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~ b s t r a c t .  In this article, we investigate the empirical likelihood 
method for the additive risk model when the failure times are subject 
to left-truncation and right-censoring, An empuical likelihood ratio 
for the p-vector of regression coefficients is defined and it is shown that 
its limiting distribution is a weighted sum of independent chi-squared 
distributions with one degree of freedom. This enables one to make 
empirical likelihood based inference for the regression parameters. Fi- 
nite sample performance of the proposed methods is illustrated in 
simulation studies to compare the empirical likelihood method with 
the normal-approximation-based method. 
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1. INTRODUCTION 

In survival analysis, the multiplicative risk model (Cox [4])  and the ad- 
ditive model (Aalen [ l ] )  provide the two principal frameworks for the regres- 
sion analysis of censored survival data. The additive risk model provides a use- 
ful alternative to the multiplicative risk model. Buckley [3] pointed out that 
the additive risk model is biologically more plausible than the proportional 
hazards model, while O'Neill [7] found that the use of the proportional haz- 
ards model may result in serious bias when the true model is additive. 

Let T be the survival time associated with a p-vector of possible time- 
varying covariates Z(t) .  Then, under the additive risk model, the hazard func- 
tion takes the form 
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where Po is a p-vector of regression parameters, and raT is the transpose of 
a column-vector of a, and 3LO(t) is the baseline hazard function. In many ap- 
plications such as biomedical and insurance problems, the survival time T is 
often subject to left-truncation and right-censoring, the baseline hazard func- 
tion ho (t) is not parametrized. It is desirable to make statistical inference about 
the regression parameters Po under the additive risk model. Lin and Ying [6] 
constructed a simple semiparametric estimating function for Po and provided 
some semiparametric inference procedures. They also wrote a FORTRAN pro- 
gram to implement their methods for analyzing the additive risk model, so that 
the task of making inference becomes easy and reliable. An application of their 
methods can be found in Yip et al. [13], 

We first outline the inference procedures by Lin and Ying [6]. Consider 
a set of a independent subjects such that the counting process { N i  ( t ) ;  t  2 0) for 
the ith subject in the set records the number of observed events up to time t. 
Assume ( t )  is a 0-1 predictable process indicating, by the value 1, whether the 
ith subject is at risk at time t ,  Z i ( t )  is the covariance process for the ith subject. 
In detail, assume the survival times or responses are not completely obser- 
vable due to left-truncation and right-censoring by the random variables 
Li and Ci. Let = min ('&, CJ and Si = I [T < Ci]. We use I [A] for the 
indicator function of a set A. Thus, the survival times T, are right-censored by 
the censoring variables Ci and are left-truncated in the sense that (r, Si, Zi) can 
be observed only when 2 Li. The data, therefore, consist of n observations 
(z, Li, di, Zi)  with 2 Li, i = 1, .. ., n. Then 

K( t )  = I [ $ >  t  2 Li] 
and 

The intensity function for Ni ( t )  is given by 

(2) ( t )  d A  (ti Zj) = ( t )  {d& ( t )  + Zi (t) d t )  

under the additive risk model (I), and the cumulative baseline hazard function 
is given by 

t 

A, ( t )  = SAo(u)du. 
0 

The counting process N i ( t )  can be uniquely decomposed so that, for every i 
and t, 
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where Mi(t) is a local square-integrable martingale (Anderson and Gill [2]). 
The cumulative baseline hazard function A, (t) is estimated by 

Lin and Ying [b] proposed to estimate Po from the following estimating func- 
tion : 

?I r 

U(j)= C J Z i ( t ) ( d ~ i ( t ) - ~ ( t ) d A o ( p , t ) - x ( t ) f i T ~ i ( t ) d t )  for O < ' C < W ,  
i=10 

which is equivalent to 
n s 

where aB2 = aaT and 

The resulting estimator takes the explicit form 

It is easy to see that 

which is a martingale integral. It then follows that the random vector (6) 
converges weakly to a p-variate normal with mean zero and with a covariance 
matrix K i.e. 

where V is the covariance matrix. Let 

14 - PAMS 24.2 
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Then V = A-I ZA-I,  which can be consistently estimated by T.', = A;' E,, A, 
with 

Therefore the large sample (1 -a)-level c o ~ d e n c e  region for Po based on the 
above normal-approximation-based method is given by 

where x$ {a) is the (1 - a)-th quantile of the chi-squared distribution with p de- 
grees of freedom. 

