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Abstract. We consider the construction of unconditional boot- 
strap-t prediction intervals for stationary time series. Our approach 
relies on the sieve bootstrap resampling scheme introduced by 
Biihlmann [8]. 

Basic theoretical properties concemcd with consistency of the 
bootstrap approximation as well as consistency of constructed inter- 
vals are proved. 

We generalize results obtained earlier by Stine [26], Masarotto 
[2l] and Grigoletto [I61 for autoregressive time series of finite order 
to the rich class of linear an'd invertible stationary models. 

Finite sample accuracy of proposed bootstrap-t prediction inter- 
vals is veritied by computer simulations. Empirical results of a com- 
parative study show that our method is a superior alternative to both 
traditional Box-Jenkins approach and hybrid sieve-bootstrap predic- 
tion intervals proposed recently by Rtriakki and Zagdabski [24]. 
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- 1. INTRODUCTION -: - 

The computation of interval forecasts can be of vital importance in as- 
sessing future uncertainty as well as in many practical applications including 
planning (see e.g. Chatfield 1121 for details). Construction of reliable prediction 
intervals for time series has been an ongoing problem. 

The classical approach to constructing prediction intervals is based on 
Gaussian approximation of the prediction error distribution. This strategy is 
commonly used and is well known as the Box-Jenkins method. However, we 
cannot expect Box-Jenkins prediction intervals to perform very well for 
non-Gaussian series. Moreover, using this approach we do not incorporate the 
variability coming from model uncertainty. 



Many authors consider more general bootstrap-bawd pro~edures of con- 
structing prediction intervals. Let us only briefly name main results. Stine [26] 
considered construction of bootstrap prediction intervals for autoregressive 
processes of known order (AR(p)). Masarotto [21] and Grigoletto 1161 gene- 
ralized this construction for autoregressive processes AR(pj with finite but 
possibly unknown order p. Thombs and Schucany [277 used the bootstrap 
method to construct conditional prediction intervals for autoregressive models 
of known order (AR(p)) .  Cao et al. [ll] proposed modification of Thombs- 
Schucany's procedure which improves computational efficiency. Kun [20] 
constructed ;prediction intervals for vector ailtoregressive models of known 
order ( f l ~ ~ ( p ) j  using the bootstrap-after-bootstrap approach which has 
built-in bias-correction procedure. 

Approaches mentioned above are "model-based", i.e. rely on a finite-di- 
mensional parametric model assumption. In order to generalize this construe . 

tion to the broader class of time series the nonparametric resampling scheme 
should be used. Biihlmann [8], [9] has proposed resampling procedure, called 
sieve bootstrap, which has the advantage that no particular finite parametric 
model for data is assumed. This approach is based on Grenander's [I51 meth- 
od of sieves the main idea of which is approximating an infinite-dimensional 
nonparametric model by a sequence of finite-dimensional parametric models. 

Alonso et al. [2] considered generalization of results obtained by Thombs 
and Schucany [27] and Cao et al. 1111 for a general class of linear processes. 
Nonparametric conditional prediction intervals are constructed by using the 
sieve bootstrap approach. Simulation results indicate that the proposed 
method has better coverage and mean lengths results and is alternative for 
classical Box-Jenkins Gaussian prediction intervals. 

Recently, Rbiariski and Zagdariski [24] have proposed construction of 
consistent unconditional hybrid prediction intervals using Biihlmann's sieve 
bootstrap scheme. This approach extends results obtained earlier by Stine [26], 
Masarotto [21] and Grigoletto [16] for autoregressive time series of finite 
order to the rich class of linear and invertible stationary models. 

In this article we propose another promising method of construc_ting boot- 
strap prediction intervals for stationary time series. Namely, we use the sieve 
bootstrap resampling scheme to construct the so-called bootstrap-t (or student- 
ized) prediction intervals. It is worth noting that for the independent set-up the 
bootstrap-t method was introduced by Efron [14]. However, this method has 
become particularly popular since some appealing theoretical properties were 
proved. Hall El71 showed, for instance, that in a quite general situation 
(so-called smooth function model) bootstrap-t has good second-order proper- 
ties (i.e. bootstrap-t is second-order correct and second-order accurate). More- 
over, empirical finite sample studies have revealed that the bootstrap-t methods 
perform well in terms of coverage error even for a small sample size, across 
a wide range of distributions. 
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The article is organized as follows. Section 2 contains model assumptions 
and detailed description of the sieve bootstrap algorithm. In Section 3 we 
discuss the problem of interval forecasts and construct bootstrap-t prediction 
intervals. Theoretical results concerning consistency of the bootstrap-t are 
given in Section 4. In Section 5 we investigate the consistency of constructed 
studentized prediction intervals. The last Section 6 is devoted to numerical 
results. 

