindeberg-LCvy 
theorem, we may show that n- 'I2 v, 5: is asymptotically normally dis- 
tributed, and hence xri; V, z: (which is of course nonnegative) goes to infinity 
in probability. On the other hand, let us notice that all the sums in the nume- 
rator, except of the first one, contain for any n only p elements. It implies that 
these three last sums in the numerator of (90) are uniformly in n bounded 
in probability. In other words, they are asymptotically negligible with respect 
to the first one. A similar conclusion holds about the second sum in the de- 
nominator of z (PM,")). SO we may conclude that asymptotically Pitman's and 
von Neumann's result holds, i.e. that ~ G g ' ~ 3 " ~ )  and its denominator are asymp- 
totically indepedent. But it immediately implies the assertion of the theorem 
because then both types of statistics are the same, i.e. Z , ( B ( ~ ~ , " ) )  and z,(B("-")) 
are asymptotically equal each to the other. Similarly we argue for the upper 
statistics. 

The proof for a discontinuous $-function is analogical since the asymp- 
totic representation of the /?Mi")-f10 for the continuous and the discontinuous 
function are of the same character (see Remark 6 and Corollary 3). H 
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APPENDIX II. AUXILIARY ASSERTIONS 

LEMMA A.2 (Stepan (1987), p. 420, WI.2.8). Let a and b be positive num- 
bers. Further, let < be a random variable such that P( (  = -a) = .n and 
P (5  = b) = 1 - x (for a n E (0, 1)) and E l  = 0. Moreover, let z be the time for the 
Wiener process W(s)  to exit the interval ( -a ,  6). Then 

e w(~),  
where denotes the equality in distribution of the corresponding random varia- 
bles. Moreover, Ez = a.  b = var 5.  - 

Remark  A.9. Since the book by St~phn (1987) is in Czech language, we 
refer also to Breiman (1968), where however this simple assertion is not isola- 
ted. Nevertheless, the assertion can be found directly in the first lines of the 
proof of Proposition 13.7 (p. 277) of Breiman's book. (See also Theorem 13.6 on 
p. 276.) 

We shall need however a somewhat generalized version of the previous 
lemma. 

LEMMA A.3. k t  a and b be positive numbers. Further, let ( be a random 
variable defined on a probability space (a, d, P) such that P(5 = -a) = nl, 
P(( = b)=x2aluiP{{  =0) = 7r3,  7rj€(0, l ) f o r j=  1 ,  2 ,  3and7rl+x2+n3 = 1. 
Moreover, let E5 = 0. Finally, write A = (w E 62: (o) = 0}, for w E A put 
z (o) = 0, and for w E AC let z be the time for the Wiener process W(s )  to exit the 
interval ( -a ,  b). Then 

5 W (z) 

where denotes the equality in distribution of the corresponding random varia- 
bles. Moreover, Ez = a - b . (1  - 7c3) = var t. 

Proof.  Let us put 0 = Ac, &? = Ac nd ,  and FIB)  = 7c; P (B). Further, - 
let r= 5 for COEA'. Then ~ ( r =  -a) = z;~-Tc, and p(r=  b) = 7 c ~ l - n ~ .  Let 
finally z" be the time for the Wiener process W(s) to exit the interval (-a, b), 
and for W E  AC put z(m) = ~"(co). According to Lemma A.l we have r g  W(f) 
and Ez" = a-.b = var& Earlier than we shall continue, let us realize that 
W = zf(z) dz = a. b, wheref(z) is a density of distribution of f. Now, evidently, 
5 W (z) because on the set A we have 5 = 0 = W (7) and 

' 

ASSERTION A.4. Let U be an open bounded set in RP and assume that 
Q(z): O c RP _+ RP (0 is the closure of U) is continuous and satisfies 
(z- Q (z) 2 0 for some zo E U and all z E O\U. Then the equation Q (z) = 0 
has a solution in O. 

For the proof see Ortega and Rheinboldt (1970), Assertion 6.3.4 on p. 163. 
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