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Abstract. In this paper we study Markov processes never exiting 
(NE) a subspace A of the state space E or, in other words, Markov 
processes conditioned to stay in the subspace A. We show bow the 
knowledge of the exact asymptotics of the tail distribution of the exit 
time helps to r id  the suitable exponential martingale, which, in turn, 
serves for the change d measure. Under the new probability measure 
the process is the sought for never exiting one the subspace A. We also 
find its extended generator and study relationships between the in- 
variant measure (INE) and the quasi-stationary (QS) distribution. We 
analyze in detail the PDMP processes. 
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1. INTRODUCTION 

In this paper we study Markov processes never exiting a subspace A of the 
state space E or, in other words, Markov processes conditioned to stay always 
in A. Classical examples concern real-valued Markov processes conditioned to 
stay positive. We use the abbreviation NE for never exiting. Typically, the 
event that the process never exits the subspace has probability zero, and thus 
we cannot define NE processes by the conditional probability. In this paper we 
propose to define NE processes either by a limiting probability or by the 
change of probability measure. First studies of such a concept, under the name 
of the taboo process, were done by Knight (1969). He showed that the Brownian 
process NE the positive axis is the Besse13 process. Knight also studied Brownian 
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I processes NE an interval. Diffusion processes NE a bounded open subset of R~ 
were studied by Pinsky (1985). The case of spectrally negative LCvy processes 
conditioned to stay positive was considered by Bertoin (1996) and Chaumont 
(1996); see also Lambert (2000) for the Gvy process conditioned to stay in an 
interval. Other examples of such processes are so-called non-colliding Brow- 
nian motions, which are k-dimensional Brownian motions never exiting the 
Weyl chamber {x: xl 6 xz < . . . < xk}. A limit of such a process turns out to 
be the eigenvalue process associated with the Hermitian Brownian motion; see 
Grabiner (1999), Kiinig et al. (2002). Jacka and Roberts (1995) study the notion 
of NE processes for continuous time Markov chains (CTMC). 

! In this paper, in contrast to Pinsky (1985), we present the theory for 
general Markov processes and we allow an unbounded subspace A. We present 
a detailed account of the exponential change of measure approach to define NE 
processes. Among others, we show how to adapt some results from the paper of 
Palmowski and Rolski (2002) to make it possible to study NE processes. In 
particular, we show how to choose a good function (the terminology of PaI- 

4 
I 

I mowski and Rolski (2002)) to define the NE process via change of measure. It 
turns out that this good function can be learned from the asymptotic behavior 
of the tail probability of the exit time from the subspace A. This part com- 
plements the study of Glynn and Thonsson (2001), (2002) explaining the role of 
the change of measure technique. The case of piecewise deterministic Markov 
processes (PDMP) is worked out. We also give a relationship between in- 

/ variant measures of NE Markov processes (provided they exist), abbreviated 
I here as INE measures, and quasi-stationary (QS) distributions. Note that if the 

NE process is recurrent, then INE measure is just its stationary measure. The 
concept of quasi-stationary distributions attracted attention in many papers, in 
particular see Kyprianou (1971), Keener (1992), Nair and Pollett (1993), Ferrari 
et al. (1995) and references therein. 

2. FINITE CTMC PROTOTYPE 

Consider a CTMC {X(t)} with E = {0, 1,. .., k) and A = {l, 2, . .., k )  
with transition matrix Q = (qij)i,j=O,l,...,k. We assume that realizations are right 
continuous and with left-hand limits. Let z = rnin {t >, 0: X (t) = 0) be the exit 
time from A and 

