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Abstract. In this paper we demonstrate how to use the importance
sampling method to simulate rare events in a germ-grain model. We
analyze conditions under which two germ-grain models are mutually
absolutely continnous. We also find the likelihood set process. We
apply these results in simulating the probability that the radius of the
occupied component of the origin in continuous percolation is greater
than some R. This method is based on the reduction of the variance of
estimator.
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1. INTRODUCTION

A germ-grain model may provide a good description for a very irregular
pattern observed in microscopy materials science, biology and analysis of
images. Perhaps the best known model is the Boolean model (Matheron [5])
formalizing a configuration of independent, randomly placed particles. A Boole-
an model is formed by placing random balls centered at the points of a Pois-
son process and taking the union of these balls. The points of the Poisson
process are sometimes called the germs and the associated balls the grains. In
a natural generalization of the Boolean model the Poisson process of germs is
replaced by a general point process and balls by any compact sets or even more
general objects. If we take these objects as a mark at the point of the point
process of germs, then such a marked point process N will be called a marked
point process (abbreviated as m.p.p.) driving the germ-grain model.

The simulation of a Boolean model within a compact set T < R* falls into
the following stages. First, the number of points is determined by simulating
a Poisson random variable J with parameter 1|T}, where A is the intensity of




294 Z. Palmowski

the Poisson process and |T| the volume of the set T Then J independent random
points {t;} are simulated in T according to the Bernoulli process. Next, we
generate J iid. copies of radius m. Finally, the Boolean model is constructed by

A (N) = |) t:®m; 0),
ticT

where @ is the Minkowski addition, @ is the unit ball, m; an iid. positive
random variable, and {[t;, m;@©]} is a realization of N. Denote by Py(-)
the distribution of . (N). That is, &/ (N) is a random element on (%, 7;(R%),
where # is a family of closed sets and 7 (R?) is the Fell o-algebra generated by
Fx={FeF: FnK # @} for K ranged over all compact sets (see Matheron
[5], Section 1-2).

We want to simulate the so-called rare event AeJ; (R") for a Boolean
model 7 (N) or, more generally, for a germ-grain model. That is, Py(4) is
“small” (typically of order 10~%). Using the so-called Crude Monte Carlo
(CMC) method of simulation in this case is inefficient. Precisely, let n be the size
of a sample and 1(4,), 1(4,), ..., 1(4,) replicas of 1(4). Then estimating

p = Py(A) by

D=

.1
p=1 Y 14),

1

we make the relative error high:

Re(p): —VPU=P) 1

N/
Therefore we will use the Importance Sampling (IS) method. The main idea is
to compute Py (A) by simulating a germ-grain model from a probability measure
Py such that Py is absolutely continuous with respect to it. In Proposition 2.1
and Theorem 2.1 we find sufficient conditions under which Py is absolutely
continuous with respect to Pg. We also find the Radon—Nikodym derivative
L(-), that is

—+o as p—0.

ap "(") L©®

for realization Ee# of M(N). Then
(L1) - Py(A)=[LE)dPz(E).
W ,

Hence to estimate Py(A4) we generate n replicas (1(4,), L,), (1(4,), Ly), ...,
(1(4,), L,) from the measure Py and construct the estimator

2 s = 3 Li1(4).
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The 95% confidence interval is then

. 1.96
1.3) Pist—F=01s,
n
where
. 1¢ .
(1.4) O'%S = ;Z Liz l(Ai)‘“P%s-

i=1

We choose the measure Py (that is, the parameters of the new germ-grain
model) in such a way that the event A is observed frequently. In other words,
under a good choice of the parameters we decrease the relative error.

We analyze in detail the Boolean model, where the point process con-
stitutes a Poisson process and balls have radius m = 1. We consider the event
Ay such that balls form a chain (all circles in this chain are connected), which
joins the origin with the border of box T with side length R. That is, we
simulate the probability that the radius of the occupied component of the origin
is greater than R. The problem of finding Py (4,) is relevant in industry when
we apply the electrodes to the plates of the dielectric materials. Because of the
manufacturing process small holes arise in the electrodes. A chain of small
holes crossing from the origin to the border of the box means a diminished
value of the capacitance. Typically, the parameters of the model: size of T and
intensity of the Poisson process A are such that Py(4o) is “small”. We prove
that the IS scheme for an appropriate choice of a new intensity of the Poisson
process is logarithmically efficient, which implies improvement. We also give
some numerical results.

