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Abstract. In this paper, we firstly study the Besov regularity of
the local time of symmetric stable processes and of its fractional deriv-
ative. Secondly, we establish limit theorems for occupation times of
o-symmetric stable processes with 1 < a < 2 in some Besov spaces.
Finally, we give the strong approximation version of our limit theo-
rems.
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1. INTRODUCTION

In this paper we are concerned with limit theorems for the occupation
times of 1-dimensional stable processes in some Besov spaces.

Let X = {X,: t >0} be a symmetric stable process of index 1 < a < 2.
That is, X, = 0, X has stationary independent increments with the characteris-.
tic function

' Eexp(izX,) = exp(—t|z|Y) for any zeR.

This process admits a continuous local time process {L(t, x): ¢ > 0, xe R} (see
Boylan (1964) and Barlow (1988)).

It has been proved by T. Yamada (1986) for Brownian motion (x = 2) and
by Fitzsimmons and Getoor (1992) for stable Lévy processes that if g are in the
range of fractional derivative transform (g = D?. f), then the process

nt

1
(1) e fgX)ds, t>0,
0
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converges weakly in the space of continuous functions, as n — oo, to the pro-
cess
fDEL(, )0), ¢=0,

where D, f stands for the one-side fractional derivative of f (see Section 3 for
the definition) and f = (g f (x) dx. Ait Ouahra and Eddahbi (2001) gave a gene-
ralization of this result to Holder space.

K. Yamada (1999) gave an extension of the results of T. Yamada (1986)
and Fitzsimmons and Getoor (1992) to the case where occupation functions
g are not necessarily in the range of the fractional derivative transform and
belong to a more general class.

In this work we establish an extension of the result of K. Yamada (1999)
by proving that the convergence in law holds for the topology of the Besov
spaces. We also consider occupation time problems in the case where y = 0, i.e.,
f=D%g.

The rest of this paper is organized as follows. In Section 2, we present
some basic facts about Besov spaces. Section 3 is devoted to the tightness in
this functional framework. Section 4 contains certain regularity of local time
and its fractional derivative transform in Besov spaces. In Section 5, we state
our main results and we give the details of the proofs. The strong approxima-
tion versions of our results are studied in the last section.

Throughout this paper we use {X,, t > 0} to denote the symmetric stable
processes of index 1 < a < 2. We always denote by {L(t, x), t >0, xeR} its
local time.

Most of the estimates in this work contain unspecified constants; we use
the same notation for these constants, even when they vary from one line to the
next. We shall sometimes emphasize the dependence of these constants upon
parameters.

2. BESOV SPACES

In this section we will present a brief survey of Besov spaces. For more
details on this functional framework we refer the reader to Peetre (1976), Rope-
la (1976), Ciesielski (1993) and Ciesielski et al. (1993).

Let I:=[0, 1] and I*:= (0, 1]. For any Borel function f: I — R, one can
determine its regularity by computing its modulus of continuity in I#(I) (the
space of Lebesgue integrable R-valued functions with exponent 1 < p < + o0):

o, (f, ) = iuP 45 flleqy  and 4, f(x) = Ljo,1 - (X} Lf (x+B)—f (x)].
Oshs<t

For any 0 < p <1 and v> 0 we set w,,() = (1+logt™")’ and

w, (f, 1)

”f”p,m,.,v = ”f”p"'sup

tel* wy,v(t) .
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The Besov space, denoted by %5+, is the space of real-valued continuous
functions f on I such that

1/ 1lp,c0,,, < + 00

Endowed with the norm |-||,.,,,, &3 is a non-separable Banach space.

For the sake of completeness let us now recall the isomorphism between
%y and certain spaces of sequences (see Ciesielski et al. (1993)). Assume that
f: I- R is a continuous function, its decomposition in the Schauder basis is
given by

FO=r0eo@)+fi 01O+ fix0ix(®),
ik
{®0, 01, @ik j =0, 1 <k <2/} being the Schauder basis in €(I), the real-

valued space of continuous functions f on I. The coefficients of f in this basis
are given as follows:

fi=f()—£(0)

o ) o(30)-C2) (57)

The subspace #g*° of #%+* which corresponds to sequences (f,- k)j « such that

and

lim 2732=m+1D (14 )~ |If [, =0, where [[fj}i2 = Z S5l

jor+ o

is a separable Banach space.
By Theorem III.8 and Remark F4 in Ciesielski et al. (1993), one can check
that for all p> 1 the norm ||f|l,,,, On #y** is equivalent to the norm

