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Abstract. In this note we &ow that for the finite Coxeter groups 
of types A,, B,, D,, F,,  G, and 12(m) it i s  possible to choose w ap- 
propriate set S of generators of order not greater than 2 and a finite set 
of probability measures {p,, . . ., pk) with their supports in S such that 
pl*. . .*pk = 2, where l ( g )  = IGI-' for every g EG. 
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1. INTRODUCTION 

Let G be a finite group and let S be a set of generators of G. It is known 
that if S is not contained in a coset of a subgroup H of G,  then for every 
probability measure p such that suppp = S we have lim,,, p*" = A, where ;1 
is the uniform (the Haar) probability measure on G, i.e., R ( g )  = [GI-' (cf. [ 5 ]  
and 121). More generally, there are known conditions that guarantee that for 
a given sequence of probability measures p l ,  p2, . . . on a finite group G 
we have 

lim ,ulepz*. ..*,urn = 1. 
n+ a: 

For example, from the proof of the result of Ullrich and Urbanik about com- 
pact groups (see [lo]) we can immediately deduce the following 

PROPOSITION 1.1. Let G be afinite group, S = S-' be a (symmetric) set of 
generators a d  pl, p2, . . . be a sequence of symmetric (i.e., pk (g) = ,uk (g-I)) proba- 
bility measures with supports in S. Let m, = m i n & ~ ( x ) .  Then CQ, m, = co 
implies that PI*. . .*p, + A. 

* The author was partly supported by contract HPRN-CT-2001-00273-HARP from RTN 
Harmonic Analysis and Related Problems and by KBN grant 1P03A01826. 
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Proof.  In the proof of the main theorem in [lo] we take z = 
IS[-' I s ,  a, = IS1 m,. Then for every x G S we have p, (x )  2 a, z (x). Now we con- 
clude that in the case of finite group the above condition, satisfied only on 
generating elements, allows us to proceed further as in [lo]. H 

In this note we are interested in questions concerning possibiIities of get- 
ting the uniform measure as a product of a finite number of probability mea- 
sures with their supports contained in a fixed set S of generators. If possible we 
try to take S = S-I or, even more, we would like to take S which consists of 
elements of order not greater than 2. 

It has been noticed (see e.g. 131 and Proposition 3.1 in this note) that in an 
important case of the symmetric group Yn and the set of generators S = S-' 
consisting of transpositions there exist n probability measures pl, . . ., p, sup- 
ported on S such that 

There are, however, groups and symmetric sets S of generators for which 
(1.1) does not hold for any finite set of probability measures supported on S. 
Some examples are given in 1111. 

In this note we prove the following result about the factorization (1.1) of 
the Haar measure 1" on finite Coxeter groups. (For the definition of finite 
Coxeter groups see Section 2.) 

THEOREM 1.2. Let G be afinite Coxeter group of type A,, n 2 1, B,, n 2 2, 
D,, n 3 4, F,, G2 or I ,  (m), m = 5 or 7 Q m < co. Then there exists a generating 
set S = S-l # G consisting of elements of order not greater than 2 and aJinite set 
of probability measures with their support in S such that the factorization (1.1) 
holds. 

Inspired by the above theorem we state the following questions: 

OPEN QUESTION. IS it possible to find symmetric sets of generators con- 
sisting of elements of order not greater than 2 for all finite Coxeter groups (i.e., 
also for remaining groups of types E 6 ,  E, ,  E8,  H3,  and H4)? 

For these groups one can prove factorization using the so-called subgroup 
algorithm (see [3]), however the resulting set S of generators does not neces- 
sarily contain elements of order 2. See Remark 3.4. 

Is it an important feature that we deal exactly with Coxeter groups or 
maybe the crucial role is that the group is generated by elements of order 2? 
In other words, we hope that the following conjecture holds: 

CONJECTURE. Let G be a Jinite group generated by a set S such that every 
element s E S has order 2, i.e., s2 = e. Then there exist a generating set So consist- 
ing of elements of order not greater than 2 and a $finite number of probability 
measures pi, p2, . . . , A with suppp, c So, k = 1, 2, . . ., n, such that the factor- 
ization (1.1) holds. 
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It is clear that the above Conjecture works if G is Abelian. In fact, if G is as 
in the Conjecture and we assume that G is Abelian, then we see that every 
element ~ E G  is of order 2. But since G is finite, we get G = ZT for some 
positive integer rn. For this group our Conjecture is true. In fact, in [ l l ]  the 
following proposition has been proved and will be used in this note. 

PROPOSITION 1.3 (Proposition 5.3 in [Ill). Let G = Z'; and 

where 0 = (0, .. ., 01, ej = (0, .. ., 0, 1, 0, . . ., 0). Then 1, has a factorization. 

In this place it should be mentioned that the problem of factorization has 
been studied by Diaconis in [3], however he did not make any constraints on 
the generating set S, in particular his measures had supports on the whole 
groups. 