The paper is organized as follows. In Section 2 we find sufficient con-
ditions under which the two germ-grain models are absolutely continuous. In
Section 3 we analyze in detail the example mentioned above.

- 2. GERM-GRAIN MODEL

We start with a formal definition of a general germ-grain model. We will
define a marked point process as a point process on a product space of loca-
tions and marks with the additional property that the marginal location pro-
cess is itself a well-defined point process. By # (X) we denote the Borel o-field
of X. The location space (T, #(T)) is the compact subspace of the Polish space
(W, % (W)). The marks space (X, 7;) is the space of all compact subsets of
W with o-algebra 7 := J;(W)n X', where J; (W) is the Fell o-algebra on W.
Let (M, .#) be a measurable space of simple integer-valued measures which are
finite on bounded sets. We conceive a marked point process N as a random
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element on (M, .#, P), that is

(21) N(CI), B! C) = Z s(t,.(m),m,.(m)) (B’ C),
nz1
where Be#(T), CeJ;, and &, (,°) is a Dirac measure. Note that
N*(-):= N(-, &) constitutes a simple point process on T.
Let u(dt, dm) be a mean measure of N:

EN(B,C)=pu(B,C), Be#(T), Ce,.
Similarly, let A(dt) be a mean‘ measure of a point process N¥ (:):
EN*(B)= A(B), Be%(T).

It can be shown that u(dt, dm) is absolutely continuous with respect to A (dt),
that is by the Radon—Nikodym theorem there exists a density v, (dm) such that

(2.2) p(dt, dm) = A(dt) v (dm),

where v,(dm) can be interpreted as the distribution of the mark of the point ¢.

ExampLe 2.1. If N(-, -) is a marked Poisson process with mean measure
A(-) and 1i.d. marking, then u(dt, dm) = A(dt) v(dm), where v(*) is a distribution
of mark. If N*(-) is a Poisson process on R? with intensity A, then
u(dt, dm) = Adtv(dm).

Remark 2.1. In the classical theory of marked processes on the real line,
it is well known that under certain conditions on the probability space and
filtration, the mean measure of a marked point process determines its distri-
bution (Jacod [3]). As we shall see, this is not true for processes on general
spaces. Consider the Poisson process N* (-) = N(-, &) on T = [0, 1]* with
mean measure equal to Lebesgue measure A(dt) = dt. However, the Lebesgue
measure is also the mean measure of the following process. Let @,, @, ... be
iid. unit rate Poisson processes on [0, 1]. Denote by T} the time of the k™
jump of &;. Now, let locations of the points be {(T?, T}), i, k > 1}.

Now, writing B@C = {b+m: be B, me C} for the Minkowski addition of
B and C, we define a germ-grain model by the union:

o (N)=|) (t,®m,).

Consider two marked point processes N and N on Tx % having the
mean measures u and /i, respectively. Let Py and Py be the distribution of the
germ-grain model driven by m.p.p’s N and N, respectively. Let us put

N ={n: P(INTxH)=n)>0} and N ={n P(N(TxH)=n)>0}.
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For ne & we define a conditional distribution N), of N, glven N(TxH#)=n,
that is,

N.(B, C):=E[N (B, C|N(T, Ji’)=n], Be&(T), Ced,.

Note that N, is also a marked point process on Tx XA Let p,(dt, dm) be its
mean measure. Similarly we define N (s ) and f, (-, °).

ProrosiTiON 2.1. The marked point process N(, -Lis absolutely continuous
with respect to the marked point process N(:, ) (N<N) iff p, < fij, for ne V"
and N(Tx A')< N(T x ). -

Proof. If N< N, then N(Tx#) < N(T x %) and N, < N|,,, and hence
also y, < fj,. We prove the converse implication. We use the notation

(t> m) = (tla my, ..., tka mk)

for the (T x 2 }-valued vectors (k = 1, 2, ...). The k'® order factorial measure
o«f, of N|, is a measure on (T x X#')* defined by

ol (d (¢, m)) = ENF, (d(t, m)),
where

k—1

(d (t m)) Nln (d (tla ml)) (Nln &q, m1)) (d (tz, mz)) (Nln Z S(ti,md) (d (tks mk))

We prove that af, is absolutely continuous with respect to oq,, for each
ne /" nA and k < n. We use induction. For k = 1 the assertion is satisfied,
since of, (dt, dm) = p,(dt, dm) and &, (dt, dm) = i, (dt, dm). Assume that the
assertion is satisfied for k—1. Let

k—1

23) Ly_y(t, m) = %:{?f(r, m).