In this paper, we will investigate how to apply empirical likelihood for the 
additive risk model with left-truncated and right-censored data. Empirical like- 
lihood was introduced by Owen [a], [9] for a mean vector for i.i.d. obser- 
vations, and has been extended to a wide range of applications. Though the 
empirical likelihood based method was first applied in survival analysis by 
Thomas and Grunkemeier [I 11, it is until recently that empirical likelihood for 
censored data analysis interests some authors, for example, Wang and Jing 
[12] studied functionals of survival distribution, Qin and Jing [lo] investigated 
the Cox regression model. An appealing feature of the empirical likelihood 
approach is that it produces co&dence regions whose shape and orientation 
are determined entirely by the data. It has many advantages over some classical 
and modern methods, such as the normal-approximation-based method and 
the bootstrap method. In particular, it does not impose prior constraints on 
region shape, it does not require the construction of a pivotal quantity and the 
region is range-preserving and transformation-respecting (Hall and La Scala 
[5]). Therefore, we are motivated to study the empirical likelihood method in 
constructing confidence regions for Po in model (1). We will consider time- 
varying covariates and survival data subject to both left-truncation and right- 
censoring. Simulations show that the empirical likelihood method and the 
normal-approximation-based method work equally well. 

The paper is organized as follows. In Section 2, we introduce the empirical 
likelihood method to the additive risk model (I). We define an empirical likeli- 
hood ratio statistic for the unknown parameter Po and show that its Iirniting 
distribution is a weighted sum of independent chi-squared distributions with 
one degree of freedom. In Section 3, some simulation studies are given for both 
the empirical likelihood method and the normal-approximation-based method 
and comparisons will be made between these two methods. Finally, the proofs 
of our main results are given in Section 4. 
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2. METHODOLOGY A N D  MAW RESULTS 

Let us first give some motivations for our definition of the empirical likeli- 
hood for #?. Consider the following testing problem: 

Under H o ,  

n r 

= C 1 (Zi  ( t )  - Z (t))  { d N i  (t) - (t) Zi (t) dt) . 
i = 1  0 

Since Mi(t), i = 1,  .. ., n, are i.i.d. martingales, EU(#?,) = 0. Therefore, the 
problem of testing whether Po is the true parameter of @ is equivalent to testing 
whether EU@,) = 0. This can be done using Owen's empirical likelihood 
method (Owen Kg]). Since A,(t) and Mi@) are unknown, we need to define 
an estimated empirical likelihood, evaluated at the true value Let 
p = (Ply . . ., p.) be a probability vector, i.e., x:=, pi = 1 and pi 2 0 for all i. For 
1 < i < n, let 

r 

Wni = 1 (Zi  ( t )  - Z(t)) (dNi  (t) - ( t )  /3: Zi (t) d t }  . 
0 

Then, we can define an estimated empirical likelihood, evaluated at the true 
value Po of 8, by 

n 

L(80)  = max n PI 
i = l  

subject to 
n n 

C p i W n i = O  and C p i = l .  
i =  1 i =  1 

Then, by the method of Lagrange multipliers, we can easily get 

where 1 = (A1, . . . , is the solution of 

Note that n;=, pi ,  subject to z=, pi = 1, attains its maximum n-' at pi = n-I. 
So we define the empirical likelihood ratio at Po by 
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The corresponding empirical log-likelihood ratio can be defined as 

'where 11 i s  the solution of (8). 
We need the following assumptions to  establish our main theorem. 

(A.1) Assume that 0 < z < m and P (F  > 2) > 0, which implies P (T > z) > 0 
and P ( C > z ) > O .  

(A.2) supt.~o,,l I 4  (t)  - (01 = 0, (11, where 4 (1) = z:=, ?(t) zj (t)/n. 

(A.3) Assume that 

exists. Matrices A and Z are positively definite. 

(A.4) Assume that, for all i, 

and 

The assumption (A.1) is needed for some technical reasons. In Lin and 
Ying's paper, z was taken t o  be a. In practice, one can choose z = maxi (r). 
When fni(t) = Zi(t)/n are non-random functions of  bounded variation in t 
with V,"hi(t) < K < CQ, K is independent o f  n and i and  sup,^^=, f i  ( t)  = 

O ( l ~ g n - ( ~ + ~ ) )  for some 6 > 0, then according to Lemma 5.1 of Zhou [14], 
(A.2) is true since  up,,^,,^ (al (t) - al (t)l = a,  (1). 

