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1. INTRODUCTION 

Universal bounds for moments of order statistics from an i.i.d. sample 
were fust derived by Hartley and David (1954), Gumbel(1954), Moriguti (1953) 
and Ludwig (1960). The bounds are expressed in terms of the mean and stan- 
dard derivation of the underlying distribution and they provide characteriza- 
tions of some distributions. Analogous evaluations for records and kth records 
were established by Nagaraja (1978), Grudzien and SzynaI (1983) and Raqab 
(1997). Extensions of these results to progressive type I1 censored order statistic 
and generalized order statistic are given in Balakrishnan et al. (2001) and 
Kamps (1995). In Gajek and Gather (1991) p-norm bounds for order and 
record statistics were determined. The bounds for generalized order statistics 
based on inequalities of Diaz and Metcalf, and Pdlya and Szego were derived 
by Kamps (1995). In Gajek and Okolewski (2000a) some evaluations for gene- 
ralized order statistics were obtained by the approach which is equivalent to 
the combination of the Moriguti inequality and the Steffensen inequality. The 
results proved by the Steffensen inequality alone are given in Gajek and Okole- 
wski (2000b). In the case of restricted families of distributions there are known 
improvements of Moriguti-type bounds for order and record statistics deter- 
mined by applying projections of elements of functional Hilbert spaces onto 
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convex cones (see Rychlik (2001)). A summary of known bounds for generalized 
order statistics is presented in Kamps (1995). The results for order and record 
statistics are presented e.g. in David and Nagaraja (2003), Arnold and Bala- 
krishnan (1989), Arnold et al. (1998) and Rychlik (1998), (2001). 

Boltzmann's entropy bounds for expectations of generalized order statis- 
tics were established for the first time by Kaluszka and Okolewski (2003). The 
bounds characterize e.g. shifted Pareto distribution. They can also provide 
some rate of convergence evaluations. In 1988 Tsallis proposed a new defini- 
tion of the entropy of the random variable X: 

with the entropy index p > 0 and p # 1, which returns the classical Boltzmann 
entropy for p + 1. Since then researchers have used it in many physical ap- 
plications, such as developing the statistical mechanics of large scale astro- 
physical systems (Nakarnichi et al. (2002)), investigating thermodynamic proper- 
ties of stellar self-gravitating system (Taruya and Sakagami (2003)), describing 
fully developed turbulence (Armitsu and Armitsu (2002)). Furthermore, Tsallis' 
entropy was employed in solving inverse (Shiguemori et al. (2002)) and op- 
timization problems (Andricioaei and Straub (1996), Serra et al. (1997), Franz 
and Hoffmann (2003)), constructing nonparametric tests of independence be- 
tween stochastic processes (Fernandes (2000)), establishing a fragment size dis- 
tribution function which undergoes a transition to scaling (Sotolongo-Costa et 
al. (2000)). 

In this paper we propose sharp bounds for expectations of generalized 
order statistics X(r, n, 5, k) (see Definition 1 below) with random parameters 
r and pa, expressed in terms of the Tsallis entropy of the underlying distribution. 
The bounds are attainable and provide characterizations of e.g. shifted Weibull 
and Pareto distributions. Some relations between these bounds and the Boltz- 
mann entropy bounds are presented in Remarks 1 and 2. In the particular case 
of order statistics, random r and n appear naturally, e.g. in the context of 
stochastic scenario of relaxation (see Jurlewicz and Weron (2002)). 

2. TWE RESULT 

Let X, XI ,  X,, . . . be i.i.d, random variables with a common distribution 
function F. Let X,:, denote the rth order statistics from the sample XI,  . . ., X,, 
and let K('), r = 1 , 2, . . ., be the kth record statistics, i.e. 

where ~ ~ ( 1 )  = 1, LR(r+l) = min{j: XLr(r):Lk(r)+k-l  < Xj:jfk-l) for I. = 1,2, ... 
(cf. Dziubdziela and Kopociriski (1976)). Define the quantile function F - ' ( t )  = 
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inf(s E R: F (s) 2 t ) ,  t E (0, 1). The generalized order statistics are defined by 
Kamps (1995) as follows: 

DEFINITION 1. Let n~ N, k > 0 ,  fi = (m,, .. ., m , - l ) ~ R n - l  be parameters 
such that v, = k+n-r+z!1 'mj  > 0 for all T E { I ,  ..., n) .  If the random varia- 

J-r 
bles U.(r,  n,  6, k ) ,  r = 1, . . ., n, have a joint density function of the form 

on the cone 0 < u, < . . . G u, < 1 of Rn, then they are called ungorrn general- 
ized order statistics. The random variables 

are called generalized order statistics based on the distribution function F. If 
rn, = . . . = mn-, = rn, say, the random variables X ( r ,  n ,  G, k) are denoted by 
X ( r ,  n, m, k). 

