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Abstract. We study particular cases of sums of independent Du-
fresne random variables (which are essentially products of beta and
gamma variates) such that the distribution of the sum is again a Du-
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1. INTRODUCTION

The gamma distribution with scale parameter 1 and shape parameter ¢ > 0
is the probability on (0, o) defined by

1 e —X
» | Ve (dx) = mx‘ Le™*1(g,0) (x) dx.
The beta distribution with parameters a, b > 0 is the probability on (0, 1)
defined by o .

X 1 =% 1,1y (x) dx,

ﬁa,b (dx) =

B(a, b)

where B(a, b) = (I'(a) I (b))/T (a+D).

Let us denote by © and * the multiplicative and additive convolutions,
respectively, of probability distributions on R; this means that if X and Y are
independent variables with distributions « and §, then the distributions of XY
and X + Y are denoted by a © f and a * §. Recall that the Laplace transform of
a probability distribution « on R is

L@)(s) = j e a(dx).
R
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It satisfies L (o * B)(s) = L(o)(s) L(B)(s). Similarly, the Mellin transform of a
probability distribution a defined on [0, c0) is

M@)(s)= | x*o(dx)
[0,0)

and satisfies M (x © B)(s)= M () (s) M (B) (s).

The Pochhammer symbol is defined for a, s > 0 by (a), = I' (@+5)/T (a).
We extend this notation to a sequence @ = (a;, ..., a,) of positive numbers by
(a); = [[5=1(a)), with the convention (a);=1 if p=0. For two sequences
a=(ay,~.., ayyand b= (b,, ..., b,) of positive numbers the Dufresne distribu-
tions* D (u; b) are introduced in Chamayou and Letac (1999) (see also Dufres-
ne (1996), (1998)) as the distribution on (0, o) such that for all s > 0 we have

(1.1) [ x*D(a; B)(dx) = E‘;;

The later paper contains comments on existence and computation rules
for these Dufresne distributions. If p = 1, i.e. if the sequence a is reduced to
a single number a, we write of course @ = a, and if p =0, it is convenient to
write the empty sequence @ = —. With these notations we can write
D(a; a+b) = B,y and D(c; —) = 7.

The aim of this paper is to give some unexpected properties of additive and
multiplicative convolutions of the D(a, b) laws. We shall use the following
classical notation for the hypergeometric functions defined for —1 < s < 1:

(L2) oFy(a; b; s) = i (@), 5"

n=0(b)nn!.

These hypergeometric functions arise naturally as Laplace transforms of
the Dufresne laws: for —1 < s <1 we obtain

(1.3) L(D(a; b))(s) = ,F,(a; b; s).

The double gamma distribution 1, with parameter ¢ > 0 is the probability
on R with Laplace transform L (4,)(s) = (1 —s*)~* defined for se(—1, 1) If §,

_is the image of y. by x+— —x, we clearly have

(14) Ac = Pe* ?’c:

and this proves the existence of 4. It is easily seen that i, (dx) = e™™dx/2,
which has various names in the literature: double exponential, bilateral ex-
ponential, Laplace distribution of first kind. If ¢ is an integer, the density of

* When writing D (a; b) instead of ,D, (a; b) we depart from the tradition of hypergeometric
functions, which furthermore displays, respectively, by p and g the lengths of the sequences a and b.
Although there is some redundancy in the traditional notation, we still keep it for conveniency of
the reader when dealing with the hypergeometric functions ,F, or the Kampé de Fériet functions
F5%Py in Section 4,
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J. can be obtained by expansion into partial fractions of s+ (1—s2)"° It is
easily checked that if n is a non-negative integer, we have

; @2n—k)!
Zontk! (n—k)l 22— 2%k+1

If ¢ is not an integer, the density is obtained by using the Mac Donald
functions (modified Bessel functions of second kind). The lambda law
Ac(a; b) = 4. © D (a; b) or bilateral Dufresne laws are introduced in Chamayou
(2004). However, in the present paper we shall mainly use the laws A.(a; b)
= 2. ©.Ba;-q Which are the multiplicative convolutions of double gammas
with paraméter ¢ by betas with parameters (a, b—a).

The symmetrical beta distribution of third kind with parameter a = b =
v+1/2 > 0 is defined by

Ams1 (dx) = e 17 I dx.

B} (dx) = (1=x) "1 A+x)°7 1 q,p (x)dx.

2a+b—1B(a, b)

The Fourier transform is given in terms of Bessel functions (see Prudnikov et
al. (1992), Vol. 3, formula 7.13.1, p. 594): oF, (v+1; —s%/4).