Simulations have been carried out using computers of the Wroclaw Centre 
of Networking and Supercomputing. 

d 

-- . 
2. SIEVE MOTSTRAP 

1 

2.1. Assomptions. Let {X,}, be a stationary real-valued process with zero 
expectation. If {X,), is a purely stochastic process, then by Wold's theorem 
(see e.g. Anderson [3]) (X,),,, may be represented as a moving average process 
of order infinity (MA(oo)) ,  i.e. 

where { G ) ~ ~ ~  is a sequence of uncorrelated random variables with E [E,] = 0 
and z?t,b? < CO. 

doz",o(er, we will require the process XI to be invertible, which narrows 
a bit the class of stationary processes. Appropriate conditions guaranteeing the 
invertibility, given e.g. in Anderson (131, Theorem 7.6.91, allow us to represent 
{X,), ,z  as an autoregressive process of order infinity (AR (m)), i.e. 

m 

(2.2) X,- #jXt-j = E,, ~ E Z ,  
j= 1 

where xj?= 4; < m . 
Using the notation @(z) = 1 -GI r#j zj, z E C,  and Y(z) = XIm= t,hj zj, 

t), = 1, Z E  C, one can represent X, as: 
- - 

AR (a): @ (3) (XJ = E, or MA (m): X, = Y (3) E,, 

where B stands for the backward shift operator, i.e. BX, = X,-,. 
Let us also denote by & = a({&,: s ,< t]) a cr-algebra generated by 

(E,):= -,. In the sequel, some of the following assumptions will be imposed: 

(Al) X, = XIm=, $jq-j, I,//* = 1 ( ~ E Z ) ,  where { E ~ ) ~ ~ ~  is an i.i.d. sequence 
and E [E,] = 0, E [E,]" < for some s 2 4. 

(Al') X, = ~ T = o t ) j ~ , - j y  $O = 1 ( ~ E Z ) ,  where is a stationary ergodic 
sequence and 



(AZ) P (2) is bounded away from zero for /zI < 1, zT=, jV J+J ,J< m for 
some natural r. 

(B) p = p (ti) 4 m, p (n) = o (n) (n -+ co) and 6, = (4 ,,,, . . ., $,,,)' satisfies 
the empirical Yule-Walker equations, i.e. 

where fp = [ f ( i  - j ) ] f l = l ,  fp = (f (I), . . . , 7 (p)y, and y" is the sample autoco- 
variance function given by 

- l n - l j l  it 

- t - l j l - ,  j G - 1 ,  where X = C x,. 
n t = l  t = l  

2.2. Sieve bootstrap algorithm. RoughIy speaking, the main idea of the sieve 
bootstrap is approximation of the process Xi by a sequence of autoregressive 
processes of order p = p(n) growing "suficiently slow" with sample size n, i.e. 
p (n) + oo when (n -+ m) but p (n) = o(n). In other words, we approximate 
infinite-dimensional nonpararnetric model (which can be represented as AR (m) 
process) by a sequence of finite-dimensional parametric models. This strategy is 
well known as the method of sieves (Grenander [15]). Let us now present the 
detailed algorithm of the sieve bootstrap. 

S t e p  1. Let XI, . . ., X, be a realization of the process (X,),e. Applying 
Biihlmann's suggestion (cf. [B]) we choose an approximating order p = p (n) 
using the Akaike information criterion (AIC) in a range [0, p,,,(n)], where 
p,,, (a) is increasing with n. In practice, we use p,, (n) = 10loglo (n) (the stan- 
dard value used in statistical packages). 

S tep  2. We estimate coefficients of the AR (p (n)) model, i.e. . . ., 4 ,,,, 
using the observation {X,);=,. Estimates $, = (J1, .. ., $,{,J are determined 
by the Yule-Walker method (Brockwell and Davis [6], pp. 232-233): 

where f, and f, are given as in assumption (B). 
Taking into account the computational efficiency, we can determine 

Yule-Walker estimates more effectively using, for instance, the recursive Dur- 
bin-Levinson algorithm (e.g. Brockwell and Davis [6]). 

S t e p  3. We compute residuals 

S tep  4. We can construct the replication of observations. For this pur- 
pose, the residuals are centered: 
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and next we draw residuals E: from the empirical cumulative distribution based 
on { E ; , , ) ; = p , , ,  i.e, B: i.i.d. - PElll, where 

S tep  5. Finally, we define bootstrap replication {XT, . . . , X,*} by the re- 
cursive equation: 

j= 1 
I 

In practice, we can generate replication (Xf) starting the recursion from some 
initial values, e.g, equal resampled innovations E:. 