xt (t) = 
t a z ,  I:(t), t < r y  

be the process {X(t)) killed at the exit from A. The transition matrix of the 
process {Xt ( t ) )  on {I, . . ., k) is as follows. Take the subintensity matrix 
Qt = (qij)i,j=l,...,A of the intensity matrix of the process {X(t)) and set 
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Then Pi(Xt (t) = j) = p$ (t) for i, j = 1, . . ., k. Notice that zi=J pfi (t) < 1, 
i = 1, . . ., k. We also remark that the operator A t  f = Qt f ', workrng on vec- 
tors f = (fi , . . , , f k ,  ft) such that ft = 0 and f, = fi' (i # TI, is a full generator of 
(Xt ( t)) .  Assume the irreducibility on the subspace 1, . . ., k and let - y be the 
Perron-Frobenius eigenvalue of Qt with p and h to be the left (row vector 
normalized to have sum 1) or the right (column vector) eigenvectors (respec- 
tively). Without loss of generality we may assume that ph = 1. We assume 
y > 0, which means that z is proper a.s. (we always have y 2 0). Thus 

Pt( t)h=e-ph,  pPt(t)=e-Y'p 

for all t 2 0 or, equivalently, 

We will call fi  the quasi-stationary (QS) distribution of ( ~ ( t ) ]  on A. From the 
Perron-Frobenius theorem we know that for i, j = 1, .. ., k 

Pt(Xt(t) = j) = hipjee-Yt+o(e-7') as t +  a,. 

Conversely, the knowledge of the limit 

lim P* (t t) 
*+,Pj(z > s+t) 

gives us the needed spectral information. Namely, we have, as s + m, 

Similarly we can show that for i, j = 1, .. ., k and t > 0 the limit 

exists and defines a probability transition function for a CTMC on (1, . . ., k}. 
Markov processes like (XT (t)} with transition function PT (t) = (p& (t))i,j= 
are to be studied in this paper. Can we find its generator? The starting point is 
the observation that h is a (- y)-harmonic function on (1, . . . , k), thus 
{&'I (t) = eYthxto P (t < z)) is an &-martingale. As we show later, this is an 
exponential martingale, and we may use the theory from Palmowski and Rol- 
ski (2002) to define Markov process (Xt (t)) on (1, . . ., k) via exponential 
change of measure using the density process {CT (t)}. We shall call {Xt (t)} the 
process X(t) conditioned to never exit (NE) a set A. This new process is a true 
Markov process with intensity matrix (check that rows sum to 0): 

Qt = (A-'QtA+yI), 

9 - PAMS 24.2 
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where A = diag (h). Thus, indeed, the process lives on A = (1, . . ., k). We may 
compute the stationary distribution 71 for Qr, that is, the distribution fu1filIing 
nQt = 0, which is the INE distribution. Now writing nA-'Qt A = -yn, we 
obtain (xd -I) Qt = - y (nA-'1. This means that p = b71A-l is QS for some 
normalizing constant 6. Our goal is to generalize above considerations for 
more general Markov processes on general state spaces. 

3. GENERAL FRAMEWORK 

Let a state space E be Bore1 and consider a continuous time Markov 
process (X ( t ) )  on a filtered probability space (a, 9, {&), B,), XEE. We as- 
sume that all considered processes are ddlag. Thus without loss of generality 
we may suppose that 0 c E[O.") is the space DE [O, co) of cAdlAg functions from 
[0, m) into E (in some cases we can also use W E  [O, a), the space of con- 
tinuous functions into E)  and consider the canonical process (X(t)) on 
(a, F, {Fr), P,) defined by X (a, t) = w (t). We denote the natural filtration by 
{&I, where IP, = o { X  (s), s 6 t) and 9 = Vr, SF,. 

Let A c E be an open subset of E and .c = mm (t 2 0: X(t)# A) be an exit 
time. Note that T is a Markov time. Throughout this note, A always denotes 
the subspace and we assume that 

P , (z<co)=l  for all X E A .  

We also need the killed process {Xf(t)} defined in (1). 