2. SUMS OF SEVERAL DUFRESNE RANDOM VARIABLES

We first present a property of additive infinite divisibility for some Dufres-
ne laws.

ProposITION 2.1. If t > O, the Laplace transform of D (t/2, t/2+1/2; t+1)
is as follows:

P2, 124 1/2; t4 15 5) = (2/(1+4/1—5)).

This is an infinitely divisible law associated with the Lévy process t+— X (P (t)),
where P and X are independent Lévy processes whose respective laws at time
t are y,, and the inverse Gaussian law

— 2 "-4
t_x_slz exp<—(x t) >1(0,00) (x) dx,
T X

Vi/2, (dx) = 5

respectively.

Proof. The Laplace transform of a Dufresne law is given by the Gauss
hypergeometric function: ,F (a, b; c; s). Then the Laplace transform of D (t/2,
t/24+1/2;t+1) is

FL(t/2, 1241/2; t+158) = (2/(1+/1—5))

according to Abramovitz and Stegun (1970), p. 556, formula 15-1-13. Moreo-
ver, by Seshadri (1993), p. 40, formula 2-9, we know that if for « > 0 and p > 0
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we define
@.1) Vo p (@) = pjz[_ngf 32 exp ( _& — “)2> 10,000 (%) dx,
then for s < 1/(20) we get
2.2) af v, (dx) = exp (p(1—/1—2as)).
[}
Moreover, fo} ‘gverynﬁm < 2 we have
23 [ 3.a00p) =@~

Using (2.3) for f=1—,/1—2as we see that for s <1

UL T=8)) = [ | € visap @072 (do),

which completes the proof. =

Note. This law is considered by Imhof (1986). The corresponding density
of probability f:;’ V1/2,p(d%) 7.2 (dp) can be expressed by using the parabolic
cylinder functions:

£9(3/2)t ~
—e "2 X271 D4 4)((2% ) L0,m0) (%) dx.

24 f@t x)=

For this point see Prudnikov et al. (1992), Tome V, p. 45, formula 2.1.9-1. Note
that the law on integers Z o (m, x) 6y, is considered in Chamayou (1984).

We now apply the prev1ous Laplace transform computation to the bilate-
ral Dufresne laws:

. COROLLARY 2.1. If t > 0, the Laplace transform of the law A, 12(t; 2t + 1)
is as follows:

B2, 424 1/2; t+ 15 %) = (2/(1+/1—s2)).

This is an infinitely divisible law associated with the Lévy process t— X (P (t)),
where P and X are independent Lévy processes whose respective laws at time
t are y,, and the Bessel law

gKl(\/x +p )
T \/x

where K, is the order-one modified Bessel function of second kind.

(2.5) Vvp(dx) = 1 w,m)(x)dx,
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Proof. The Laplace transform of the density of a bilateral Dufresne
variable A,(a; c¢) is given by the generalized hypergeometric function:

(2.6) 3B (d, /2, (a+1)/2; ¢/2, (c+1)/2; 5?)

(see Chamayou (2004)). If we set d = a+ 1/2 = ¢/2, the function (2.6) takes the
form ,F (a/2, (a+1)/2; a+1; s?), which allows us to use Proposition 2.1 to
establish the result, where

2.7) Fi(a)2, af2+1/2; a+1; 52 = (2/(1 +/1—52))".

We get _the:previoﬁ"s”Laplace transform by integration of the expression

28) | R =P+ TP ) dp.
0

Then we get

(2.9) T e v, (dx) = exp(p(1—/1—5%)).

For that point, see Prudnikov et al. (1992}, Tome 2, p. 357, formula 2-16-12-4,
and Abramowitz and Stegun (1970) for the representation of K. Thus, if
P(a) is a random variable following a gamma law y,(ds) and if (X (p)),> is
a Bessel process independent of P(a) such that X (p) has the law v,, then
(2/(1++/1—52))" is the Laplace transform of the law X (P (a)/2), i.e. follows the
above Dufresne law. &

Note. The probabilistic interpretation of the law of A,/ (¢; 2t + 1) from
the law of D (¢/2, t/2+1/2; t+1) is standard: if X and Z are independent ran-
dom variables with respective laws N (0, 1) and D(t/2, t/2+1/2; t+1), then
the consideration of the Laplace transform of Z\/ 2|X| shows that it is
a A+1/2(t; 2t+1) law. We also remark, using the asymptotical representation
of K, (see Abramovitz and Stegun (1970)), that for p — co the law of X /J p
tends to an N (0, 1) law. .