I£1I* = max (|f O, Ifil, sup2~*1/2~ ““"”(1 +0) 7 N ll)

jz0

for p~! < min (g, v). :
Let us remark that for 0 <u <4 and v >4 we have

(2) sup 2~ /(2~ “+1"”(1+J) i lp < sup 2792 (14+7) 712 15, Nl

jiz0 jz0

which means, for example, that ||fl|..,, < |fllp.0,., 2

We shall also denote by €;(I), for 0 < é < 1, the subspace of % (I), consist-
ing of Holder continuous functions of order 8, and by %5, 5, (I?) the subspace
of € (I?) of Hélder continuous functions of order (5, &,). Hence f belongs to
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%s(D) if | fll;+1/f1l; is finite and f belongs to €5, s, (I?) if || fllzz +1|f1ls,., s finite,
where

IlfIIz:=StUPIf(t)I, Iflls := sup

s#tel |_

lf(t)_j;a(s)la Ifllz:= sup |f(s, o)l

(s,t)el?

and

”f”nh.ﬂz = sup lf(Sz, tZ)—f(Sz’ tl) f(sli t2)+f(S1, tl)l

(51,52)% (t1,t2)el2 [ty —251° |5y — 52|

2.1. Tightness in Besov spaces. For the proof of our result we need the
tightness in a suitable Besov space. As a consequence of a famous Prohorov
theorem (see Billingsley (1968), Theorems 6.1 and 6.2), the study of weak
convergence of random elements of #y»»° is reduced to the following result.

PROPOSITION 1. The weak convergence in B2+ of a sequence of processes
(s, n = 1) is equivalent to the tightness in B3+»° of the distribution P, = Po ¢}
of random elements &, and the convergence of the finite-dimensional distribution
of &n.

Since #%+° is separable, it is convenient to work with this space instead
of #y*. As the canonical injection of .@gﬂ-‘"” in %z is continuous, weak
convergence in the former implies weak convergence in the latter. A sufficient
condition for the tightness in %%~ is given by some preliminary lemmas.

LEMMA 2. Let 1 <p < +oo,p ! <min(u,v),e>0and p<1,v>0. Set

w , L
H(f, 1, v, p):= sup 20,

O<t<e wu,v (t)

We denote by & the set of measurable functions f: I — R such that

() sup ., [|flap.. < + 0,

(ll) hmsupa—ﬂ) Supfeé’H (f i, v, p)

Then & is relatively compact in @"’f“"

Proof. By Riesz-Fréchet-Kolmogorov’s theorem (see for instance Yosi-
da (1965)) one can check that (i) and (ii) imply that & is relatively compact in
IZ(I). Hence, for any sequence (f,),>1 of & there exists a subsequence (also
denoted by (f,).>1) converging in I? (I) to some function f € I? (I). To complete
the proof it suffices to show the following two assertions:

(a) f e B0,

(b} (f») is a Cauchy sequence in Zo=+°.

For (a), let us choose a subsequence of (f;),», that converges almost surely
to f. By Fatou’s lemma we get

W C+R) =il < hmmfllﬁ.( +R)—fu( M < SuPllfn( +h)—fu C)llp-
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Therefore for all tel we have
o, (f, 1) S supw, (£, 1),
n=1
and, by condition (i), we deduce that

w,(f, 1) @y (fas 1)
3 sup—2=—_° g L2 1< +oo0.
( ) IE.IEJ wu,v (t) nz1 telg a)u,v (t)

Moreover, (ii) implies that for any & > 0 there exists &, > 0 such that

sup w<s for all n> 1.
0<t<ep wy,v(.t)
Then, by (3), we obtain
w,(f, 1) = 0(w,,(t)) ast—0,
which completes the proof of (a).
To prove (b), let n,n’ = 0. We get

UaSillpaps = ol +sup 22Gn =) )

tel W,y (1)
Recall that
Wfe—=full,—»0 as n,n - +c0.
Now, assume that g, > 0 is small enough. Then it follows that

1y ((f;l ;f;l')i t) ' @p ((f;l _f;l)3 t) @y ((f;l _f;l’)a t)
stg? . wu,v (t) g 0 il;lgao . wn,v (t) + ts;lg a)p.v (t)

2\ fa—Swll

]Ilillgo sl mu,v (t) -

< H,y(fu—fos 1, v, D)+

Hence _
”.ﬁl _f;l‘”p.m,,,v < Heo(j;u H, V, p)+H£o (.f;l’a H, Y, p)+C(ﬂ, v, EO)”ﬁ _f;z‘”p
<3 asn,n— 4o,

which completes the proof of Lemma 2.