The paper is organized as follows. In Section 2 we recall some elementary 
facts from harmonic analysis on finite groups since we use the Fourier trans- 
form in the proof of Theorem 1.2 in the case of the dihedral group. In order to 
make the paper self-contained we also recall some facts about finite Coxeter 
groups. We use mainly the classification of finite Coxeter groups by presen- 
tations given by so-called Coxeter-Dynkin diagrams. Finally, in Section 3 we 
prove Theorem 1.2. 

Acknowledgements. The author is grateful to Ryszard Szwarc for his help- 
ful remarks concerning the contents of this paper. The author wishes to thank 
Ziemowit Rzeszotnik for long discussions in Zakopane in winter 2001 and the 
referee for a number of helpful suggestions. 

2. PRELIMINARIES 

2.1. Fourier analysis on finite goups. All facts we included here can be 
found in [9] or [5]. 

A representation n of G is a homomorphism of G into the group of inver- 
tible h e a r  maps of a complex finite-dimensional vector space K We say that 
the representation K is d-dimensional if dimV= d. We may think of ~ ( x )  as 
a dim Yx  dim Vmatrix. Without loss of generality we may assume that represen- 
tations TC are unitary, i.e., ~ ( x )  is a unitary matrix for all X E  G. A represen- 
tation n is irreducible if V admits no n(G) invariant subspaces other than (0) 
or E Two representations K , :  G -t GL(Vl)  and 7r2: G + GL(V2) are equiualent if 
there is a linear isomorphism Q :  Vl -t V2 such that Q ~ T ,  (x) = x , ( x ) ~  for all 
XEG. Let G be a product of two groups G = GI x G2 with multiplication 
defined coordinatewise. Let n,: G1 + Vl and nz: G2 + V2 be representations. 
Define the representation 
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Consequently, if xi and x 2  are irreducible, then x1@rc2 is irreducible. More- 
over, each irreducible representation of GI x G2 is equivalent to a representation 
n 1 0 n 2 ,  where xi is an irreducible representation of G;. 

I f f  is a function on G and z is a representation, define 

The transformpis the analog of the Fourier transform. It converts convoIution 
into multiplication of Enear transformations 

A 

f*s (4 = "h) d (4. 
Moreover, if ii = v", then p = v .  

Let L denote the probability measure which is uniformly distributed on 
a finite group G, i.e. A(x)  = [GI-' for all X E G .  For L we have 

Id for the trivial representation, 

0 for a nontrivial irreducible representation. 

23. Coxeter graphs and finite Coxeter groups. All facts we cite here can be 
found e.g. in 181, [6] and 111. 

A Coxeter graph is a pair (T, m), where T = (To ,  T i )  is a finite graph (ro is 
a set of vertices, r ,  is a set of the edges) in which every two vertices are joined 
by at most one edge, while m: T o  x T o  + {2, 3 ,  4, . . .) u {m) is a function such 
that m(i, j )  = 2 if and only if there are no edges joining i and j. Therefore 
m(i ,  j) 2 3 if and only if there exists exactly one edge joining i with j. Such an 
edge will be denoted as follows: 

With every Coxeter graph (I', rn) we associate an appropriate Coxeter 
group specifying its presentation: 

i.e., W ( T ,  m) is generated by the symbols Xi, i € r 0 ,  satisfying the following 
relations: X z  = 1 for every i E T o  and (X i  Xj)"('J = 1 for all pairs i, j such that 
m(i ,  j) 2 3 .  

The next theorem answers the following question: When is a given Cox- 
eter group finite? 

THEOREM 2.1. Let ( T ,  m) be a connected Coxeter graph and W ( T ,  rn) be the 
Coxeter group of the Coxeter graph ( r ,  m). Then W ( T ,  m) isfinite if and only if 
the graph (r, m) is one of the following Coxeter-Dynkin diagrams: 
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3 3 3 3 
A,: Q - e - . . . - u - 0 (n vertices, n 2 I); 

4 3 
B, : 3 3 - u - . . . - s - (n vertices, n 2 2); 

D, : 
3 133 3 3 

e n - 0  Q (n uertices, n >, 4); 

For the proof see e.g. [6] or [I]. 

3. PROOF OF THEOREM 1.2 

We use the classification given by Theorem 2.1 in Section 2. We start with 
the very well-known example of symmetric group Yn (cf. [3]) which corre- 
sponds to the group of type A,- ,  and which was our model situation for what 
we can expect: 

PROPOSITION 3.1. Let G = Yn be a symmetric group and let S = S - l  = 

( ( i ,  j ) :  i, j~ {l , . . ., n ) )  be the set of transpositions. Then R has a factorization 
(I. 1). 

Proof .  We define n -  1 measures. Let p1 be a probability measure which 
is uniformly distributed on {(I, I), (1, 2), . . ., (1, n)), p, uniformly distributed 
on {(2, 2), (2, 31, . .., (2, n)}, and so on. It is clear that pl*. . .*p,-I = R. IP 

Now let G be one of the following types: I ,  (m) (m = 5 or m > 7) or B, or 
G2 (or A,  which is a group 94, merely when G is a dihedral group. 