3. SUMS OF TWO DISTINCT DUFRESNE VARIABLES
WITH THE SAME LAWS

PROPOSITION 3.1. Let a, b, ¢ be such that 0 <a,b <1,
max (a, b) < ¢ <min(1+a, 1+b),
and let D, D,, D}, D’ be independent random variables with respective laws
D(a, b;¢), D(1—a, 1-b;2—c¢), D(c—a,c—b;c), D@+1—c,b+1—c;2—0).
Then Di+D, ~ Dy +Dj.
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Proof. The Laplace transform of the two sums is written as the product of
two Gauss hypergeometrical functions, ie.

oF (a, b; c; s),Fi(1—a, 1—b; 2—c; 3)
and
2Fi(c—a, c—b;c; s),Fi{a+1—c, b+1—c; 2—c; 3).
" The result is obtained by application of the “Darling products” identity (see
Darling (1932)). = L

CORQLLARY 3.1. Let a, ¢ be such that 0 < a < 1/2, a+ 12 <c<a+l,and
let Ay, A,, A}y, A% be four independent random variables with respective laws

Aev1/2 Qa; 2c), Asjz—c(1—2a; 3—2c), Acv1p (2(0*‘”)—1; 2—6),
/13/2_,:(2(1+a——c); 3—26).

Then A+ A, ~ A+ A5.

Proof. The proof is identical to the previous one for the Laplace trans-
forms of the lambda laws, ie.
(3.1) LB /2, @+ 1)/2 ¢/2, (c+1)/2; 5

by choosing d = c¢+1/2 and d = 3/2—c, respectively. m

ProrosiTioN 3.2. Leta, b be suchthata > 1/2,0 < b < a—1/2, and let D,
I, Ay be independent random variables with respective laws
D(2a,2b,a—1/2; a+b+1/2,2a-1), D(b; —), D(b,a—b—1/2; a+b+1/2).

Then Do ~ 1-'1+A1

Proof. The Laplace transform of D, and I + 4, are written by using the
hypergeometrical functions

a5 (a,2b,a—1/2;a+b+1/2,2a—1;5) . _

~and. _

1
W(ZFI (b, a—b— 1/2, at+b+ 1/2, S)),
respectively. The result is obtained by application of formula 14, p. 498, in
Prudnikov et al. (1992), Vol. 3. =

COROLLARY 3.2. Let Ay, A;, A, Ay, Ay, A% be independent random varia-
bles with respective laws

24(3; 6), A1, A3(1; 6), A5(7; 13), 42, A6(3; 12).
Then Ao~ Ay+A, and Ay ~ A+ Aj.
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Proof. We use again formula 14, p. 498, in Prudnikov et al. (1992), Vol. 3,
with argument s?:

3F3(2a, 2b,a—1/2; a+b+1/2, 2a—1; 5?)
: 1

as an identity for the Laplace transforms of the lambda laws of A and
AP+ 49, By choosing a=b+1, b =1 and a= b+2 b=2, respectwely, we
obtain the gssertion. =

ProrosITION 3.3. Let a, b be such that a > 0,1/2 < b < a+1/2 and let Dy,
I, A, be independent random variables with respective laws

DQa+1,b+1/2; 2a~b+3/2), D(; =), DQa, a+1, b—1/2; a, 2a—b+3/2).
Then Do ~ F1+A1.

Proof. The Laplace transform of D, and I + 4, are written by using the
hypergeometrical functions

JFLQa+1,b+1/2; 2a—b+3/2; 5)

and

1 L B
1_S(E,F;L(Za, a+1,b—1/2; a, 2a—b+3/2; s)),

respectively. The result is obtained by application of formula 15, p. 498, in
Prudnikov et al. (1992), Vol. 3. =

4. PRODUCTS OF ONE DUFRESNE VARIABLE
BY SUMS OF TWO DUFRESNE VARIABLES WITH THE SAME LAW
AS THE SUM OF TWO OTHER DUF RESNE VARIABLES .

 PrOPOSITION 4.1. Consider the following eight mdependent Dufresne varia-
bles with respective laws:

e D3y~ D(1,1,1;2, 2), i.e. multiplicative convolutmn of an exponentml dis-
tribution by two uniform distributions; :

e 4, ~D(1,1; 3/2);

® Ay, 43,1, 435 ~D(1, 1, 1;3/2, 2), i.e. multiplicative convolution of
a uniform distribution by D(1, 1; 3/2);

e Dy ~D(2;5/2), ie. .32,1/2;

°* Dy ,~D(2;3), ie fy1;

o Do~ D(1; =), i.e. an exponential distribution.