LEMMA 3. Let p>p~' and 0 < v < V. Then the space #o* is compactly
embedded in B2,

Proof. Let ./ be a bounded subset of #5*. Lemma 3 is a consequence of

the assumptions (i) and (ii) of Lemma 2.
It is clear that if v <V, then ||fll;0,., < Iflly.e,,, Which gives (i).
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In order to show (ii), we notice that

w,(f, 1) w,(f, t)
H.(f, u,v,p)= sup —= < sup 2
(f a p) 0<tr~,<..e wn,v’ (t) h 0<t§e a)u,v (t)

< He(fs u, v, P) Wo,v—v' (t) < ”f”p,mu_v Dg,y—v’ (t),

w(),v—v' (t)

which shows that
H,(f, u,v,p)—»0 as e—0

because v'—v > 0. Therefore, by Lemma 2, « is relatively compact in 2=°,

LeMMA 4. Let {X7: tel},» be a sequence of stochastic processes satis-

Sfying:
@i Xo0=0 for all n> 1.
(i) For all p > 2 there exists a positive constant C such that

E|X;-X3P < Clt—s|®*  for all s, tel.

Then {X7:tel},», is tight in the space Bo° for all 0<pu<1, v>0 and
p>max(u~ !, v

Proof. Observe that by the assumption () we have X3 =0 and
(X" = X1. We will prove that for any v > 0 there exists a positive constant
C > 0 such that for all n>0, 1>0, and p~! <v <v we have

P[||X"| gz > A] < C/A?  for all n> 1,
which implies that for all ¢ > 0 there exists A, large enough such that
Pl X7||gosr > Aol <& for all n>1.

Applying the characterization theorem of Ciesielski et al. (1993), it suffices to
show that

I:=P|swp>— X777 > ]sc -»,
2o (1+)) n=20+1 *

Now, by Tchebyshev’s inequality, we have
3 2-ip(1/2=p+1/p) 2%* X007
ISy *———i— E|X7 47",
B0 P LHe M

On the other hand, the coefficients X7}; are given by

X=2" 22 {XGor—1y20+1 —%(X'ikfziﬂ + Xk —2y25+1)}-
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Thus, we get

2—ip(l/2-p+1/p) 274

LA 22;, E|X%k20+1— X{ok-2y20+1/°
iz n=27+1
1
AP ) e S CATE,
jso L+ h

where the last inequality holds due to pv' > 1. Therefore, I < CA™?, which
completes the proof.

I<CA™F

<

3. REGULARITY OF THE LOCAL TIME AND RELATED TRANSFORMATIONS
IN BESOV SPACES

Let 0 <é <1 and g: R - R be a function that belongs to €;(R)nL! (R).
For 6 >y > 0 we can define the fractional derivative of g of order y by

1 2gxty)—gx)
et

The operators DY, and D? are called right-hand and left-hand Marchaud frac-
tional derivatives of order 7y, respectively.

We put D”:= D% —D*,

It is known from Hardy and Littlewood (1928) that D% g is (6 —y)-Holder
continuous when g is J-Hoélder continuous for any y < 6.

Fractional derivatives and integrals have many uses such as fractional
integro-differentiation which has now become a significant topic in mathemati-
cal analysis. For a complete survey on the fractional integrals and derivatives we
refer the reader to the book by Samko et al. (1993) (and the references therein).

Since y~! is not integrable at infinity, we define D% for y =0 as
TgxLy)—g(x) 110,110 dy.

D%g(x):= —g .