Then

.4) L Ly, m)="" m).
d”’|n

Denote by Z# the summation over distinct points in 7. Then
af,(B1xCy, ..., By x Cp)

= j. I Z# Z B(nmu)(Bl X Cl) - &ty mic) (Bk X Ck)

TxH (TxHY—11¢4,.., te—1 e Fli<k—1

k-1
Xdop, (L1, My, ooy By, My q) Aty (B, )

= I .‘- Z# Z Lk—l(tly my, ... tk—-l’ mk—l)Ll (tka mk)

TxH (TXHY~1 t1,tie—1 teFLi,i<k—1

6 — PAMS 23.2
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X E¢ymp) (B1 X C1)... Eymyy By X Cy)
Xdifn_l(tn My, eony bim1, My 1) A (L, M)
# .
= J Z Ly (t, m) g, myy (By X C1)... Equm (Bi x C) &y (d (2, m)),

(TXHI .l
where L (¢, m)=1L,_ l(tl, My, ... b1, My—1) Ly (&, my). Thus of, < ex,,, for
k < n. Since N(Tx %)< N(Tx J( ), there exists nonnegative D, such that

P(N(TxA)=n)= D,,P(N(Tx A)=n). ~

Denote by Q|, the distribution of N, on (M, .#). For a bounded real-valued
4 -measurable function f we have

Ef (N) = ZP(N(TXJ()—n)ff(t m) Q) (d (¢, m))

net

- Z:VP(N(TXJ{) =n)[f(t, maf, (@2, m))

= Z~P(N~(Txx) = n)jf(t: m)D, L, (¢, m)dTn(d(t5 m)) = Ef(N)L(ﬁ)5

net

where
L(i g(ti.mi)(" )) = DnLn(ts m)

for realization Z _ 4 &aumy ("> °) of the marked point process N, and f(t, m)
means f (El L 8eomy (> ). This completes the proof. =

Remark 2.2. This result is well known for Poisson processes; see Mat-
thes et al. [6], Proposition 1.7.11.

Remark 2.3. For a marked Poisson process with intensity 4 and a mark
independent of a position with a distribution measure v(-), we have

P(N(TxH)=n)= ML—Tane_M"

where |B| is the volume of a set B, and
o), (d (¢, m)) = dty...dt,dv(my)...dv(m,).

Remark 2.4. Note that from the assumptions of Proposition 2.1 it fol-
lows that 1 is absolutely continuous with respect to 4. In fact, let B x C be such
that fi(BxC)=0. We have # <= .#. Then

Y P(N(Tx ) =n)fiu(BxC) =

neA”
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and for ne # we have fin (B x C) = 0. Hence also y;,(Bx C) = 0 for ne A", and
finally u(Bx C) =0. The converse statement in general is not true. In fact,
consider two point processes N* (-) and N*(-) on T = [0, 1]* given by
N*()=eupan()  and  N¥() = eup,12 () +easa,ya ().

THEOREM 2.1. If N < N, then Py < Pjy.

Proof. Suppose that Py(A4) =0 for AeJ;(W). That is,
ZP(N"'(TX X)) =n)[1,(J C:Dm) N7 (d(t, m))

i=1

=Y P(N(Txx) = n)(T f 1A(U (t:®m)) &, (d (¢, m)) =0,
nef x A" i=1

where 1,(F) = 1if Fe A and 1,(F) = 0 otherwise. Hence all terms must be zero
and for all ne /" we have

(2.5) [ 10 G@m))a,(d(t, m)=0.
(T x )" i=1
Thus from Proposition 2.1 for ne 4~ we obtain
(2.6) [ 14 G@m))af,(d(t, m) =0
(Txx)" i=1
yielding Py(A) = 0. This completes the proof. =
The likelihood ratio dPg/dPy(Z) for realization E€# of o/ (N) is

dPy

2.7 L&):= Py &)

— ZIKE.A" (N(TXX) = n)j(Tx.Y)" (U; l(t @m'))(x"(d(t m))
Y PN (Txx)= n)_[(Txm,,IE(U!._I(ti(-Bm,-))oq,,(d(t, m))
where Iz(F)=1 if F=E and Iy = 0 otherwise.