3 — PAMS 251
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Then
4.1) D1,1(Do+Dj) ~ A3+ 43,0,
4.2) Di(dy+430) ~ 43,1+ 43,5.

Proof. The Laplace transform of the product of a beta distribution by the
sum of Dufresne variables can be written as the Euler integral defining the
Kampé de Fériet series, ie.

e | @ (@ ()
1
" B(a, b)

(see Exton (1978), p. 39, formula 2.1.5.7). Krupnikov (2001) gives the following
reduction formula:

2: 1; 1,1,1;
3 Fl:l:3 ? >
4.3) 1:0i2 [5/2: 2.2 s, S:I

=(F (1, 1;3/2; 9) (R (1, 1, 1; 3/2, 2; 5)),

jl x*1(1— x)b; 1 (CFD ((C); (d); sx) cky ((.C'); d); Sx)) dx
0

whence we can derive the result, iterating the previous integral relation. For
that purpose, see Exton (1978), p. 184, formula A 1-2-100, we write

rrce a, (a): (©; ()
F”:+1:g;%'[a+b, @+b: @; @) ° s]

ot e[ @ @ @ |
_B(_a,b_)ox 1(1--x)b IFﬁ:%;%'l:(a-l—b); @; @y sx,sx:ldx.

"Using another reduction formula given by Krupnikov (2001):

2,22 1; 1,1,1;
52,3 —; 2,2

we obtain the second result. m

S, s:l = (3F2(13 1; 1: 3/2’ 29 S))Z ’

ProPOSITION 4.2. Let a, b, ¢, d be positive real numbers such that ¢ < a <
b+ c and consider the following five independent Dufresne random variables with
respective laws:

e Dy~ D(c, d; a);

® Dy ~D(b; =), i.e. 15

e Dy ~D(a; b+c), ie. Bop+c—as
e Dy ~D(b+c+d—a,c; b+c);
o Dy ~D(a—c; —), i.e. Y,—q.
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Then

Proof. The Laplace transform of D, (D,+ D3} is given (see the integral
representation of the previous proposition) by the following Kampé de Fériet
series: .

a: b; c¢,d;

4. Fiidi2 7T s 8,
( 6)~- o 1l:b+c - a ss] ,
which can--be reducedto Fy(a—c; —; s),Fi(b+c+d—a,c; b+c;s). We
thank E. D.*Krupnikov for this remark (personal communication). a

PRrOPOSITION 4.3. Let us consider the following five independent Dufresne
random variables with respective laws:

e D1 ~ D(ZC; 1+2C), i.e. ﬁZC,l;

* D, ~ D(a; b); _

° D3, D), D5 ~D(c,a;1+c, b), where a=(ay,...,a,:,) and b=
by, ..., by). .
Then
@7 D,(Dy+D3) ~ Dy + D).

Proof. The Laplace transform of D, (D,+ Dj3) is given (see the integral
representation of Proposition 4.1) by the following Kampé de Fériet series:

2c: c, a; a;
4.8 : F152+:§rl+r . [t T N ,
( _ ) : tate l:l+2c: 14+¢, b, b; X S]

which can be reduced to (,+,F+4(c, a; c+1, b; s))z. We thank E. D. Krup- .
nikov for this remark (personal communication). m

COROLLARY 4.1. Let us consider the following five mdependent mono- and
bilateral Dufresne random variables with respective laws:

° Dy ~DQ2c; 1+2c), ie. By y;- o -

o Ay ~Aciqi(a; b); _ ' o -

o Aj, A}, A3 ~ A.(a; b), where a and b are of length r. '
Then o '

(4.9) D, (A4 43) ~ Ay+ A5,

Proof. The Laplace transform of D;(A,+ Aj3) is given by the following
Kampé de Feériet series:

2 c,af2,(a+1)2; 1+c,a2,(@+1)2; , ,]
L+2c: b2, (b+1)2 . b2, (b+1)2; 5

which, as before, cz;u:lbereduce:dto(2,Jr 1193, (c, a/2, (a+1)/2 b2, (b+1)/2; s )) |

4.10) F[
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53)

5. RANDOM DIFFERENCE EQUATIONS

We present now a series of examples concerning the random induction:
Xy~ An(X,+ 1), neN,

where X, Y, are independent Dufresne random variables and A4, are products
of mdependent beta variables.