D%ig(x):=

Define also D°:= D% —D°.
Assume that the function g belongs to I?(R). We consider the Hilbert
transform 5# of the function g defined by

Hg(x):= %(v.p. (1> * g) (x),

where v.p. denotes the Cauchy principal value of 1/x. ‘

From the theory of singular integrals it is known that the operator
D°=n# maps IP(R) into I?(R) for 1 <p < oo. Moreover, for any
geF(R),p>1,

“- ID° gll Loy < ¢, |9 llLocmys
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where ¢, depends only on p. However, (4) fails in the case p =1 in which
g belongs to I! (R). In the particular case p = 2 the operator J# is an isometry
on I?(R) and #~' = —#. For the proofs of these properties we refer the
reader to Titchmarsh (1948), Chapter V.

Integral transformations including Fourier and Hilbert transforms play
a significant role in signal processing. A selected application of Hilbert trans-
forms, which serves as a theoretical basis of the complex notation of signals,
can be found in Hahn (1996).

PROPOSITION 5. Let 0 <y < d < 1. If g belongs to €5(I), then the fractional
derivative D'g of g of order y belongs to €5, (I).

The proof of the proposition can be found in Samko et al. (1993); see also
Boufoussi et al. (1997) for the regularity in Besov spaces.

We have the following well-known regularity property of the local time of
a symmetric stable process X and we refer the reader to Marcus and Rosen
(1992) for a proof.

Let X = {X,: t > 0} be a symmetric stable process of index 1 < o < 2. Its
local time L(t, x) at the moment ¢teI and the level xe R can be defined as the
density at the point x of the occupation measure

t
A [1,X)ds and AeB(R).
0

LeMMA 6. Let J be a compact of R*. Then the trajectory t+— L(t, x) be-
longs a.s. to €;(J) for any 0 < é < (v—1)/a and all |x| < M, where M is a con-
stant. The mapping x> L(t, x) belongs a.s. to €;(K,) for any 0 < é < (x—1)/2
and all tel, where K, is a compact of R.

The following lemma, which gives a regularity property of the local time
L(t, x) as a function of two variables, is a basic tool for our limit theorems, and
its proof can be found in Ait Ouahra and Eddahbi (2001).

LemMMA 7. Let K, be a compact of R* x R. Then the trajectory (t, x)— L(t, x)
belongs a.s. to €5,5,(K5) for any 0 <6y <(@—1)20 and 0 < J, < (x—1)/2.

The main results of this section are the following.

LeMMA 8. The trajectory t+—L(t,x) belongs as. to Besov space
RBoe=ver0 for any v > p~* and all |x| < M, where M is a constant. The mapping
x> L(t, x) belongs as. to B« 20 for any v>p~! and all tel.

Proof. To prove that t~ L(t, x) belongs to 5=~ =° by the charac-
terization theorem it suffices to show that almost surely

2=i1j2=(@=1)fat1/p) 2

lim L(j, k, x)|)""" =
Jm gy (L L0k ap)
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2k—1 2k—2 2k
L(j, k, x) = 27 {2L< I x)—L('z“ﬂT, x)—L(F, X)}

For any A>0

where

23
Q:= P [sup2 /=0l i) (1 1j)=( 3. |L(j, k, 2F)"” > 2]
k=1

jizo

24
< Z p[ Z |L(j, k, x)|P > Ap2pi/2=@=Diet1/p) (1 4 j)pv],

iZ0 k=1

By using the Tchebyshev inequality, we obtain

Q< Y YE|L(j, k, x)|P A7P27P2- @ Vit 1p) (1 4 jy=pV,

izo

In view of the definition of L(j, k, x) and Lemma 6, we get

0<C A7) (1+))7P.
jz0
If we choose pv > 1 and A large enough, the series Z o (1)~ is convergent
Then the result is a consequence of the Borel- Cantelh lemma.
Now, we show the second regularity property in our lemma. We only need
to prove
24

lim 2-#U2=@=v2+un (14 )= (Y L, j, KIP)F =0,
k=1

j—+ow

where

2k—1 2k—2 2k 2k—1
o= [ ) ol ) 2D

The result follows in a similar way as above.

LEMMA 9. Let 0 <y < (x—1)/2 and De{D?, D%, D?, D°}. The trajectory -
t—DL(t, -)(x) belongs as. to B2 =0 for any v>p~! and all |x| <M,
where M is a constant. The mapping x> DL(t, )(x) belongs as. to
Boe-02=r»0 for any v>p~! and all tel.

Proof. At first we prove that x+>DL(t,-)(x) belongs as. to
ABoe-v2-r»0 for any v > p~1. We treat only the case D = D% (the other cases
are similar). We consider separately the two cases y=0 and O <y < 1.

