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Abstract. In this paper, we analyze the returns of stocks com- 
prising the German stock index DAX with respect to the a-stable dis- 
tribution. We apply nonparametric estimation methods such as the 
Hill mtimator as well as parametric estimation methods conditional 
on the a-stable distribution. We find for both the nonparametric and 
parametric estimation methods that the E-stable hypothesis cannot be 
rejected for the return distribution. We then employ the GARCH 
model; the fit of innovations modeled with an underlying m-stable dis- 
tribution is compared to the fit obtained from modeling the innova- 
tions with the skew-t distribution. The or-stable distribution is found to 
outperform the skew-t distribution. 
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b INTRODUCTION 

As shown in [23] and [7], stock returns have an underlying heavy-tailed 
distribution. In other words, they are leptokurtic. This can also be found in [5] 
and [3]. What followed these initial findings was a vast amount of mono- 
graphs and articles covering the stock price behavior with emphasis on the U.S. 
capital market. An exhaustive account of these studies is provided in [31]. 
Research with respect to this issue for the German equity market is not so 
extensive. Studies since the 1980s that focus on German stocks include [I], 
[17], [20]-[22], [33], [35], [37], and [38]. Studies in the 1970s are described in 
C271- 

In this paper, we investigate the distribution behavior of daily logarithmic 
stock returns for German blue chip companies. While the distribution that is 
assumed in major theories in finance a i d  risk management is the Gaussian 
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distribution, we show that the a-stable distribution offers a reasonable im- 
provement if not the best choice among the alternative distributions that have 
been proposed in the literature over the past four decades. 

The most important equity index in Germany is the DAX@ index which 
contains the 30 most liquid German blue chip stocks. Prices used to compute 
the return were obtained from the Frankfurt Stock Exchange.I The return for 
each stock includes cash dividends and is adjusted for stock splits and capital 
adjustments. The period investigated is January 1,1988, through September 30, 
2002. 

Inclusion in the-DAX depends on requirements such as market capitaliza- 
tion and trading volume. As a result, some of the 30 constituent stocks are 
periodically replaced by others. During the period of investigation, there were 
55 stocks that had been included in the DAX. To assure that the statistics 
estimated were generated from sufficient data, we restricted the sample to 
stocks with a minimum of 1,000 observations. This reduces the original number 
of candidate stocks from 55 to 35. 

The problems related to the correct assessment of the empirical distribu- 
tion of the returns are with respect to the overall shape, tail estimation, and 
determination of existing moments. Particularly in the context of finite sample 
observations, the last can easily lead one to mistakenly conclude in favor of 
distributions with lighter tails. To exemplify, the moments of a Gaussian dis- 
tribution exist to all orders. This is not the case, for example, with the Pareto or 
Student's t-distributions even though sample moments of those distributions 
exist since data samples are finite. It can be shown that even these can 
grow quickly with increasing order which is usually the case with financial 
data. 

The paper is organized as follows. In the next section, the basic notion of 
a-stable random variables is reviewed. In Section 3, we present the results 
based on nonparametric estimation methods for the return distribution. Sec- 
tion 4 provides methods and results of the parametric estimation techniques 
conditional on the a-stable class of distributions. Section 5 models volatility 
clustering based on different error distributions and reports the reslllts of the 
alternative GARCH models. A summary of our findings is presented in the 
finaI section. 

In addition, the automated quotations for the same stocks from the ~ e t r a @  were analyzed 
to determine whether there are deviations in the results caused by the slightly Werent regulatory 
procedures offered by the two exchanges. However, since significant differences between the prices 
were not observed, results for the automated quotation are omitted. The stock prices from both 
sources were provided by the capital market database Karlsruher Kapitalmarkt Datenbank 
(KKMDB) at the University of Karlsruhe. 
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For an exhaustive treatment of the topic of a-stable randomness, the 
monograph [34] should be consulted which has become a standard in this 
field, Here, a brief idea is given as to what the meaning of a-stable distributions 
implies, in the definition below. 

DEFZNITION 2.1. If for any a, b > 0 and independent copies XI, X, of 
X there exist c > 0 and d E R  such that 

.. 