PROPOSITION 5.1, Let 0 < a < 1, where a # 1/2. Let X, Y,,, A,,, B, be in-
dependent random variables with respective laws:

X,~D(a,a+1/2;2a), Y,~D(l—a,3/2—a;2(1—a))
and |
A,~D(a,a—1/2;1,2a) for 12<a<1,
B,~D(a, 1/2—a;1,2(1—a)) for 0 <a<1/2.

Then for 12<a<1

6.1 Xpr1~ A (X, + 1)
and for 0<a<1/2 o

52  Lu~B &Y.

Proof. The Laplace transform of 4,(X,+Y,) is given (see the integral
representation of the previous proposition) by the following Kampé de Fériet
series: ,

F22:2 a,a+1/2: a,a+1/2; 1-—a,3/2—a; o s
BB, 2a: 2a; 2(1—a); s

which can be reduced to ,F(a, a+1/2; 2a; s) according to. Srivastava and

- -Karlsson (1985), p. 32, equation (51). The Laplace transform of B,(X,+ Y,) is

reduced to ,F(1—a, 3/2—a;2(1—a); s). =

PROPOSITION 5.2. Leta > 0,b > 0, and max(a, b)) <c<a+b. Let X, Y,
A, be independent random variables with respective laws:

D(a, b; ¢}, D(c—a—b; —), D{(a, b; c—a, c—D).
Then
(54) ) Xn+1 ~ An(Xn+ Yn)

Proof The Laplace transform of A4,(X,+Y,) is given (see the inte-
gral representation in Proposition 4.1) by the following Kampé de Fériet
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series:
(5.5) e [
which can be reduced to 2F (a, b; c; s) according to Srivastava and Karlsson

(1985), p. 28, equation (34). =

ProrosITION 5.3. Let a >0 and b > 0 be such that 1/2 <a+b< 1. Let
X,, Y., A, be independent random variables with respective laws:

D{a, lg; a+b+1/2), D(a, b; a+b—1/2), D(a, b,2a+2b—1; 2a, 2b, a+b).
Then '
(56) Xn+1~ A4,(Xp+ 1)

Proof. The Laplace transform of A4,(X,+Y,) is given (see the integral
representation in Proposition 4.1) by

a,b,2(@+b)—1: a, b; a, b; s
2a,2b,a+b: a+b+1/2; a+b—1/2;

which can be reduced to ,F; (a, b; a+b+1/2; s) according to Srivastava and
Karlsson (1985), p. 29, equation (37). m

PROPOSITION 5.4. Let 0 <a<1/2and 1 <b<1+2a. Let X,,, Y;, A, be
independent Dufresne random variables of respective laws

D(a,b—1;a+b—1/2), D(a, b; a+b—1/2),
D(a,b—1,2(a+b—1); a+b—1, 2a, 2b).

a, b: a,b; c—a—b;
S’ S °
c—b,c—a: ¢ —;

(5.7) F334 [

Then
(5.8) : C Xur1~ A(Xa+ Y
for 12>a>0and 1 <b<1+2a

Proof. The Laplace transform of 4,(X,+Y,) is given (see the integral
representation in Proposition 4.1) by the following Kampé de Fériet series:

F3:2:2 a,b—1,2(a+b—1): a,b—1; a, b; s s
¥BU g4b—1,2a,2b—1: a+b—1/2; a+b—1/2; "

which can be reduced to ,F, (a, b—1§ a+b—1/2;s) éccording to Srivastava
and Karlsson (1985), p. 29, equation (39). =

ProrosiTiON 5.5. Let a, b > 1/2. Let X, Y,, A, be independent Dufresne
random variables with respective laws:

D(a+1/2, b+1/2; a+b+1/2), D(a—1/2, b—1/2; a+b—1/2),
D(a, b, a+b; 2a—1/2, 2b—1/2, 2a+2b—1).

(5.9)
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Then
(5.10) Xy~ A, (X, + 1)

Proof.»The Laplace transform of A4,(X,+Y,) is given (see the integral
representation in Proposition 4.1) by the following Kampé de Fériet series:

a, b, a+b: a+1/2, b+1/2; a—1/2, b—1/2;

2a—1/2,2b—1/2,2(@+b)—1: a+b+1/2;  a+b—1/2; |
which can be reduced to ,F; (a+1/2, b+ 1/2, a+b+1/2; s) according to Srivas-
tava and Karlsson (1985), p. 30, equation (40). m

PROPOSITION 5.6. Let 0 <2b<a<b+1. Let X,,, Y,, A, be independent
Dufresne random variables with respective laws:

D(a, 1+a/2, b;1+a—b, a/2), D(1; —),
i.e. exponential random variables, and
D(a, b, 1+a/2; a+b+1, b+a/2, 2+ 3a/2),

i.e. products of three independent beta variables. Then
(5.12) X~ AL

Proof. The Laplace transform of 4,(X,+Y,) is given (see the integral
representation in Proposition 4.1) by the following Kampé de Fériet series:

a,b, 1+a/2: a,l14+a/2,b;, 1; i3

1+a,1+b,a2: af2,1-b+a; A
which can be reduced to 3F; (¢, 1+a/2, b; 1+a—b, a/2; s) according to Lavoie
and Grondin (1994), p. 395, equation (7). m

ProrosiTiON 5.7. Let 0<2b<a<b+1, b+c<a,c>0. Let X,, Y,
‘A, be independent Dufresne random variables with respective laws:

D(a,1+a/2,b,c,a—b—c; 14+a—b, 1+a— ¢ 1+b+e, a/2 D(l =),

(5.11)  F333

(513) Fﬁ{

e exponential random variables, and
D(a, b, 1+a/2, ¢, a—b—c; a+b+1,ub+a/2,_2.+3a/2, 2c+1, 14+2(a—b—0)),
i.e. products of five independent beta variables. Then |
(5.14) X~ AT
Proof The Laplace transform of A,(X,+Y,) is given (see the integral

representation in Proposition 4.1) by the following Kampé de Fériet series:

(5.15) ngé[ a,b,1+a/2,¢,a—b—c: a,1+a/2,b,¢c,a—b—c; 1; N S:I’

1+a,1+b,4/2,1+¢,1+a—b—c: 1+a—b,1+a—c, 1 +b+c, a/2; —;
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which can be reduced to
sk (a, 1+a/2,b,c,a—b—c; 1+a—b, 1+a—c, 1+b+c, a/2; s)
according to Lavoie and Grondin (1994), p. 398, equation (16). =

ProrosiTION 58. Let0<b<c<a<b+1. Let X,,, Y,, A, be independent
Dufresne random variables with respective laws:

X, ~D(a, b, 1 +abj(a+b—c); 1+¢, abjla+b—c)), Y,~D(1; —)
(they are expoﬁential variates) and T e
A, ~ D(a, b, 1 +abfla+b—c); a+b+1, b(1+afa+b—c)), 2-'{-a(1‘+b/(a+b—c)))
(a product of three independent beta variables). Then
(5.16) Xy~ A (Xt Y

Proof. The Laplace transform of A4,(X,+Y,) is given .(see integral re-
presentation in Proposition 4.1) by the following Kampé de Fériet series:

a, b, 1 +abfa+b—c): a, b, 1+abfla+b—c); 1; .
1+a, 1+b,abf(a+b—c): 1+4c,ablla+b—c); —; [

Sul |

which can be reduced to ;Ffa, b, 1+abfla+b—c); 1+c, ab/(a+b—c); 5) ac-
cording to Lavoie and Grondin (1994), p. 397, equation (13). =

In the next corollary we offer an example among other possible choices of
interrelations between the parameters a, b, ¢ when they fulfill the reduction
formula (5.19) below.

COROLLARY 5.1. Let b>0, a+b>c, a=b+1/2, c=b+4%./2b+1 and
let X,, Y,, A, be independent mono- and bilateral Dufresne random variables such
that

X, ~ )tl+b/(a+b—c)(2b5 142, Y,~4(—;—) ‘
(they are double exponential random variables) and- LT
A, ~D(a, b, 1 +ab/a+b—c); a+b+1, b(1+a/la+b—c), 2+a(l+bfa+b—c))

(a product of three independent beta variables). Then
(5.18) Xpsr ~ AX+ ).

Proof. The Laplace transform of A4,(X,+Y,) is given by the following
Kampé de Feériet series:

a,b, 1+abfa+b—c):  a,b, 1+abllatb—c); 1; Sz]

51 F35351
(5.19) 3.2,0[1+a’1+b,ab/{a+b—c): 1+c, abfla+b—c); —;

AR
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which can be reduced to 3F(a, b, 1+abja+b—c); 1+c, ab/la+b—c); s*) ac-
cording to the previous reference. m

6. RANDOM ARITHMETICAL ENCOUNTERS OF THIRD KIND

In this section we consider four independent random variables B,, B,, G,
G, with beta distribution of third kind and gamma distribution, and we give
the distributions of the random variables Z = (G 1G2) (B, +Bz) for some values
of the parameters. :

PROPOSITION 6.1. Let a, b, g1, g, be positive numbers, B, B,, G, G, be
positive independent random variables such that Gj~vy,,j=1,2, and put
Z = (G, G,)(By+B,) and F;(s) = E(¢"%). Then: :

If By ~ ﬁ513121/2,a+1/2 and B, ~ ﬂ(ba-g 1/2,b+1/25 then

(6.1) Fz(5) = 4F5(91, 925 z(a+b)a (a+b)+1; a+ 1/2,b+1/2, a+b; —s?).