12 - PAMS 24.1 
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In order to prove that the factorization (1.1) is possible in these cases we 
are going to use the following general observation (which has already been 
used in [I 11) in order to prove our Proposition 1.3. Let G be a finite group and 
S (not necessarily symmetric) a set of generators. Suppose that we can show 
that for every nontrivial unitary representation n: of G we can find k = k ( n )  
probability measures p,,,, . . ., pk,, with supports in S such that the measure 
p, : = ,ul,=*. . .+pk,, has the property that fi, (71.) = 0. Then the Fourier transform 
of the measure *icn,,j,,,p, is equal to 0 on every nontrivial unitary representation 
n, and therefore gives the desired factorization. 

PROPOSITION 3.2. Let G be thefinite Coxeter group of t y p e  I2 (m) (m = 5 or 
m > 7 )  or of type G 2  or B2 or A2, i.e., G is generated b y  x and y and thefollowing 
relations hold: x2 = y2 = (xy)" = 2 (see Theorem 2.1). Let 

S = S-I = { e ,  X, y ,  xyx, ~ ( y x ) ' ,  + .  ., ~(yx)~}. 

Then A has a factorization. 

Proof.  Facts about representations of the dihedral group, which are 
used here, can be found e.g. in [7]. If m is odd, then we have one nontrivial 
character : 

and 

$l(x(xy)') = - 1  for 0 = 1, ..., rn-1. 

If m is even, then there are three nontrivial characters: $I, as above and 

where j = 0, . . ., m - 1. Let U,, where a is an m-th root of unity, be the unitary 
representation defined as follows: 

If m is odd, then U,,  U.2, . . ., U(m-  l)iz are irreducible unitary and painvise 
unequivalent representations, while for m even such are U,, Ua2, . . . , U(m-2),2. 
Now it is clear that for every character $i we can construct a measure p@, with 
its support in S (even consisting of two points) such that P*i ($i) = 0. Similarly, 
for two-dimensional representations we take 
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Then 

This shows that P(U,Z) = 0 for every U,,.  Indeed, it follows from the very 
elementary fact that if a is an m-th root of unity, then mi = 0. 

PROPOSITION 3.3. Let G be thefinite Coxeter group of type B, (n 2 2)  or D, 
(n 2 4) or F 4 .  Then there exist symmetric sets of generators consisting of ele- 
ments of order not greater than 2 such that the factorizations (1.1) hold for these 
groups. 

Proof.  T h e  case of B, (n 2 2). B, is a Weyl group of some set of 
rotations @ in Wn (cf. [XI, p. 42). Let V = Rn (n 2 2) with . . ., E, being the 
standard basis of R". Define @ = ( f ci and EI + e j ,  i < j ) .  Then the group of type 
3, (the Weyl group of @) is the semidirect product Yn (which permutes the E ~ )  

and Zfiacting by sign changes on the E~). Therefore, multiplication is given by 

Now we define the following measures: 

where' pi, . . ., pn give factorization on Yn (see Proposition 3.1), and 

where v,, . . ., v k  give factorization on Z", Then 

gives us the desired factorization of A on B,. 

T h e  case of D, (n 2 4). Let V = Rn and let cl, ..., E, be the standard 
basis of Rn. Take @ = ( + E ~ ~ E ~ :  1 Q i < j < n). Then the Weyl group of @ or, 
in our terminology, the group D, is a semidirect product of 9 ,  (permuting the 
E~ and Z", acting by an even number of sign changes) (see [XI). Since we have 
already factorization of Z", (Proposition 1.3) and 9, (Proposition 3.1), in the 
case of D, the proof is complete (compare with the proof of the previous case). 

T h e  case of F 4 .  The corresponding Weyl group W is a semidirect 
product of W' and Y3, where W' is of type D,  (for which we have already the 
factorization). Y3 acts on W' - D, by interchanging the three outer vertices of 
the corresponding Coxeter-Dynkin diagram, using Y3 (see [8]). 

Therefore, the desired factorization is as follows: 

where p1 *. . . *pk is the Haar measure on D4 (determined in the previous case) 
and v1 *. . .*v, gives the factorization on Y3. 
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Remark  3.4. For the remaining groups we can prove the possibility of 
the factorization (1.1) using the so-called subgroup algorithm described e.g. in 
131; however, the generating sets we construct may contain elements of order 
different than 2. In the simplest case, the subgroup algorithm states what 
follows. Let N be a subgroup of G (not necessarily normal). Then if we take 
a convolution of a uniform measure on H with a uniform measure on the set of 
right representatives of the cosets of H in G, we get the Haar measure on G. 

For example, the groups E , ,  E,, E, ,  H ,  and H ,  have symmetric groups 
as their subgroups. Of course, we have factorization on symmetric groups 
(Proposition 3.1). Now, it is enough to find the set of representatives of the 
symmetric groups in our Coxeter groups (which can be constructively done by 
an algorithm described in [4]). 

Added in proof. It turns out that the "Open question" from the Introduc- 
tion has a positive answer, i.e., there are factorizations for the remaining Coxeter 
groups: E,, E,, E,, H ,  and H4. The proof of this fact would appear elsewhere. 
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