0<y<1 By Lemma 8, xi— L(f, x) belongs as. to #2122 for any
v > p~ L. Then, by virtue of Lemma 3.1 in Boufoussi et al. (1997), the mapping

x> DL(t, -)(x) belongs as. to ABoe-v2-10 for any v > p~ L.
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y = 0. Using similar calculations to those in Lemma 2.12 of Fitzsimmons
and Getoor (1992), one may easily prove Lemma 3.1 in Boufoussi et al. (1997)
for y =0. The desired result then follows.
Now, we are going to prove the second part of the lemma. By the charac-
terization theorem it suffices to show that almost surely
27

lim 27H1/2= (@@= Dja=n+1/p) (] +j)_"( Z IDL(j, k, -)(x)l")”p =0,
: k=1

jr+w

where
) — 2k—2 2k
DL(j, k, -)(x) = 272 [ZDL(gzlcﬁ—ll, -)(x)—DL( L ')(x)—DL(Eij -)(x)].

For any A >0

24
Q:= P[sup2/rt/2=(@-Liz=n+1/p) (1 +j)~2*( Y IDL(j, k, .)(x)lp)lfp > A7].

j>0 k=1

By Tchebyshev’s inequality, we get

Q <AE Z ZJ'El_DL(j, k, ')(x)lp(l +j)~pv2—pj(1/2—((a—1)/a—v)+1/p)_

jzo0
In view of the definition of DL(j, k, *)(x) and Theorem 2 in Ait Ouahra and
Eddahbi (2001), we deduce that

Q< CpA™2 Y (14j)77" 27 Pile= V=) 3 =piy — @~ 1))

jz0
< ij_—p Z (1 +j)-pv 2—pjv((a—1)la)_
jz0

If we choose v > p~! and we use the fact that 1 <« < 2, it follows trivially
that Q < + co. The result is a simple application of the Borel-Cantelli lemma.

4. LIMIT THEOREMS

The aim of the present section is to obtain a limit theorem for normalized
occupation time integrals of the form :

1
u(n)

where u is a certain function and f e I (R) (f not necessarily in the range of the

fractional derivative transform). Our result is an extension of the limit theorems

given by K. Yamada (1999) in the space of continuous functions to Besov space.
In what follows we state our main results of this section.

Trxyds, 0,
1]
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TueoreM 10. Let 0 <y <(x—1)/2, v>0, and p > max(20/(x—1), 1/v).
Assume that a function f € I} (R) with a compact support satisfies f = 0 and that
|x|**f (x) is bounded and

lim () = £ (f).

x— + oo(— ®)

Then the processes

1 nt
pl— @+ JfX)ds, t=0,
0

converge weakly in Be=-2»% g5 n— 00, to the processes
F(=9)(fs DY L, YO +f-DL LG, )(O), 30,
THEOREM 11. Let feL},.(R) with a compact support satisfy
lim | f(x)dx=
N2t o g <m
In this case, f = f_ = fo. We assume that —1 <y < 0 and p > max (/ (x—1), 1/%).
Then

1 nt
= S (XDds, >0,
)

converges in the sense of law in B0 g5 n— o, to the process
Loxa>y 4o ¢ L, x)—L(t, 0) p
————dx |, t=0.
fO(.‘. |Xsll+y .‘-1 |x!1+y =

Proof of Theorem 10. By K. Yamada (1999), the finite-dimensional
distributions of

1 nt
A;' = mff(Xs)dS
h 0

converge, as n — oo, to the finite-dimensional distributions of
I'(=7)(f+ D% L(t, )(0)+f- D~ L{(t, -)(0)).

So to prove the theorem, we need only to show the tightness of the processes
A7 in the separable Banach space %3¢ Y2, where ae(l,2],v>0 and
p > max (2a/(x—1), 1/v). By the occupation density formula and scaling prop-
erty of the local time, we have for any m > 1

1 nt ns 2m

E|AT— A" =E nl—_u-;m(gf(Xu)du—gf(X,,)du) =
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_ n2mv/aE“'f(x)(L(t, xn~ Y% —L(s, xn‘l/“)) dx|2m
=n*""E|[ f (x)(L(t, xn™*%)—L(s, xn=**)— Lz, 0)+ L (s, 0))dx|*",
R

since f = 0.
Let (2m, m’) be a pair of positive real numbers such that 1/2m+1/m’' = 1.
By applying Holder’s inequality, we obtain