THEOREM 1. Suppose in mdel(1) that ,lo ( .) is continuous and (ZT, Z, Ci, Li)'s 
are i.i.d. replicates, where the failure, censoring and left-truncation time variables 
z, Ci and Li are conditionally independent, given Zi. The uariable Zi = Zi(t) is 
the covariate process for the ith subject and is time-varying (depending on time). 
In particular, (ZT, = min(5, Ci), 6i = I [Ti < Ci], Li)'s with 2 Li are 
the observed data, where d i  is the censoring indicator. If /3, is the true value 
of f i ,  then under the assumptions (A.lHA.4) the limiting distribution of l(bo) is 
a weighted sum of independent chi-squared distributions with one degree offree- 
dom. That is, 
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2 where wl, . . ., w, are the eigenvalues of .E fur El = Z+Eo and x:,,, . . ., x , , ~  
are independent standard chi-squared random variables with one degree offeedom. 

We note that E, can be consistently estimated by 

.Z and El can be consistently estimated by C, and El, = E, + So,, respectively. 
Then wi,  1 < wi < p, can be consistently estimated by the eigenvalues 14~;s of 
2:; En* 

A simple approach to construct a (1 - a)-level confidence region for fl, based 
on Theorem 1, is 

R,, gives an approximate confidence region for P with asymptotically correct 
coverage probability 1 -a, i.e., 

3. SOME SIMULATION STUQIES 

A series of simulation studies will be carried out to compare the perform- 
ance in terms of coverage probabilities between the empirical likelihood meth- 
od and the normd-approximation-based method. To do this, we consider the 
following additive risk model with two covariates (Z,, Z,), do ( t )  = 1, and 

This model is adopted from the simulation studies for continuous-time recap- 
ture experiments in Yip et al. [13]. Originally, the survival times are the cap- 
ture times. The variable 2, corresponds to the sex of the animals, with half of 
the subjects assigned to each sex (Z1 = 1 corresponds to male, 2, = 0 corre- 
sponds to female), and 2, corresponds to weight, with a normal distribution of 
mean eight and variance four. This model implies that males are more catch- 
able than females and the catchability declines with weight. In our current simu- 
lation studies, the censoring times C;s are generated from the uniform dis- 
tribution U [0, c], where c's are chosen for a prespecified proportion of cen- 
soring. When c = 5, 3, 2, the corresponding censoring proportions are 20%, 
32% and 44%, respectively. The left-truncation times L's are fixed at constants 
0.0 and 0.1, they are chosen for 0% and 12% proportion of truncation, respec- 
tively. The original sample size has been chosen to be 25, 50, and 100, respec- 
tively. The final simulated observations from the above additive risk model are 
( r ,  4, Zli, Z,,, L,), with 2 L,, i = 1, . . ., n, where 

z=min(T ,C i ) ,  S i = I I X i < C i ] .  
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There are B = 1000 simulation samples for each combination of n, c and L. For 
the nominal confidence level 1 - or taken to be 0.95, Table 1 presents the results 
of approximation coverage probabilities for the empirical likelihood method 
and the normal-approximation-based method computed from the inequalities 
(7) and (10) based on these 1000 simulation samples. 

TABLE 1. Coverage probabilities for /IT = @,, 8,) at level 0.95 

From these simulation studies, we can make the following conclusions. 
For the same truncation value and different censoring proportions, both the 
empirical likelihood and the normal-approximation-based methods have simi- 
lar performances. When data are truncated, the performances of both methods 
are slightly worsened. At each nominal level, the coverage probabilities of both 
methods increase as the sample sizes increase. They appear to be close to the 
nominal levels with sample sizes n 2 100. When sample sizes are small (n = 25), 
the normal-approximation-based method tends to work better than the em- 
pirical likelihood method. But the coverage probabilities of both methods de- 
viate from the nominal levels. 

4. PROOFS 

Censoring 
proportion 

20% 

32% 

44 % 

To prove Theorem 1, we need the following lemmas. 

LEMMA 1. Under the s a w  conditions as in Theorem 1, we have 

n 

25 
50 
100 

25 
50 
100 

25 
50 
100 

n-'I2 1 Wni = n-lI2 u ( ~ ~ ~ ) % N ( o ,  Z). 