3. PREDICTIQN INTERVALS 

It is well known (see e.g. Brockwell and Davis [6], pp. 159-162) that for 
a stationary process with mean 0, the best (in mean squared sense) linear com- 
bination of XI, . . ., X, for predicting X,,, (h  > 1) is the projection of X,+ on- 
to the closed linear subspace @(XI, . . ,, X,}. Thus, we can represent the 
optimal h-step predictor as: 

The above predictor may be derived from appropriate projection equations or, 
alternatively, using some recursive algorithm, for instance, the innovations al- 
gorithm (Brockwell and Davis [6], pp. 167-168). 

Besides calculating optimal predictors we have to assess their accuracy. 
A well-known measure of uncertainty of the corresponding forecasts is predic- 
tion mean squared error. The other possibility is to construct interval forecasts. 
Therefore, computing prediction intervals is an important part of the forecast- 
ing process intended to indicate the likely uncertainty in point forecasts. Let us 
now present the formal defintion of prediction interval. - 

DEFINITION 3.1 lprediction interval). A prediction interval I (h, X) with nom- 
inal confidence level 1-20! is a random interval based on past observations 
X = (XI, X,, . . . , X,) and constructed for future (unknown) observation 
Xn+h,  h 2 1: 

so that P(L{X)  < X,+, < R(X)) = 1 - 2 ~ .  

3.1. Box-Jenkins prediction intervals. For a stationary Gaussian process 
one may construct prediction intervals using the fact (Brockwell and Davis [6] ,  
p. 175) that the prediction error d", (h) := Xn+,  -P,X,+, is normally distributed 
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with zero mean and variance ci; (h). The (1 - 201) Gaussian prediction interval is 
given by 

where denotes the (l-a)-quantile of the standard normal distribution. 
Therefore, Gaussian prediction intervals, known as Box-Jenkins predic- 

tion intervals, are constructed assuming that the noise distribution is normal 
and possible departures from normality may badly influence their accuracy. 
Moreover, applying the Box-Jenkins approach we do not take into account the 
varjabrlity, which a$ompanies the estimation of model's parameters. All these 
reasons h a y  result in unsatisfactory coverage results of constructed Gaussian 
prediction intervals. 

3.2. Hybrid bootstrap prediction intervals. We consider now the application 
of the sieve bootstrap procedure to constructing unconditional prediction in- 
tervals. The main idea of using sieve bootstrap to construct interval forecast 
is a generating replication Xf, . . ., X,* on the basis of the observed series 
XI, . . ., Xn, and then extending this replication to the future time n + h. Let us 
note that replications of future observations X,*+, can be easily determined 
applying the autoregressive approximation AR (p(n)), i.e. 

where $T, . . ., 4%) are bootstrap replicates of estimators calculated on the 
basis of Xf , . . . , X,* . 

Recently, R6ianski and Zagdariski 1241 have proposed construction of the 
hybrid sieve-bootstrap prediction intervals. Hybrid intervals are constructed 
approximating the unknown distribution of the prediction error 

.by the corresponding bootstrap distribution of 

where R,+, is the estimate of the optimal linear predictor for X,+, constructed 
on the basis of observations XI, . . ., X, using the autoregressive approxima- 
tion AR (p(n)) ,  and 8:+, stands for the optimal linear predictor for X,*+, based 
on Xi, . . ., X?. 

Denoting now by q,* and qT-, the corresponding quantiles of distribution 
A,*(h) we may express hybrid bootstrap prediction intervals in the following 
form: 

In practice, the quantiles q,* and q:-, are replaced by their Monte Carlo 
approximations based on B replicates of the series (where 3 is sufficiently large). 
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33.  Bootstrap-t prediction intervals. We can construct bootstrap prediction 
intervals also adopting the idea of studentization, which yields so-called boot- 
strap-t or studentized prediction intervals. More precisely, the unknown dis- 
tribution of studentized statistics 

is estimated by the corresponding bootstrap distribution of 

where tTi ( I h )  and b,*2 (h) are the corresponding prediction mean squared errors. 
Therefore, studentized sieve-bootstrap prediction interval can be expressed 

in the following form: 

(3.10) I ~ - t ( h )  = ~ ~ n + h + l ~ ~ n ( h ) ,  S n + h + t : - a e n ( h ) ~ ,  

where t,* and ty-. are quantiles of T,* (h). 
Replacing unknown quantiles t,* and tT-, by their Monte Car10 estimates 

based on B bootstrap samples of x*(h), we obtain 

(3.11) r",-,(h) = [ ~ n + h + ~ ~ & , , ( h ) ,  8 n + 6 + i ~ - e r ~ n ( h ) ] .  