E |47 — A" < n?™ [ |f ()™ dx]>mim
K ‘
X E {|L(t, xn™ ") —L(s, xn~ Y% — L(t, 0)+ L s, 0)|*" dx
K
<n?™*C(m)E [|L(t, xn~**)—L(s, xn~ ) — L(t, 0)+ L(s, 0)|*™ dx,
K

where K is the compact support of f and C(m) = [[, |f ()™ dx]*™™ . Next, by
Lemma 7, we get

E IA?_A;1|2m < n2my/cz C(m) |t_s|2m(1z— 1)/2a J‘ Ixn—l/az|2m(a-—1)/2 dx
K

= n2m('y/¢-(a-1)/2¢) C(m, d) lt_s|2m(a—1)/2a S C(m, o‘)It_SIZM(az—l)/Za,

where the last inequality is due to the fact that 0 < y < (x— 1)/2. Therefore, by
Lemma 4, the sequence (A4f),>, is tight in the Besov space %%« 122»0 and the
proof of the theorem is complete.

Proof of Theorem 11. As in the proof of Theorem 10 it suffices to
show the tightness of

1

nt
B?:=mjf(xs)ds, n?l,
0

in the Besov space %3¢ V=% As above, for any m > 1 we have
E|B—Bj*™ = n®™*E|{ f (x)(L(t, xn~*%)— L(s, xn™ /%) dx|>™.
R

From the inequality
E|L(t, x)—L(s, x)*™ < C |t—s|?™a~ e,
due to Marcus and Rosen (1992), it follows that

E IB;'—BQ'IZ"‘ < Cany/a |t__S|2m(az—1)/a.
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Since —1 <y <0, we have (n>™/* <1)
(5) E|B}—B*™ < C|t—s[*me= b,

The desired result is now an immediate consequence of (5) and Lemma 4.

5. STRONG APPROXIMATION

A strong approximation version of T. Yamada’s (1986) results, obtained in
the case a = 2 (that is, X, is a Brownian motion), was given by Csaki et al. (2002).
The aim of this section is to obtain a strong approximation version of Theo-
rems 10 and 11. For a random variable, say Z, on the probability space of the
stable process X, we denote by ||Z||, the I-norm of Z with respect to P°, the
probability measure of the process which is zero at zero time, ie. ||Z]|, = [E|Z[]*".
Here are the main results of this section.

THEOREM 12. Let f be in I}(R) such that f =0. Assume that, for
0<y<(—1)2, |x|**? f(x) is bounded and

Lm TG =12 ().

Then for all sufficiently small ¢ >0 and m>= 1, as t > oo,l
t
I§ £ (X ds||2m = £+ D% L(t, )©)+f- DL Lz, *)O)llzm+o0 ('~ +70a¥s),
0

THEOREM 13. Let fe I} . (R) and limy_, ; I(le < S (X)dx = 0. In this case,
f+ =f- =f,. We assume that y = 0. Then for all sufficiently small ¢ >0 and

m=1, as t— o0,
t1 T L(t, x)—L(t, 0)
—UXs|> 1) 4 B el L Il AP |
f°[o pe S T
The following is the key lemma.

LemMma 14. Let 0 <y < (2—1)/2 and De{D%, D*, D", D°}. Then there
exists a constant C > 0 such that for every (t,s)eR%, xeR and m > 1

IDL(t, ) (x)— DL(s, ) (%)l 2m < C|t—s|t~A T/,

Proof of Lemma 14. Let us give the proof for D%, the other case can
be derived similarly and by linearity (see Ait Ouahra and Eddahbi (2001)).
From the definition of D% we have for all integers m > 1

DS Lt, -)(x)=D% L(s, *) ()ll2m

+0(t1 —1/a+e).
2m

1§ ksl =

_ +§w L(t, x+y)—§:(t, x)10<y<1dy_ +§!DL(S, x+y)—§;(s, x)10<y<1dy
0 0 2m

<11+123
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where
LIL(t, x+y)—L(t, X)—L(s, X+ )+ L(8, %)z
1y = [IEE X)L D=Ll 4D L, am
0 y
+ oo t _
Iz — J- ”L( ’ x+)’) yL(Ss x+y)“2mdy-
1