In particular:
1) for gy = 1/2 b =0 we have Z ~ A, (a; 2a);
(2) for g, =3/2, b=1 we have Z ~ /1 (a+1 2a+1).

Proof. The Fourier transform of B;+B, is
oFi (—; a+1; —5*/4) ofi (—; b+1; —s%/4)
=,FR(G@+b), s(a+b)+1;a+1/2, b+1/2, a+b; —5?);
this equality comes from Erdelyi et al. (1954), p. 185, formula 2. Therefore

Pz = r )@

[ [e ™ rx0tyn"1 B (ia+b), 3(a+b)+1;a+3, b+3, a+b; —xys?)dxdy.

From Grédsteyn and Ryzhyk (1980), formula 7.52.9, we get (6.44). Replacing

the parameters by the indicated values and using the possible reduction of

- 4F; to the canonical form ;F; of the lambda law, we complete the proof of parts

(1) and (2).

ProPOSITION 6.2. Let a, b be positive numbers and let G, G,; Gl, G’ be
four gamma independent random variables with respective parameters a, b; a, b.
If Gy~ V.4 is independent of the lambda variable Ay ~ A, (b; b+1/2), then

3(G1G,—G1 GY) ~ G A,.
Proof. The Laplace transforms of G, G, and G G are ,F,(a, b; —; s);
the Laplace transform of the half of their difference is
b b+1
ath atb+l . s2>;

(6.2) ,Fy(a, b; —; 5/2) 2Fo(a, by —; —s/2) = 4K (‘1, b, 5T 3
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this equality comes from Erdelyi et al. (1954), p. 186, formula 4. Therefore for
the Laplace transform

[}

( ) = f e *x***~1,F, (a, b; a+b; (xs)?)dxdy.

I'(a +b)0

From Gradsteyn and Ryzhyk (1980), formula 7.525.1, we get the right-hand

side of the previous relation, which completes the proof. m
PROPOSITION 6.3. Let.-d be a positive parameter and assume that.
® By ~D(1;2+4d/2), ie ﬁ1,1+a/2§
° Gy ~D(2; —), ie v;;

° G, ""'D(d: “')5 ie. yg

. Go ~D(1; —), i.e. an exponential variable;
e Do~ D(1+d, d/2; 2+d/2).

Then

" B;(G,—Gy) ~ Do— G,

Proof. The Laplace transform of the product of a beta variable and the
difference of two gamma variables B, (G,—G,) is

a: c; d; ». 1 1xt(1=xp-?
-5, 5= ] - - dx
a+b: —; —; B(a, b) 5 (1 —5x)* (1 +sx)

1:1;1
F1:0;0

(see Exton (1978), p. 39, formula 2.1.5.7). Therefore using the transformation of
the Kampé de Feériet functions:

. . d.
|
1 i1 a+b—c: a,d; - b;' _ |
(l—s)c ek 0[ a+b: a+b—c; —; —vs, s] ‘

(see Exton (1978), p. 39, formula 2.1.5.7) we reduce 1t fora=1+d/2, c =
b=1to the form

1| @tb—ct 1+d2,d; 1 _ . )
F110[ a+b: a2; . s,s|=,F(14d, a+b—c; a+b; s)

according to Lavoie and Grondin (1994). Thus the proof is completed. Note
that d = 2 is the only symmetrical case. =
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7. SUMMARY TABLES