4. CONSISTENCY OF BOOTSTRAP-t 

Let us introduce the necessary notation: 
Tn+, - the best (in mean squared sense) linear predictor for X n + ,  con- 

structed by assuming that the whole history (X,, X n - ,  , . . .) is known; 
z+, - the best linear predictor constructed on the basis of observations 

{X,, -. .I XI]. 
- We formulate now some elementary facts concerning representation of the 

prediction error and the prediction mean squared error. 
. It  is easily seen that the theoretical predictor Z n + ,  is given by - 

As a straightforward consequence of (4.1) we infer that the prediction error and 
the prediction mean squared error may be represented in the following forms: 
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Let us also note that both predictors and prediction mean squared errors 
(PMSE) are equal when X, is a finite-order autoregressive process AR (p), i.e. 
the following lemma holds true. 

LEMMA 4.1 (predictor and PMSE for AR(p)). If  X, is an autoregressive 
process AR(p)  and pa > p, then: 

- 
Xi+, = S,+, and E ( x , + ~ - X : + ~ ) ~  = ~ ( x n + h - x n + h ) ' .  

In Section 3 we have used the following notation for predictors based on 
autoregressive approximation: 

' Z n g h  - predictor for Xn+,  calculated on the basis d the model A R ( P ( ~ ) )  
with estimated coefficients (4, . . . ) by using the observations 
{XI, . - - 3  -GI; 

g,*,, - predictor for XE,, calculated on the basis of the model AR (p (n)) 
with parameters (&, . .., &,,) estimated by using the bootstrap replicate 
{x:', . . ., XZ). 

For simplicity of the notation, we introduce the following symbols for 
appropriate prediction errors : 

In the sequel the following notation for prediction mean squared errors 
will also be used: 

o2 (h) - prediction mean squared error corresponding to theoretical pre- 
dictor Zn,, based on the model AR(oo); 

6; (h) - prediction mean squared error for predictor based on the model 
AR (p (n)) with known coefficients $,(,, = (4,,,, . . ., r$,(,,,,) satisfying theoretical 
Yule-Walker equations, i.e. 

- d:2(h) - prediction mean squared error for bootstrap predictor 2?,*+h. 
Moreover, let 6; (h) denote the estimate of prediction mean squared error 

3: (h) obtained by substitution of unknown coefficients of the model AR (p (n)) 
by the corresponding Yule-Walker estimators . . ., $,(,)). 

- 

Formulas (4.1) and (4.3) allow us to write: 

oyh) = c2 C $; 8: (h) = a2 C I);,,, 
j= 0 j = O  

where {$~~,,)j"= are coefficients of the MA(m)  representation corresponding to 
the AR(p(n))  process with parameters (#,,,, .. ., 4,(,),,), ($j)so denote co- 
efficients of the MA(oo) representation corresponding to the AR (p (n)) model 
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with estimated parameters ($,, . . . , 4,(,,,), and ( ~ @ ) j " = ~  stand for coefficients of 
the MA (m) representation for the AR ( p  (n)) process with replicated parameters 
($T, . . ., &%I). 

Let us formulate some auxiliary results which will be useful in the proof of 
our main theorem. 

LEMMA 4.2 (Alonso et al. [I], Proposition 3.5). Suppose that assumptions 
( A l )  for s = 4, (A2) for r > 1 (r E N), and (B) for p (n) = o ((n/log (n))Li(2't 'I) hold 
true. Furthermore, assume that #,(,, = ..., &(,),,) satisfies the theoretical 
Yule-Walker eqyations, he. 

-4 

# Y where &(.) = CY ( i  -j)I$'' 1 , Y p e ~  = (Y (11, - - ., Y ( p  (n)))'. 

Then 
max I$? - #j,nl 5 0 in probability. 

1 <j<p(nl  

LEMMA 4.3. Suppose that assumptions ( A l )  for s = 4, (A2) for r > 2 i r  E N) 
and (B) for p (n) = o ((a/'log (n))11(2r'2 hold true. Then 

max - $,I 5 0 in probability. 
l S u < p ( n )  

Pro o f of L em m a 4.3. Adopting the idea used by Biihlmann [7] (in the 
proof of Theorem 3.2) one may write: 

j=O j=O 

and 

Then 

10 - PAMS 25.1 
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Now let us bound the consecutive components. We have 

Using Lemma 4.2 we get 

max 167 - djl = Or* ((n/log n)-"- 1)j(2"2') in probability 
1 C j<p(n) 

Hence we obtain 
la = op* ((ratlog n)-tr- 1 ) / ( 2 ~ + 2 1 .  p (n)) = OF ((n/log n) - (' - 2)1(2' ' ') ) in probability. 