In the case of rn = 0 and k = 1 the X ( r ,  n, rn, k )  reduces to the Xr:, from 
the sample X i ,  . . ., X,, for continuous F ,  m = - 1 and k E N we obtain Xtk) 
based on the sequence XI,  X,, . . ., while for absolutely continuous F, mi = Ri,  
where R,E{O, 1 ,2 ,  ...I, i = 1,2, ..., n, are such that Ri+ ...+ R , + n =  M ,  
and k = M - mi - n+ 1, the X ( r ,  n, 61, k) recovers the progressive ccn- 
sored type I1 order statistic xEAM with the censored scheme = (R , ,  . . ., R,) 
(see e.g. Balakrishnan et al. (2001), Balakrishnan and Aggarwala (2000)). 

Let us put r = {(r ,  n ) € N x N :  1 < r < n) and 6 = (ml,n, ..., mn-l ,n)~Rn-l ,  
n 2 2. Let ( R ,  N) be a random vector with values in r, independent of 
X ( r ,  n ,  rii ,  k), ( r ,  n)~r .  Random parameters R and N are the natural ones for 
both order and record statistics. Define 

(1) @ (0 = C @,,n (t) ~ r , n ,  
(r,n)Er 

where p,,, = P (R = r , N = n), (r , n) E r and 

G::$ denotes a particular Meijers G-function. Let @ and 6 be the greatest 
convex minorant and the smaIlest concave majorant of Qr, and let q and cp 
be the right-hand side derivatives of 9 and 5, respectively. ~ e c a l r  that X 
stands for a random variable with the distribution function F ,  and 
T, ( X )  = E ((XP-X)/(p - 1))  means the Tsallis entropy of X. 

THEOREM 1. Suppose that P(X 2 0) = 1 ,  E X p V 1  < co and c > 0. If p > 1, 
then 
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where 

1 

(4) u(P) = S ( ~ + ( P - ~ ) C P ( ~ ) )  
~ / b - ~ ) ~ ~ .  

0 

If 0 < p < 1, then 

c ~ - l -  

(5) E X ( R ,  N ,  ti, k )  2 -- cP-I T,(X)+ 
P ( P - 1  C 

PEX +ir cpl), 

where 

1 

6) lb) = -j(1-@-1)rp(t)) P / ( P -  dtm 
0 

Equalities in (3)  and (5)  are attained i f  and only if 

1 
F - l ( t )  = -(I+@-I)&)) 1/(p- 1) 

C 
and 

respectively. 

P r o o f .  It was shown in Kamps (1995) and Cramer et al. (2002) that the 
expected value of  X ( r ,  n, f i ,  k)  can be represented as follows: 

1 

E X ( r ,  n ,  tfi, k)  = jF-'(t)dQi,,n(t), 
0 

where Gr,, is given by (2). By Fubini's theorem we have 
1 1 

E X ( R ,  N ,  fi, k )  = C 1 F - I  (t)d@,,,(t)p,,, = S F - '  ( t)d@(t)  
(r,n)~T 0 0 

with Qi defined by (1). W e  shall now apply Moriguti's lemma. Let us recall it for 
completeness of the presentation. 

LEMMA (Moriguti (1953)). Let Qi, 9 and 6: [a, b] + R be continuous, non- 
decreasing functions such that @(a) = e ( a )  = $(a), @ ( b )  = g(b)  = @(b) and 
e ( t )  C @ ( t)  < 8 ( t )  for every t E [a,  b] .  Then the following inequalities hold: 

(4 5: r (0 dQi (0 C j: x (0 d t  ( t) ,  
(ii) & x (t) dm ( t )  2 1: x ( t)  d$(t) 

for any nondecreasing function x: (a,  b) 4 R for which the corresponding inte- 
grals exist. The equality in (i) holds ifand only i f x  is constant on each connected 
infervalfiom the set { t ~ ( a ,  b): g ( t )  c @(t)).  The equality in (ii) holds ifand only 
g x  is constant on each connected interval from the set {t  € ( a ,  b): B( t )  > G(t)). 
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By the lemma we get 

One can easily check that for all x 2 0 and I # p > 0 

with equality iff x = 1. Putting x = a/(l+ lp- 11 b)ll(p-l) with a, b 2 0 in (g), 
after some algebra, yields 

where sgn x = x/fxl. The equality. is attainabIe iff a = (1 + lp - 11 b)ll(p- I). 
Taking a = cFil (t), c > 0, b = q ( t )  for p > 1 and b = @ ( t )  for p ~ ( 0 ,  11, inte- 
grating both sides of (9) and &viding by c we obtain 

and 

Combining (10) and (11) with (7) completes the proof. PA 

Remark  1. I f P ( R = r , N = n ) =  lforsome(r,  n ) ~ r a n d P ( X > O ) =  1, 
then deriving the limits as p -, 1 + and p -, 1- of the right-hand sides of (3) and 
(5) and minimizing with respect to c we recover, for the proper class of dis- 
tributions of X, Boltzmann's entropy bounds given in Kaluszka and Okolewski 
((2003), Theorem 2 with A = 1). Of course, this approach needs additional 
assumptions which enable taking limits under the integral signs. Above all, the 
approach requires finiteness of EX1+" for some E > 0, and so it does not cover 
the case of the distributions such that EXlogX < ao and EX1'" co for all 
E > 0. As an example of such a situation, consider the density function 

r c  

(12) f (x) = 1 x2(logx)b~ 
x 2 a, 
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where a > 1, b > 2 and c is the normalizing constant. Consequently, Theorem 1 
is not a generalization of the bounds given in Kafuszka and Okolewski (2003). 