ExampLE 2.2 (Poisson cluster process). Let N (-, -) be a Poisson process
on a compact set T < R? with intensity 4 marked by a point process N;(-) on
a compact set E = R? at position t;, where N;(-) are conditionally independent,
given the realization of the parent Poisson process. Then N (-) = ;- L [E®N;()
is a cluster Poisson process (see [4]). Assume that N;(-) are absolutely con-
tinuous with respect to a unit rate Poisson process on E with the offsprlng
density v(-). Let N () be the Poisson cluster process with intensity 1 and the
offspring density V(). Conditioning on parent point configuration ¢, the
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offspring { J,~ , (t:®N)) is absolutely continuous to a unit rate Poisson process
on T@E with conditional density

n
eITeEIZ H [V(Eqs—l(i)—ti)e_m]a
¢ i=1

where the sum is over all ordered n partitions ¢ of . Hence taking expectation
over t gives

dN
2.8 —= (&) =L(E
2.8 dN( ) =L(&)
B Yo (Ar/nl) e~ ATl QlEIC =) PINY P [T v(Es-1—ta)dty. -dty,
Z“’ (I"/n!) e~ ATl GlEl(L =) Z¢ J'T" 1_[:"=1 V(Ep-1p—t)dty... dt,,’

n=1

see also Van Lieshout [8]. If each parent point has a single daughter point with
displacement densities v(-) and ¥(), then (2.8) reduces to

H 5. —

L(E) = e@=HIT! (ﬁ) o M,

1) i, vE—tde
where H (Z) denotes the number of points in configuration =, and Z; is the i*®

point of =.

ExampLE 2.3 (wire frame model). The germ-grain model in which there is
a one-to-one correspondence between the driving m.p.p. and the germ-grain
model itself will be called a wire frame model. The classical example is a Boole-
an sphere model on R? in which marks are spheres centered at the location
points {;} of the point process N* (-). Denote by n: T®# — T x A" the one-

-to-one mapping such that =(s/(N)) = N. Similarly we define the mapping
¥ (o/ (N)) = N*. Then from (2.7) we have

apy
dPg

Consider the marked Poisson processes N (¢, *) and N (-, -) with mean measures
A(-) and X(-), respectively, and with independent marking with measures v(-)
and 7(-). Let A < 7 and v < ¥. Then, by Proposition 6.10 of Karr [4], p- 232, we
have N < N, and hence also Py < Py. In this case we have

°
29) @ = L(®) = 2 (x(®).

dPy
2.10) d‘;ﬁ(ﬁ)
: J) H(E)
— exp {I log ({j% (t)) dn* (E)(t)} exp {; (1 ‘Z‘z‘t’) B (t)} 11 2.

where H (=) is the number of points of the Poisson process constructing a set Z.
In particular, if N(-, -) and N (-, -} are marked Poisson processes with inten-
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sities 4 and 1, respectively, and the diameters in both Boolean sphere models
have the same distribution, then

H(Z)
(2.11) dPy =exp{(7{—2)|T|}(%) )

3. RADIUS OF THE OCCUPIED COMPONENT OF THE ORIGIN

In this section we consider the Boolean sphere model on R? driven by the
marked Poisson process N (-, -) with intensity A and marks being ii.d. spheres.
A marked Poisson process N (-, -) has the intensity X and marks being spheres
distributed like in a Boolean sphere model governed by Py. We will consider
a rare event AeJ; (R for which lim,_, Py(4) = 0. By (2.11) we have

L(E) = exp {(A— )T} (/D) "®,

where H ("') is 2 number of points of Poisson process in T when realization of
& (N) is 2. We will give now an example of A for which the IS scheme works
well, that is, it reduces the relative error.

DerINITION 3.1. We say that the IS scheme is logarithmically efficient if

lim 1nf1—0g“ﬂ =1.
i-0 logp?
If
lim sup M = 0,
A0

then the IS scheme is an improvement over CMC simulation.
Logarithmic efficiency implies improvement (see Asmussen [11).
THEOREM 3.1. Let A be an event such that

(3.1) ; m( 3 (/1)>logPl(A)

for some positive scaling function B(-). Let > A If
B (/12/71)

62 v 28(0) © >1,

then the IS scheme is logarithmically efficient. If B(-) is strictly decreasing so that
(3.3) /1113(1) [BR*/D)—B(N)] = o,

then the IS scheme is an improvement.
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Proof. Let 7= A%/1 Denote by P, the distribution of & (N) when N* (-)
is the Poisson process with intensity f. For AeJ;(R%) we have

P H(=)
E;[I%; A] = exp {(1-1)|T]} 1(7) XC)
A

=

_ A\HE) /1\HE
= exp {(£—2)|Tl} exp {2 |T(} f(i) (3) dP;(E)
=exp{%(f—l)2|T|}P;(A).