Further we have 

In the inequalities above we have used Lemma 5.3 of Biihlrnann [8]. Finally, 
.since z,"_o(#jl < a, we have I ,  = o,(l). We obtain also - 

A ~ ,  

< max ly"* (u + j )  - Y (u +j)l C l4jl 
O<j<p(n) j= 0 

< a - 2  max man I P ( ~ + j ) - r ( u + j ) l ~ I 4 ~ l  
l d u d p ( n )  O<jdp(n) j=O 
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Let us put @(n)  = 2.p(n). Since xy=o < m, it is sufficient to show that 

max If* (k) - y (k)l5 0 in probability. 
l d k d $ ( n j  

It is easily seen that for p(n) = o((n / l~gn) ' / (~ '~  2)) (assumption (B)) also 

p(n) = 2 p  (n) = o ((n/log n)'HzFt2)). 

Further, we can use a similar boundedness to that applied in the proof of 
Proposition 3.5 by Alonso et al. [I]. Let us set the following notation for vector 
norms: - 7 .  

.. .. . k Ik 

where x = {xl, ..., xk). 
Thus, we have 

where = (f* (I), . . ., 'Y"* (~"(n))), Yb{n) = (Y (11, . - -, Y (@@I)), and further 

( ~ ( n ) ) " ~  I I $ ( n ) - ~ ~ n , l l Z  = OF ((flog n)-(r-1)"2r+2)) in probability. 

Finally, we have shown that I, = Or.((n/logn)-(r-1)J(2r+2)) in probability. 
Moreover, we have 

Assumption (A2) implies that I4 = o(p(n)-") and the proof is complete. 

L E M ~  4.4. Suppose that assumptions (A2) for r E N  (r 2 1) and (B) for 
p(n) = o ((njlog n)1f12r+2)) hold true. Then 

8: (h) 5 a2 (h) . 

Proof.  Prediction mean squared error for the h-step predictor may be 
rep;esented as a2(h) = a2z:?,' tf, where a' is the white noise variance and 
{$j)j"=o are coefficients of the MA(co)  expansion for X,. Similarly one may 
write 6: (h) = 6' xi?,' $j, where d2 is the Yule-Walker estimate of white noise 
variance and {Gj} are coefficients of the MA(co)  representation for the 
AR (p (n)) model with estimated parameters ($,, . . . , We have used the 
well-known fact (see, for instance, Brockwell and Davis [6]) that autoregressive 
model with parameters estimated by the Yule-Walker method is always causal. 

From Theorem 3.2 of Biihlmann [7] we have 

SUP 1Gj - $il = o ((log (n)/n)lJZ) + 0 (P In)-? a .~ .  
 EN 



and 
16' -0'1 = 0 ((10~ (n)/n)"?+ 0 ( p  (n)-') as., 

which completes the proof of Lemma 4.4. H 

LEMMA 4.5. If the assumpt.ions of Lemma 4.3 hold, then 

BZZ(h) % a2 (h) in probability. 

Proof. As before one may write 
d 

= .  .. . 
h - 1  h -  1 

' 6' (h) = a2 $; and 8,*2 (h) = ij*2 ,&2, 
j=  0 j = O  

where 8*2 = I* G * ~  and ($T].!T=~ are coeficients of the MA(m) representation 
for the AR ( p  (n)) process with parameters &, . . ., &,). 

From Lemma 5.3 of Biihlmann [8] it follows that 6*2 - c2 5 0. This im- 
plies also that P2- a2 5 0 in probability. 

Applying Lemma 4.3 we conclude the proof of Lemma 4.5. rn 

We formulate now the main result of this section concerned with the 
consistency of the bootstrap-t approximation. For this purpose the notion of 
weakly approaching sequences of random distributions introduced by Belyaev 
and Sjijstedt-de Luna (see [4] and [ S ] )  will be used. 

THEOREM 4.1 (consistency of bootstrap-t). Suppose that assumptions ( A l )  
for s = 4, (A2) for r > 2 (r E N) and (B) for p (n) = o ((n/log n)1i(2rf ')) hold true. 
Then 

Proof. Using the generalized version of Lemma 1 in Belyaev and 
Sjostedt-de Luna 151 we have: 

(4.4) J* (g) '%? J (m) if and only if for all subsequences {nd 
8: (h) 4 (h) - 

there exists a subsequence Ink,) and a random variable Yo such that 

J* (3) I 2' (&) in probability and 9(3) 5 ~ ( Y O I .  