3.1. Never exiting process. The concept of Never Exiting A c E by 
a CTMP {X(t)) (or, in short, NE) can be defined as follows. For t >, 0 and 
x E A  define 

provided the limits exist for all t ,  A, and they define the proper probability 
measures. Let X E  A. Then the family t 2 0) defines one probability 
measure Pi on DE [O, CQ) such that P$,,(A) = PL (A) for A E ~ , ;  see e.g. for 
more details Palmowski and Rolski (2002). Thus, provided these limits exist, we 
may consider the process (X (t)) on the space DE [0, a) (and in view of Propo- 
sition 3.3 on DA LO, GO)) under P i ,  which we call NE the subspace A. With this 
approach we face the following problems. The first question is to determine 
when the limit has sense and the second one is whether we can define Pi from 
P, by the exponential change of the probability measure argument. Then it 
turns out that the process X(t) under Pl is Markovian. 

The following general scheme can be found in some papers, like Lambert 
(2000) and Jacka and Roberts (1995). 
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LEMMA 3.1. For all s ,  t 3 0 and X E A  

where 

Proof. Let A E F * .  We write 

We now look for the limiting function h*(x, t)  such that 

lim D(y,  x, t ,  s) = 
h*CvY t )  

s+ co h* (x, 0)' 

Let z be the exit time. We now introduce a hypothesis, which yields the 
required spectral information. 

(PF) We say that the Pewon-Frobenius hypothesis is fulfilled if the limit 

exists for all x ,  Y E A ,  0 < z ( x ,  y) < coy and 

(5)  + l i m E x ~ b ' S ) l ( t < r )  P,(z>s)  = E Y r ( X ( t ) , y ) l ( t < . r )  for a l lyeA.  I 
Conditions under which (PF) holds in the case of E = (0, 1, . ..) and 

A = (1, 2, . . .) are given e.g. in Kesten (1995) and references therein. 

PROPOSITION 3.1. If the (PF) hypothesis is fuIJiIIed, then there exists 
a function h: A  u (t) + R such that h(x)  > 0, h (t) = 0 and a constant y' 2 0 
such that 

lim P x  (z > s) = ,?Y'r- h(x) for all x ,  Y E A .  
,-+, P,(z > s+t) h dv) 



344 2. Palmowski  and T. Rolski  

Proof.  Fix X O E A  and define 

lim,,,P,(z>s)/B,,(z>s), xeAy h (x) = 
x = t. 

Then 

lim P , I - - s )  hOr1 =- x, Y E A .  
, ~ , P , ( T > s )  h(x)' 

Since 

P,(z > t+s) = E,,[Pxt(t)(~ > s); t < z], 
we infer by (5) that 

lim P,(z > t+s) 
= lim E, CP,t(,, (r  > 3); t < 71 

S + I ~  Px(7>s)  s+m PXb > 5) 

Define now 

I We first show that the above definition does not depend on x E A. We write 

Ex [h  ( X t  (t))/h (x); t < z] lim,, , Px (T > s + t)P, (z > s) - - 
E, [h ( X t  (t))/h 01); t < z]  lims + m PY (z > s + t ) P y  (7 > s) 

Recall that X t ( t )  = t for t 2 T.  We now have, by the Markov property, 

f ( t  + t') = Ex 
k (Xt (t)) h (Xt ( t  + tr)) 

; t+t' < z 
h c") h ( X t  (t)) 

h ( X t  (t)) h (X+ (t + t')) 

I 
l ( 2  > t + t f ) l S t  I1 

Since Ex[h(Xtjt ' ))]/h(x) does not depend on XEA, we infer that the above 
equals f (t+ t') = f ( t)  f (t'). Clearly, the function f ( t )  is nonincreasing, so it 
must be of the form f ( t)  = exp (- y' t )  for some y' 2 0. H 



Markou processes newer exiting a subspaee o j  the state space 345 

The following case will be assumed from now on. Suppose that for all 
X E  A we have 

where y 2 0, C > 0 and 0 < h(x) < m, and L(t) belongs to the class 9 of 
functions such that 

and that (5) holds. Then 

for all t 2 0, x, y 6 A. Hence h* (x ,  t) = eYt h (x), where h* (x, t) was defined 
in (3). This means that y = y' from Proposition 3.1. 

We have the following proposition. 