Remark  2. Optimizing (3) with respect to 'c > 0 yields 
1 

(13) N, 1, k) ~ ( ( ~ - I ) T , ( x ) + E x ) ' ~ ( J  ( ~ + ( p - l ) ~ ( t ) ) % ) ~ " - ~ x  
0 

with equality iff 

c (p)  F -  (t) = (1 + @ - 1) p (t))"", 

in which l/p + l/q = 1 and the optimal value 

(I: (1 +b - 1) y (11)~ d t ) l .  
c b )  = EXP 

Observe that (13) can be obtained directly by Holder's inequality. Of course, 
the attainability condition remains unchanged. However, it seems difficult to 
derive the limit of the left-hand side of (13) as p + 1'. Even if one managed to 
show that for deterministic R and N the resulting limit inequality takes the 
same form as the upper Boltzmann's entropy bound of Kaluszka and Okolew- 
ski (2003), it would hold as long as EXP < cc for some p > 1. 

3. EXAMPLES 

In this section we shall not rewrite particular bounds for order statistics, 
records and progressive censored type II order statistics. Instead, we shall 
present the distributions characterized by the corresponding attainability con- 
ditions as well as some distribution-free coefficients u (p) and I ( p )  defined by (4) 
and (6). Since all the distribution functions are continuous, we only provide the 
analytical formulae. 

3.1. Order statistics. Choose m = 0 and k = 1. If P(R = 1 ,  N = n) = 1, 
then @ (t) = n (1 - t)"-', and the lower bound (5) for EX1: ,  is attained iff 

for n 2 2, c > 0 and p E (0, 1). 
Let P(R = N )  = 1 and assume that N  has the Poisson distribution with 

mean A. Conventionally, we set X,:, = 0. Then q - (t) = ;leCal-'I. Equality in (3) 
for EXN:N holds iff 

where c > 0 and p > 1. 
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Now we consider bounds for EX,:,. The first order statistic from a sample 
of random length is used in a stochastic model of relaxation proposed by 
Jurlewicz and Weron (2002). Namely, the distribution of the relaxation time 
O of the entire system is determined by the first passage of the system from its 
initial state, so 

P ( @  2 t )  = P(min(B,,,,, ..., O ,,,,) 2 t ) ,  

where No denotes the system size, N is a random number of dipoles taking 
essentially part in the relaxation process, and variables @ i , N o ,  i = 1, . . ., N, 
represent the random waiting times of the particular responding dipoles for the 
initial state transition. There are several theories concerning the limit dis- 
tribution of G (see Jurlewicz and Weron (2002)). Theorem 1 provides some 
evaluations on expected relaxation time expressed in terms of Tsallis' entropy. 

Suppose that P ( R  = 1) = 1. Assume that N has the binomial distribution 
with a ~ ( 0 ,  I), M >, 2. Then @ ( t )  = ~ M ( l - u t ) ~ - ' ,  and the bound ( 5 )  is at- 
tainable for 

where c > 0 and p ~ ( 0 ,  1). If N has the Poisson distribution with mean A, then 
@(t)  = rle-&. The lower bound is attained iff 

where c > 0 and p~ (0, 1). If N has the geometrical distribution with mean l/a, i.e. 
P(N = n) = a(1-a)"-', n = 1, 2, ..., a ~ ( 0 ,  I), then @ ( t )  = a/(l-(~-a)(l-t))~ 
and equality holds in (5) iff 

In particular, for p = 0.5, the distribution-free coefficient 

Ja/2 arc tan 
J2/a - J2a 

'(PI 3 
-1. 

3.2. Record statistics. Set m = - 1 and k = 1. If R = r with probability one, 
then 

1 r-1 
y( t )  = b-l)!(-log(l-f)) - 

The upper bound (3) for Exc1), r 22,  is attained iff 
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Observe that for p = 2 we obtain the shifted Weibull distribution. Moreover, 
the coefficient u (2) = 3 + (2r- 2)!/[(r  - 1)!l2. 

Assume that R has the geometrical distribution with mean I/a. Then 

q ( t )  = a/(l -t)'-'. - 
The bound (3) is meaningful if u(p) < a, i.e. for a > l/p, p > 1. Equality holds 8 

In case p = 2 we get the shifted Pareto distribution. The coefficient 
u (2) = 3 + a2/(2a - l), a > 1/2, 

3.3. Progressive censored type BW order statistics. Set mi = Ri, where R i ~  
(0,1,2 ,... ), i = 1 , 2  ,..., n, are such that R1+ ...+ R , + n = M ,  and k =  

n - 1  
M-Ci=l mi - pa+ 1. Let P (R = N = n) = 1 for fixed n < M. Suppose that 
q, = 1. Then (see Balakrishnan et al. (2001)) 

where 

The upper bound for  EX!^ is attained iff 

Note that describing the distribution via the quantile function simplifies gene- 
rating pseudorandom samples from this distribution. For p = 2, 
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