From Theorem 5.1 of Rbzanski and Zagdariski [24] we obtain 

Hence for all (nk} there exists (n,,} and do such that 

P* (Ah (h)) 5 9 (do) in probability and 9 (AnkI (h)) 5 J (do) 



Bootstrap-t prediction intervals 145 

or, equivalently, 

A:kI % A ,  in probability and Ankl 5 A ,  . 
Lemmas 4.4 and 4.5 imply 

(4.5) 6: (h)  5 G (h) in probability . 

and 

(4.6) fin (h)  5 u (h) . 
-. . 

Let { d . b e  arbitrary subsequence. Further, let (4,) be a subsequence of 
(n , }  for which 

A 4  (h) 5 A ,  in probability and Ankl (h)  % A,,. 

According to (4.5) and (4.6) we have 

8 4  (h) 5 D (h) in probability and qI (h) 5 o (h) . 
Since n(h) = const (is independent of n), we conclude from the Slutsky lemma 
and its modification that 

A:k,(h) d* d o  Ankl (hl d A ,  
+ - in probability and - +- 

3:kr8) Vd k t  ( 1  t3 (h)' 

which by virtue of (4.4) yields 

and the proof is complete. H 

5. CONSISTENCY OF BOOTSTRAP-t PREDICTION INTERVALS 

In Section 4 the consistency of the bootstrap-t has been investigated. 
However, in analyzing asymptotic performance of bootstrap confidence inter- 
vals the main concern is whether the coverage probability of the confidence 
intervals converges to the nominal level as n + ao. Other accuracy measures, 
such as the length of intervals, are often used to compare different approaches 
to construction of confidence intervals. We will analyze this topic more careful- 
ly in Section 6 devoted to computer simulation. Let bs now introduce the 
formal definition of the consistent prediction interval. 

DEFINITION 5.1 (consistent prediction interval), A prediction interval f ( h )  
with nominal confidence Ievel(1-24, constructed for future (unknown) value 
X n + , ,  (h 2 I), is consistent if 



To prove the consistency of prediction intervals we will use auxiliary 
results on convergence of quantiles for weakly convergent sequence of dis- 
tribution functions (Lemma 5.1 and its modification for the conditional case 
- Lemma 5.2). 

LEMMA 5.1 (Politis et al. [23], Lemma 1.2.1). If (G, )  is a sequence of 
distribution functions, weakly convergent to the distribution function G (i.e. 
G, +- G), and if G is continuous and strictly increasing in y = GP1(ol), then 

The'straightforward modification of Lemma 5.1 for the conditional dis- 
tributions is the following: 

LEMMA 5.2. If IF,*) is a sequence of distribution functions, weakly con- 
uergent to the distribution function F in probability (i.e. FX ==- F in probability), . 

a d  if F is continuous and strictly increasing in y = F-I (a), then 

F,*-' (a) + F - ' (a) in probcrbility. 

Let us now present the main result concerned with the consistency of 
prediction intervals. 

In Section 3 we defined bootstrap-t prediction intervals with nominal 
confidence level (1 -24: 

where t,* and tT-lx are quantiles of T,*(h). 
Replacing unknown quantiles tX and t:-, by their Monte Carlo estimates 

based on B bootstrap samples of T,* (h), we obtain 

. THEOREM 5.1 (consistency of the bootstrap-t prediction intervals). Sup- 
pose that assumptions (Al)  with s = 4, (A2) with r > 2 and (3) with p(n) = 

o ((n/log n)1/(2'+2)) hold true. Denote by Ae,h the random uariable 

where dl,h, . . ., dh-l,h are continuous functions given as in the prediction error 
representation, i.e. 

Furthermore, let 2ia and u l - ,  be quantiles of the distribution of the random 
variable AE,h/a(h) which are continuity points of the distribution function. Then 
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Proof .  Let t l - ,  stand for a (1 -+order quantile of the normalized pre- 
diction error T, (h) = A, (h)/B, (h). Moreover, let u1 -, be a quantile of the dis- 
tribution of the random variable A,, /u (h), where a (h) is defined as in Section 4. 

Applying Lemma 4.4 we see that 8, (h) 5 a (h). In the proof of Theorem 5.1 
in R6za6ski and Zagdadski 1241 it was shown that 

and - . 

(5-4) - - A$ (h) -- x:+~-  y:+ 5 AcVh in probability. 