PROPOSITION 3.2. Suppose that (7) holds for some positive finetion h(x) on 
A and y 2 0, and 

(8) ~ , [ h ( ~ ~ ( t ) ) ; t < . c ] = e - ~ ' h ( x ) ,  t 2 0 , x ~ A .  

Then for all x E A, t 2 0 

P r o  of. Thus under the assumption (8) applying the Markov property, we 
see that the right-hand side of (9), 

defines a consistent family of distributions. By the Kolmogorov consistency 
theorem, for each x~ A, (10) defines the unique probability measure Pl on 
(DE [0, m), 5, (FJ) such that its restriction to & is P:, for all t 2 0. The proof 
will follow the proof of Theorem 3.1 in Lambert (2000) and the proof of Theo- 
rem 1 in Bertoin and Doney (1994). Suppose that 0 d f 6 1 for f living on 
D [0, t]. It follows from Lemma 3.1 and Fatou's lemma that 

Replacing f by 1 -f, we get 

limsupE,[f (X) I T  > t+s] 
s+ m 

= 1-liminfE,[(l-f)(X) I z > t+s] < 1-Ef [(I-f)(X)] = Ei f (X), 
S+ 03 
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where the last equality comes from the fact that Bf is conservative (see equa- 
tion (8)) and would be false otherwise. rn 

Note that if (5) and (7) are satisfied, then condition (8) holds. In other 
words, by Proposition 3.1, if condition (PF) holds, then the assumptions of 
Proposition 3.2 are fulfilled. 

PROPOSITION 3.3. For all x E A 

Pi (T < m) = 0 and PI (DA LO, GO)) = 1. 

Proof. For each t 3 0 

Hence P:(T < a) = lirn,,,P~(z < t) = 0. 

We may conclude that the conditioned process (X(t)) can be considered 
on (D, LO, a), 9, {el, Pi) and it is a Markov process with the state space A. 
This Markov process is a process NE a subspace A defined by (h (x), y). Note 
that then 

87 (t) = evt h (X' (t)) 1 6 > t) 
h (4 

is a (P,, %)-martingale and (10) can be read 

3.2. Exponential change of measure. Let (X (t)) be a Markov process on the 
filtered probability space (a, 9, (gt), P,) with values in E. We define the full 
(extended) generator A of the process {X (t)) by 

A = (Cf, f *) E A' ( E )  x A (E): D (t) is a (local) martingale), 

where 

is called Dynkin's (local) martingale and the function s + f * (X (s)) is integrable 
on [0, t] as. for all t 2 0. Further on we will identify all versions of functions 
f *  up to the sets of potential zero and we denote all these versions by Af if 
(f, f *)€A. The family of the functions f for which (14) is a (local) martingale 
forms the domain denoted by g ( A ) .  For details see Ethier and Kurtz (1986). 

For a function f' E 9 (A) such that f' (x) = 0, x $A, define 
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and formally 

We denote by 9 ( A t )  the set of such f functions. 

LEMMA 3.2. For f E 93 (At) 

is a local 9z-martingale. 

P r o  of. Let f' E 9 (A). Thus Ds. (t) and Dr ( t  A z) are local Ff-martingales. 
Notice however that 

which completes the proof. 

By the above lemma we see that At is an extended generator of the 
Markov process {Xt(t)) and B ( A t )  is the domain of At. 

By f + g -  f we mean the multiplication operator by function g. If 
g (x) # 0, then f -, g-I . f denotes multiplication by g-I (x). Define now formal- 
ly the operator At by 

where the function h and the constant y are given in Proposition 3.2. 
Consider the exponential martingale (12). We set h ( t )  = 0, and then 

st (t) = eYt h (Xt (t))/h (x) is a (P,, &)-martingale for all x E A. Repeating the 
proof of Lemma 3.1 from Palmowski and Rolski (2002) for (Ct (t)) we see that 

is a local martingale. Thus directly from definition (14) of the extended genera- 
tor we can conclude h E 9 ( A t )  and A t  h = - yh. Therefore h: A u {?) -, R is 
a good function according to the terminology of Palmowski and Rolski (2002) 
and {@ (t)] is an exponential martingale. Since the NE process is obtained by 
the exponential change of measure with respect to exponential martingale 
(bt(t)), the NE process is a Markov process with extended generator AT (see 
Theorem 4.2 of Palmowski and Rolski (2002)). We summarize the above con- 
siderations in the following proposition. 