Thus

. logVarps .. logE;[I?; A]
lim 8 VAP _ p,, OBEALLS A1
I egr? AT

o IITI+IOgP1(A)_- /TITl—ﬁ(I)_- B4
=im———2® - Im=—pm Cmagm>h

Similarly we prove that under (3.3) the IS scheme is an improvement. =

Assume from now that the radius of spheres is equal to m=1. Let
T=T[R):=[—R, R]?<= R (d = 2) for fixed R > 1. We shall apply Theorem
3.1 to the event Ay := {0 <> T (R)} that there exists a path through balls of the
Boolean mogel joining 0 with the surface dT of T:

dT(R) = {t =(t, ..., t)eR*: max|t| = R}.

In other words, in the wire frame model, the origin is inside a sphere which is
connected through a chain of spheres with the surface 07.

THEOREM 3.2. The IS scheme for Aq is logarithmically efficient.
For the proof we need the following lemmas.

LeMMA 3.1. There exists a decreasing positive function ¢(4) such that

1

R (4)

Proof. Using the version BK and FKG inequalities for continuous per-
colation (see Theorems 2.2 and 2.3 of Meester and Roy [7]) we obtain (6.24) in
Grimmett [2]. Then using the subadditive inequality limit theorem one can
mimic the proof of Theorem 6.10 of Grimmett [2] to obtain its version for the
continuous percolation. That is, there exist strictly positive constants ¢ and o,
independent of 4, and a decreasing positive function ¢(4) such that

gR' 7 RV L P, (0 0T(R)) < R 1e™®®  for all R > 1.

)logPl(OH dT(R)) =1.

A0

(3.4) - lim (—

This completes the proof. =
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LemMmA 3.2. Let 0 < f(x) < 1. Then
im MM ; 1
10 ¢ (A)log(Af (2))

Proof. The main idea of the proof is to approximate the continuous
problem by site percolation problems on a special lattice, constructed by par-
titioning R? into small cubes. Let x be a positive integer and Z¢ = x~'Z%. We
partition R? into cubes whose centers are the points of ZZ, defining

(3.5)

d 1
B.(H) = :1 I:ti_ﬂ’ t,-+%i| for teZ4. _
We turn Z¢ into a lattice %, by defining the adjacency relation ~ on Z¢ with
the rule that x ~ y iff there exist points ueB.(x) and veB.(y) such that
0 (u, v) < 2, where g (-, -) is the Euclidean distance. We shall consider site per-
colation on the ensuing lattice ¥,. We declare a vertex x of %, to be open if
there exist one or more points of the Poisson process within the cube B, (x),
and closed otherwise. The states of different vertices are independent random
variables and the probability p.(4) that any given vertex is open is given by

(3.6) p(A) = 1 —exp(—Ax™9.
Lety, =(1+x7! \/E)”. From the rescaling property of a Boolean sphere model

and the considerations made by Meester and Roy [7], p. 60, or Grimmett [2],
Section 12.10, for sufficiently small 4 we have

(7 Phuayy(00dT(R) < Po(0-dT(R) < Py (00 IT(R),

where P;(+) is a law of site percolation on %, defined by the adjé.ccncy relation
~, where the probability that a given vertex is open equals p. Thus, by Theo-
rem 2.38 of Grimmett [2] applied to site percolation, we have

log P4z (0 —0T (R))log A
log P, (0 dT(R))log Af (1)
. log P ;.7 (0> 0T (R)) log A N log p,.(4f () log A
~ log P 1y, (0> OT(R))log A1 (A) logPc(Av.)log Af ()

Note that
1
i B2 @) _
«—»0 loga

This completes the proof. =

Proof of Theorem 3.2. Let f(4) = A/2 < 1. Then from Lemmas 3.1
and 3.2 we have

logP;(00T(R) _ . (@) _ . log(Af () _,

lim =z 3
2»02]log P, (03T (R)) 4-o0 2¢(4) ~ a»o 2logi
which completes the proof of the theorem. =
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Although the flavor of this section is not numerical we add for complete-
ness some numerical results. We made 10000 simulations for R =64, d = 2,
m=1 and 1= 17. The percentage denotes the relative half-width of 95%
confidence interval based on the normal distribution.

Table 1. Simulation of the
event 03T (R)

A Pis

1.6 7.5-10"64+15.7%
1.5 25-1076+32.1%
1.45 1.2-1075+23.4%

Acknowledgment. The author is indebted to M. van den Berg for the help
in deriving Table 1 and the referee for his valuable comments.
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