Hence, by (5.3) and the Slutsky lemma, we have 

Similarly, using Lemma 4.5, the fact (5.4) and the modified Slutsky lemma, we 
may write: 

A: (h) a A,,, T,,* (h) = - + - in probability. 
6: (h)  g(h) 

Since 21,-, is a continuity point of the distribution function of the random 
variable Aa,h/a (h), from Lemmas 5.1 and 5.2 and consistency of empirical quan- 
tiles we obtain 

Further, (5.7) and the Slutsky lemma imply that 

if 1.4, -, is a continuity point of the distribution function of A,,,/D (h). 
In the same manner we can see that 

Finally, using (5.8) and (5.9) we conclude the proof of Theorem 5.1. 

Remark  5.1. Let us note that consistency of the bootstrap4 prediction 
intervals was proved for confidence level (1 -2a) such that u, and u,-, - 
quantiles of the distribution of the random variable A,,/rr (h) - are continuity 



points of the distribution function. Assuming additionally that the distribution 
function of E, is continuous we obtain the consistency of bootstrap-t prediction 
intervals with arbitrary confidence level (1 - 201). 

6. SIMULATION RESULTS 

6.1. htroductiom. We have compared finite sample accuracy of constructed 
predictipn intervals--using computer simulations. 

- Theb following models were considered: 

(MI) ARMA(1, I), X, = 0.8Xt-l-0.6~t-1+~t. 

(M2) AR(48), X,=E;:~ $ j X t - j + + l  4j=(-1)1+17.5/(i+1)3 for j =  
1 ,  . . ., 48. 

(M3) ARFIMA (0, d, 01, (I - B)d X, = 8, for d = 0.3, where the fractional 
difference operator V d  = (1 - B)* is defined as in Hosking [19]. Let us note that 
for d ~ ( - 1 / 2 ,  1/21 ARFIMA(0, d, 0) is a stationary process, whch can be 
represented as AR(co) process (e.g. Hosking [19]). 

For all models we use four dflerent noise distributions: 

(N) standard normal: N (0, I), 

(t) t-Student : t Q)/,/?, 

(log N) log-normal (log N (0, 1) - ~ i ) / , / e  (e - 1) , 
(M) mixture of normal distributions: 0.9N (- 1, 1) + 0.1N (9, 1). 

Prediction intervals have been constructed using the classical Box-Jenkins 
approach based on Gaussian approximation and two sieve bootstrap methods, 
i.e. hybrid prediction intervals and studentized (bootstrap-t) prediction in- 
tervals. 

Gaussian intervals have been constructed assuming that the true under- 
lying model for data is known. Thus they may be treated as benchmark. On the 
other hand, to determine bootstrap prediction intervals (i.e. predictors and the 
corresponding prediction mean squared errors) we use autoregressive approxi- 
mation by AR (p (n)). 

The following parameters have been used in simulations: 
sample size: n = 25, 50, 100, 500, 
number of bootstrap replications: B = 1000, - number of Monte Car10 repetitions: 1000. 

The order p(n)  of autoregressive approximations is chosen by minimizing 
AIC (Akaike Information Criterion) in a range p(n) E [0, 10loglo (n)] (which is 
default for instance in S-PLUS). Results of data-driven choice of @,,(n) for 
models MI-M3 are given in Table 1. 
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Tab le  1. Estimation of order p (n) using AIC 

6.2. Results. Simulation results for models M1 and M2 were given in 
R6zanski and Zagdaliski [24]. In this article, we restrict ourselves to present 
some 'new results for model M3, which exhibits long-memory behavior. 

Estimation p (n) using AIC 

E (fiard std (BAIC) rnin(6~1c) (~AICI 

0.88 1.24 0 8 
1.52 1.89 0 16 
2.35 2.32 0 20 

0.70 1.06 0 7 
1.45 1.67 0 14 
2.22 2.23 0 20 

0.79 1.21 0 8 
1.45 1.78 0 13 
2 27 2.16 0 18 

0.84 1.30 0 I0  
1.48 1.85 0 12 
2.36 2.28 0 18 

1.56 1.03 0 8 
2.05 1.54 1 15 
2.77 2.12 I 19 

1.48 0.89 0 7 
1.96 1.36 1 12 
2.52 1.66 1 16 

1.46 0.85 0 8 
1.93 1.50 I 14 
2.52 1.73 1 14 

1.54 1.03 0 10 
2.09 1.63 1 14 
2.65 1.99 1 19 

2.26 2.13 0 20 
5.40 3.48 1 26 

- 
2.23 2.24 0 18 
5.47 3.63 1 26 

2.06 1.79 0 16 
5.57 4.11 1 26 

- 
2.25 2.26 0 17 
5.40 3.60 1 25 

Model 

M1 - 

M2 

M3 

Distribution 

N 

I 
4 

, 

log N 

M 

N 

t 

log N 

M 

N 

t 

log N 

M 

n 

25 
50 

100 

25 
-. 50 

100 

25 
50 

100 

25 
50 

100 

25 
50 

100 

25 
50 

100 

25 
50 

100 

25 
50 

100 

100 
500 

100 
500 

100 
500 

100 
500 



Figures 1 and 2 present selected prediction intervals constructed for model 
M3 with nominal confidence level 95%. 