PROPOSITION 3.4. We have h E 9 (At) and A t  h = - yh, and hence the NE 
process de$ned by (h(x), y) is Q Markov process with extended generator A t .  
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EXAMPLE 3.1. Let X (t) = x + 8 (t) - 6t be a Brownian motion with drift 
and A = (0, co). We have to assume that 8 3 0. Following Borodin and Sal- 
minen (1996), for x > 0 

Hence 

Py (Z > S) yeeY exp (02 t/2) 
lim = 
s + a P , ( ~  > s + t )  xegx 

Therefore h* (x, t) = xeexexp (02 t/2) and h(x)  = xeBx. For 0 = 0, the NE pro- 
cess is the Besse13 process, which is known to be transient (see Knight (1969)), 
having invariant measure n(dx) = 2x2dx (see Karatzas and Shreve (1991), 
p. 362). Moreover, for 0 > 0 we have 

and there exists a QS distribution 

(see Martinez and Martin (1994) and Proposition 4.1 for a general Markov 
process). Consider now k independent Brownian motions Xi (t) = xi + Bi (t), 
where xi < x, < . . . < xk, running until the collision, that is up to time 

In this case E = Rk and A = ( x € R k :  x1 < x2 < . . . < x k ) .  Then P,(z < co) = 1 
for ~ E A .  Using the asyrnptotics of the tail of the exit time we have 

where 

is the Vandermond determinant (see Grabiner (1999)). In this case the NE 
process defined by h(x)  is the so-called non-colliding Brownian motion; see 
also Konig et al. (2002). 

33. Application to PDNIPs. We now show how the Palmowski and Rolski 
(2002) result for PDMPs can be adapted for the case of NE PDMPs. We refer 
to Palmowski and Rolski (2002), based on Davis (1993), for the description 
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of PDMP (X(t)}, We recall only that E is a state space consisting of pairs 
x = ( v ,  z), where v assumes a finite number of values from a finite set 9 and 
z belongs to an open subset 0, of I?"" (note that E is a Bore1 space). Moreover, 
the PDMP process (X (t))  is determined b y  a differential operator % describing 
the deterministic vector field between jumps, a jump intensity A(x) and a tran- 
sition kernel Q ( x ,  dy). Let (T,) be jump epochs of {X( t ) ) .  We assume that 
T, + oo as. 

Consider now an open subspace A c E consisting of all pairs x = ( v ,  z), 
where v assumes a finite number of values from a set SA, z belongs to an open 
subset 0: c 0, of RdIY) and z is the exit time of the PDMP {X( t ) )  from A. We 
denote by r, the active boundary dehed for the subspace A and t; (v, z) the time 
needed to reach the boundary from (v, z). We assume that &,(t;(v, z) ,  z)ET, 
if tfi (v, z) < OCI , where 4,  ( t ,  z) is the integral curve defined by T. Then (Xt (t))  
is also PDMP with parameters (Xt, A t ,  Qt) = (T, A, Q) on A and on the ceme- 
tery state At (f) = 9"t f (T) = 0, Qt (x, f i  = Q (x, AC) for XEA.  We have the fol- 
lowing lemma. 

LEMMA 3.3. The formula for the extended generator is 

where x E A and At f (t) = 0. The domain 9 (At)  consists of every function f that 
is the restriction to A of a measurable function 3 A u rA u {t) + R such that 
T(t) = 0 and satisfying the following three conditions: 

(i) for each (v, Z) E E the function t + 7(v, 4 ,  (t  , z)) is absolutely continuous 
on (0, t%v, 4); 

(ii) for each X E ~ ~ ,  

(iii) for n = 1 ,  2, ..., 

lf moreover, for all t 2 0 ,  

then f is in the domain of the full generator. 