parameters law law law
conditions Dy £ Dy
a>1/2 2a, 2b, a—1/2 b b, a—b—1/2
O<b<a-1/2 a+b+1/2, 2a—1 — a+b+1/2
a>0 2a+1, b+1/2 1 2a, a+1, b—1/2
12<b<a+1/2 2a—b+3/2 - a, a—b+3/2.
- - law law law
" » Ay 1 A:';
4(3; 6) 1I(—; —) 3(1; 6)
8(7; 13) 2(—; =) 6(3; 12)
Then for all these cases:
(7.1) Dy ~ D1+ D5.
parameters law law law law
conditions D, D, D, D,
O<a b<1 ab |1-a,1-b |c—a, c—b a+l—c, b+1—c
max(a, b) <c<min(l+a, 1+b)| c 2—c¢ c 2—c
parameters law law law law
. conditions 4, 4, A} A,
O<a<1/2 c+1/2|3/2—c c+1/2 3/2—c
a+l2<c<a+1 2a; 2¢ | 1—-2a; 3—2¢ | 2(c—a)—1; 2—c | 2(1+a~¢);3—2c
Then for all these cases:
(7.2) Dy+D, ~ D, +D,.
parameters law law law law i law
conditions D, D, D, _ D, D,
2; 5/2 1; — 1,1, 1; 2,21, 1;.3/2 1,1, 1; 3/2, 2
2;3 1, 1; 32 (1,1,1;3/2,2 (1,1,1;3/2,2 |1, 1, 1; 3/2, 2
0<d, c<a<b+c |a, b+¢c |b; — ¢, d;a a—c; — b+c+d—a,c;b+c
c,a b>0 2¢;14+2¢c|a; b ca,l+c,b|c,a;1+c,b|c, a; 1+¢, b
parameters law law law law law
conditions D, 4, A A 4,
e a b>0 2¢; 142c| A, ,(a; b) | A.(a; b) A (a; b) A (a; b)

Note. @ and b are of length r+1 and r, respectively.
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Then for all these cases:
(7.3) Dy(D;+D3) ~ Dy +Dj.
law of 4, law of G- law of G, law of 4, law of 4,
4,(a; 20) g, — 1/2; ~ B 1 B a1
'1,(‘1,"‘1;2‘1'*'1) g, — 372, — (33/)2.3/2 ﬂﬂuz;aﬂ/z
Then for all these cases:
(7.4) Ao ~ Gy Gy (A1 +45).
law of G, | law of G| | law of G, | law of G, | law of G, law of A,
a - Ja b b |a+b A, (03 b+1/2)

vThen for all these cases:

(7.5)

%(Gl Gz“Gll /2) ~ Gng-

law of B,

law of G,

law of G,

law of G,

law of D,

1, 1+d/2 2

1+d, d/2; 2+d)2

Then for all these cases:

B;(G2—Gy) ~ Do—Go.

(7.6)
parameters law i . law law
conditions X, Y A,

12<a<1" a, a+1/2 1—a, 32—a |a a—1/2 '

2a 2(1—a) 1, 2a ‘
0<a<1/? 1—a, 32—a |a, a+1/2 @ 12—a _
: 21=a) - |2a 1, 2(1—a)

a>0and b>0 a b c—a—b a, b

max{(a, by <c<a+b ¢ - c—a, c—b

a>0 and b>0 ab a, b a, b, 2a-+2b—1

12<a+b<1 a+b+1/2 - |a+b—1/2 = |2a, 2b, a+b

O<a<1/2 a, b—1 a, b ; a, b, 2(a+2b-1)

l<b<1+42a a+b—1/2 a+b—1/2 2a, 2b, a+b—1

a, b>1/2 a+1/2, b+1/2 |a—1/2, b—1/2 | a, b, a+b

a+b+1/2 a+b—1/2 2a—1/2, 2b—1/2, 2a+2b—1
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law of (Y, is D(1; -)) X,

law of A4,

parameters, conditions

0<2b<a<b+l

a, 1+af2, b
1+a—b, a/2

a, b, 1+af2
a+b+1, b+a/2, 2+3a/2 .

parameters, conditions

O0<2b<a<b+1 and b+c<a, ¢>0

a, b, 1+abfla+b—c)
1+a—b, 1+a—c, 1+b+c, a/2

a, b, 1+a/2, ¢, a—b—c¢
a+b+1, b+a/2, 2+43a/2, 2c+1, 1+2(a b c)

parameters, conditions O<b<e<a<b+l

a, b, 1+abfa+b—c)
1+c¢, abj/la+b—c)

a, b, 1+abfla+b—c) .
a+b+1, b(1+a/@a+b—c), 2+a(l+bja+b—c)

law of (Y, is 4,(—; —)) X, law of 4,

parameters, conditions b>0, a+b>c, a=b+1/2, c=b+4/2b+1

A1t abjatb-0) a, b, 14+ab/(a+b—c)
(2b; 1+2¢) a+b+1, b(1+afla+b—c), 2+a(l+bfla+b—c))

Then for all these cases:
(77) ‘ X+ 1~ Ay (Xn + ]/;1)
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