Fig. 1. Gaussian prediction intervals for model M3 and M noise: true future values (solid line with 
squares), predictors (dotted line with squares), Gaussian intervals (dotted line) 

. - 

Fig. 2. Bootstrap prediction intervals for M3 and M noise: true future values (solid line with 
squares), predictors (dotted line with squares), hybrid sieve bootstrap interval (dash-dotted line), 

sieve bootstrap-t (dotted line) 

The accuracy of constructed prediction intervals has been investigated 
with the aid of empirical coverage probabilities and mean of interval length 
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(E (length)) based on 1 OOO Monte Carlo repetitions. The comparisons were 
carried out for nominal confidence levels equal to 80% and 95% and for 
forecast horizons h = 1, . . ., 5. Besides empirical coverage probabilities we cal- 
culated (given in parentheses) their standard errors. 

One can see that in all analyzed cases for studentized intervals we obtain 
better empirical coverage than for hybrid intervals. However, for small sample 
size the coverage results for both bootstrap intervals are not always satisfac- 
tory, which is due to bias present in estimation of the model parameters. 
Moreover, studentized prediction intervals yield much better coverage results 
than Gausscqn BOX-~enkins intervals in the case of bimodal (M) noise dis- 
tribution, For nominal confidence level 80% we observe (e.g. Table 2) that for 
non-Gaussian series Box-Jenkins intervals are too conservative and their mean 
length is the largest one. 

Table 2. Empirical coverage and mean interval length for model M3, n = 100, and nominal 
confidence level 80% 

bootstrap-t 

coverage E(1enyth) 

79.2% (1.284) 2.546 
80.2% (1.260) 2.661 
81.2%(1.236) 2.714 
77.7% (1.316) 2.734 
80.1% (1.263) 2.741 

78.1% (1.308) 2.012 
79.8% (1.270) 2.162 
80.6% (1.251) 2.213 
80.2% (1.260) 2.241 
78.9% (1.290) 2.257 

81.6% (1.225) 1.741 
79.4% (1.279) 1.913 
78.3% (1.304) -1.970 
79.0% (1.288) 2.010 
80.8% (1.246) 2.022 

81.2% (1.236) 2.134 
79.6% (1.274) 2.358 
78.4% (1.301) 2.427 
78.9% (1.290) 2.459 
80.0% (1.265) 2.464 

M3 

h 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

Distri- 
bution 

N 

t 

log N 

M 

Box-Jenkins 

coverage E(1ength) 

80.7% (1.248) 2.564 
81.2% (1.236) 2.678 
82.3%(1.207) 2.725 
79.2% (1.284) 2.752 
80.8% (1.246) 2.770 

88.0Yo (1.028) 2.564 
88.8% (0.997) 2.678 
88.5% (1.009) 2.725 
87.8% (1.035) 2.752 
87.9% (1.031) 2.770 

93.2% (0.796) 2.564 
92.4% (0.838) 2.678 
92.0% (0.858) 2.725 
93.1%(0.801) 2.752 
93.4% (0.785) 2.770 

90.7% (0.918) 2564 
89.4% (0.973) 2.678 
90.4% (0.932) 2.725 
89.7% (0.961) 2.752 
91.9% (0.863) 2.770 

hybrid bootstrap 

coverage E(length) 

77.9% (1.312) 2.489 
78.3%(1.304) 2.596 
79.9%(1.267) 2.646 
76.4% (1.343) 2.663 
78.4% (1.301) 2.671 

76.4% (1.343) 1.907 
78.2% (1.306) 2042 
78.2% (1.306) 2.087 
78.9% (1.290) 2.115 
77.2% (1.327) 2.127 

76.6% (1.339) 1.601 
74.1% (1.385) 1.752 
75.1% (1.368) 1.807 
74.2% (1.384) 1.841 
77.0% (1.331) 1.851 

79.7% (1.272) 2.099 
77.5% (1.321) 2.309 
77.2% (1.327) 2.372 
76.9% (1.333) 2.403 
78.6% (1.297) 2.404 



Table 3. Empirical coverage and mean interval length for model M3, n = 100, and nominal 
confidence level 95% 
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