Following Theorem 5.3 of Palmowski and Rolski (2002), we now compute 
the extended generator of the NE process defined by (h(x), y). 



3 50 Z. Palmowski and T. Rolski 

THEOREM 3.1. Assume that h(x)  is such that h~ 9 (At)  and H(x) = 

j ,h(y)Q(x, dy) < oo for all X E A .  Then on the new probability space 
(BA [0, m), 9, {g), Pi), the process X ( t )  is a PDMP with the unchanged di$ 
ferential operator S a d  the following jump intensity and transition kernel: 

Define for BE 93 (A) 

(20) pL ( x ,  B) = PJ (Xt (t) E B) = Ex [h(",t(I:;eytl(~ > I ) ;  X ' ( ~ ) E B  . I 
The family (pf ( x ,  -)) is a family of Markov transition functions on A. The 
Markov process with the family of transition functions (pJ  ( x ,  3)) is NE 
space A. If there exists an invariant measure 7t on A for pi ( x ,  B), that is, fulfill- 
ing n (B) = j, n (dx) pt (x, B) for all 3, we call it Invariant Never Exiting (INE) 
measure. If additionally the NE process XT (t) is recurrent, then n is a station- 
ary measure. 

In the literature there is another related concept, which we now recall. We 
say that a distribution p on A c E is quasi-stationary (QS) if 

We have immediately from the definition that P, (z > t +s) = P,(T > s)P,(z > t), 
which yields P,(z > t )  = e-Y't for some y' > 0. A vast number of results exist giving 
conditions for the existence of QS distributions. A special case with E = R + or 
E = Z +  and A = E\{O) attracted a special attention; see e.g. Ferrari et al. 
(1995) and references therein. 

The question is whether INE and QS distributions are related. We saw the 
answer in the Introduction for the case of a finite state space. The result can be 
generalized as follows. 

PROPOSITTON 4.1. Suppose that for {X ( t))  there exists an NE process de- 
Jined by (h(x), y). Ifthere exists an I N E  a-Jinite measure n (not necessarilyfinite) 
such that 

then the probability measure p de$ned by 

b 
p (dx) = - ?T (dx) , 

h (4 
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where b is a normalizing constant, is a Q S  distribution, and P,(z > t )  = 

exp (- yt). Conversely, suppose that for {X it)) there exists a Q S  distribution g with 
y' > 0 a d  there exists an N E  process de$md by (h(x) ,  y).  Then x defined b y  

R (d x )  = h (x)  p (d x )  

is an INE measure, and y = y' .  

P r o  of. Suppose there exists an NE process defined by (h (x), y) and x is 
an INE measure fulfilling (22). It means that 

( B )  = ~~l.(dx)h-~(x)e~~~,[h(~(t)); z > t, x(~)EB] 
A 

for all B c A and t 3 0. Hence 

and 

e-rtjh-lCv)dn:(dy) = j w ( d ~ ) h - l ( ~ ) ~ , ( x ( t ) ~ ~ ,  T > t) .  
B A 

Now define pidy) = h - l ( y ) n ( d y )  and suppose it is a probability measure 
(otherwise we may make normalizations by b). Then we see first that substitut- 
ing A = B we have 

eVYt  = P,(T > t ) ,  

and hence ,u is QS. For the converse implication, suppose there exists a QS 
distribution p with y' > 0 and an NE process defined by (h(x), y). Then 

Hence y = y' and x (dx) = h (x)  p(dx) is INE. rn 

We remark that, in view of Example 3.1, condition (22) is essential. 

Remark 4.1. The same assertion under a stronger assumption of y-recur- 
rence can be found in Theorem 7 in Touminen and Tweedie (1979) and Theorem 7 
in &as et al. (1980) (in fact, they additionally prove the existence of a so-called 
limiting quasi-stationary distribution ,u (B) = lim,, , P, ( X  ( t )  E B I z > t) which 
implies (2 1)). 
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