Let k= |t—s* (a > 0). Then

I = }IIL(t, x+y)—L(t, X)llam+IL(s, x+y)—L s, x)”2mdy
=
0 y
+ }IIL(I,. X+ y)=L(s, X+ Y)llam+IL(¢, x)—L(s, x)“Zmdy
h y
h 1
S Clye 21 gy 4 Cle—sl@ Vi [y=1gy,
0 h
Consequently,
1
I, < Clt—sl“/(“‘l’/z+C|t—s|‘“‘1)/“logm;.
If we choose a = 2/a, we get
(6) I, < Clt—s|® D=,
Now, we deal with I,. We have
+ o +
”L(ta x4+ )_L(Sa x+J’)|| m x—1)a 001
L= § — 2y < Cle=sl*™0 [ 140 0)dy,
1 1

where A(x):= {y: |x+y| < C} has measure less than or equal to 2C, and
suppL(t, ') = [—-C, C]. We deduce that

)] I, < Clt—sj@ Ve,
It follows from (6) and (7) that
IDS L(t, -)()~D% L(s, *) (%)l|2m < C [t—s]®~ Ve,
which gives the desired estimate,
Proof of Theorem 12. Set

1) = (I)f(Xs)dS—f+ D% L(t, -)(0)—f- DL L(z, ) (0).

Using the occupation time formula and the fact that f =0, we obtain

I(t) = ‘I!f(Y)L(t, y)dy—f+ D% L(t, ) (0)—f- D~ L(z, -)(0).
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Then, for all integers m > 1,
L(t, Lt 0
j|y|“vf(y)%dy
+ £+ ID% L2, - ) (O)lam +|f-1 DL L(z, *) (O)l|2m-
Since |y|'*?|f () is bounded, we get
Il ll2m < C{IID% L(t, - )(O)ll2m+ DY L(t, - ) Ollzm} < C{I, (1) +12(2)}.

Now we consider the estimates I, (f) and I,(f). Using Lemma 14 for x =0,
s=0 and D = D", we infer that there exists a constant C > 0 such that

M Ollzm <

2m

®) I;(t) = IDY% L(t, *) O)llm < Ctle=Dix=vie,
Similarly, for D = D” we obtain

©) I(8) = IDL L(t, *) O)]|om < Cle~ Die 0,
Now, combining (8) and (9), we deduce that

(10) I @)z < Colo™ DIe= e,

Then the proof of the theorem is complete.
Proof of Theorem 13. Set

J(t)—j'f(Xs)ds f0<j' x> h g ,wdx)

X1 Pl

By the occupation density formula we have

(11) I ©llam < T2 0+ T2 0+ T3 0,
where
50 =7 LE D ddm 120 =14 %d’cz’
120 = 15| § “E2m D]

We want to estimate J;(¢) for i = 1, 2, 3. Using the fact that L(0, x) = 0,
we obtain

“L(t! X)—L(O, x)”2m x

J,e)<C | ST dx < C(A+B)
|x|>1 xl
with
c
IIL (¢, x)—L(0, X)ll2m YL, X)— L0, X)ll2m
A= _1[ s dx, B= _f FiEZ dx

5 — PAMS 242
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and
K=suppL(t,")c[-C, C].

We will use Lemma 6 to conclude that
C t(a— 1)/1

A< C ey dx < Gl

|1+'p

Similarly for B we have
B < Cte Ve,

It follows that, for all sufficiently small ¢ > 0,

(12) J,(t) = ot~ Dixte),
Now, we deal with J;(t). In view of Lemma 6, we deduce that
(13) J3(0) = ofte e+

for all sufficiently small ¢ > 0.
Now, we are going to estimate J, (f). We have

Ji(@) = ||£f(x)L(t, x) dx||zm = Hif(x)(L(t, x)—L(0, x)) dx]|2m-
By Lemma 6, we get
(14) J1(f) < Cle~ Vi,
Now, combining (11)-(14), we get
I @ll2m = 0 (' ~579),
which completes the proof of the theorem.
Remark. It would be interesting to prove that

jt'f(Xs)ds =f. D% L(t, )(Q)+f- DL L(t, - }(0)+o(t* 1 *Me"%) ag,
0

and

[y 0cgds = | [imdz2as [ LEDLEO

dx |+o(tt~ 1% g5,
X O T } )
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