Truncation L = 0 

LEMMA 2. Under the same conditions as in Theorem 1, we have 

(i) n-I xy=, Wni W,:4 Z,, 

(ii) rnaxlsis,JKil = op(n1i2). 

Truncation L = 0.1 

Normal 
approximation 

0.959 
0.960 
0.958 

0.965 
0.959 
0.960 

0.970 
0.968 
0.960 

Normal 
approximation 

0.964 
0.951 
0.950 

0.966 
0.962 
0.960 

0.968 
0.953 
0,951 

Empirical 
likelihood 

0.912 
0.948 
0.953 

0.9 16 
0.938 
0.957 

0.902 
0.943 
0.952 

Empirical 
likelihood 

0.906 
0.936 
0.949 

0.890 
0.935 
0.955 

0.868 
0.927 
0.943 
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Proof of Lemma 1. Write Wni as 

(1 1) Wni = J {Zi ( t )  - Z ( t ) )  {dNi  ( t )  - (t) j,T Zi ( t )  dt - (t)  dAo ( t ) )  
0 

5 5 

= 5 {zi (t) - Z ( t ) )  K (t)dMi it) + J{Zi (t) - Z (t)) ( t )  dAo(t) 
0 0 

Hence, we have 

The proof of Lemma 1 is completed by the standard counting process ar- 
guments about the random vector n- U (flo). 

Proof of Lemma 2. From (11) we have 

Since Pni is a martingale, it is easy to see that, for any a ~ R q  
n n 

2 E 1n-l aT Pni Q; a)  = 0 (1) and E {n-' a' eni P:~ a}' = o (1); 
i =  1 i =  1 

hence 

n-' z (Pni Q.Ti + Qni P.Ti> = ~p (1). 
i =  1 

Therefore, we have 

This completes the proof of Lemma 2 (i). 
To prove Lemma 2 (ii), let g ( t )  = a, (t)/a, (t). We write Wni as 

where 
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and 

Let h, (t) = x:=, 5 ( t ) /n,  oil (t) = z;=, Y, (t) Z j  (t)/n; then (t) = 6 ,  (t)/ai, (t). By 
Lemma 5.1 of Zhou [I41 and the assumption (A.11, we obtain 

sup 12,' (t)l = 0, (1) and sup I{& (t)-a. jt)}l = o, (1). 
LECO,TI tf[O,rl 

Therefore, using the assumption (A.2) and the identity 

oil (t)/&o It) - m i  (t)/oro (t) = (4 (t) - jt)} so It) + (4, (t) - a0 (t)) a 1 It) l (t) 6; (t) 3 

we have 

Thus, we obtain 

T 

+ o p  (1) IJ (a1 (t) (t)) {dNi (t) + X (t) P,T Zi (t) dt)l 
0 

Note that, by the assumption (A.4), and 

following the proof of Lemma 3 in Owen 191, we obtain maxi IR,I = op(nii2) and 
maxi lSnil = ~ ~ ( n ' ~ ~ ) .  Therefore maxi lKi1 = ~ , ( n ~ / ~ ) .  The proof of Lemma 2 (ii) is 
completed. 

Proof  of Theorem 1. Write R = etl, where Q 3 0 and 101 = 1. Let g,, = 

n-'x;=, Ki W z .  From the proof of Lemma 2 (i) we obtain 



. . 
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Then, by Lemma 1 and Lemma 2 (i), and an argument similar to (2.14) in Owen 
191, we can show that 

From (8) we have 

Hence 

(14) 

where 

rI i K~ (aT wni12 
~n = (a-I C Ki Ki) - C 

i =  1 ni , l  l + A T  Wni ' 

Now Lemma 2 and (13) together prove 

(15) m < 0, (n-l) max 1 Wnil = op (a-'1') 
l < i < n  

by the fact that 

in probability. Again by (8), we obtain 

By Lemma 2 and (13), we have 

From (16) and (17), we get 
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Applying Taylor's expansion to (91, using (14), (18) and Lemma 2, we obtain 

where, for some constant C > 0, 

1r.l G C (AT W.J3 G C 1AI3 ( max I C IKilz = o, (I), 
i =  l l S i S n  i =  1 

by the similar arguments to (17). Therefore, Theorem 1 follows straightaway 
from Lemma 1 using the fact that Z112Z;1 Eli2 and ,EL' C have the same 
eigenvalues. 
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