( 1 )  
. . a X l + b ~ 2 A c ~ + d ,  

d 
where = denotes equality in distribution, then X is a stable random variable. 

Generally, u-stable random quantities are described by the quadruple 
(a, B ,  c, p) or, with the notation of [34], S,(a, f i ,  p), where the index of sta- 
bility, a, is the characteristic parameter of the tail as well as the peak at the 
median. Scaling is described by a, P indicates the degree of skewness whereas 
p is the location parameter which is not necessarily the mean. 

An important property of the a-stable random variables is that they can be 
looked upon as the distributional limit of a standardized sum d an increasing 
number of i.i.d. random variables. They are said to have a domain of attraction 
(DA). This is a generalization of the central limit theorem known for the Gaus- 
sian distribution. Note that the normal distribution is a special case of the 
a-stable distributions. In that case, a = 2, fi  is meaningless, p is the mean, and 
the variance is 2a2. 

Even though an analytical form of the probability density function (pdf) 
does not exist for most combinations of the four parameters, the distribution 
can be identified by the unique characteristic functions which are given to be as 
in the following 

. DEFINITION 2.2. X is said to be stabk if there exist 0 < a < 2, a 2 0, 
PEL-1, 11, and P E R  such that 

exp (- a" 181" (1 -$(sign 0)  tan ((xa)/2))+ i p ~ ) ,  a # 1 ,. 
(2) '- -8 (0) = 

exp (-clOl(l+ iP .2nTC-' (sign 0) In 101) + ip0) ,  a = 1 .  

In general, a-stable distributions are favorable for modeling financial re- 
turns because of their ability to display skewness often observed in reality. The 
possibly more important feature, however, is that they can capture the leptokur- 
tosis of financial returns. In the tails, u-stable distributions decay like a Pareto 
distribution, and hence they are also referred to as Pareto-stable. As is often the 
case, large price movements are more frequent than indicated by the normal 
distribution which can be particularly harmful if price changes are negative. 
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3. NONIPARAhIETRIC ESTIMATION OF RETURN DISTRIBUTION 

In this section, we report the results of three nonparametric tests for the 
return distribution: kurtosis, Kolmogorov-Smirnov, and Hill tail. 

3.1. Kurtosis. An initial statistic of interest to reveal information as to 
whether a sample can be considered normal or heavy-tailed is the kurtosis 

TABLE 1. Nonparametric estimates: kurtosis and Kolmogorov-Smirnov test 
Column (2): Kurtosis measurements of the returns with over 1,000 trading days (Jan. 1988Sep. 2002) 
Columns (3H6),: Kolmogmov-Smirnov test results. H = 0: normal hypothesis not rejected. H = 1 : 
normal lij$othesis rejected. P is the significance leveL KSSTAT is the value of the KS statistic, and 

CV is the critical value 

(1) 
WKN 

500340 
515100 
5 19000 
543900 
550000 
550700 
551200 
575200 
575800 
593700 
604843 
627500 
648300 
656000 
660200 
695200 
703700 
716463 
717200 
723600 
725750 
748500 
761440 
762620 
766400 
781900 
802000 
802200 
803200 
804010 
804610 
823210 
823212 
840400 
843002 

(2) 
Kurtosis 

5.9 
6.3 
9.0 
6.2 

11.0 
40.5 
15.2 
11.8 
8.1 

14.2 
11.7 
12.7 
9.8 

11.1 
21.5 
9.1 

11.6 
8.4 
6.1 

11.0 
5.4 
7.2 
7.7 

15.1 
8.1 

13.7 
18.7 
12.5 
10.4 
12.2 
14.7 
9.1 
5.6 
9.9 
6.8 

(4) 
P 

7.25. loL6 
3.37. 10-l4 
1.43- 
2.74. 
6.37- 
2.25. lo-'' 
4.17. lo-" 
1.35. 10-l6 
2.99. lo-'' 
1.38. lo-'' 
9.42.10- l9 

8-44, 10 -1~  
3.28. 
1.68. 
3.27- 10-l8 
3.96- lo-'' 
3.46. 
2.63.10- 
1.99.10- l4 
3.49.10- l3 

4.35.10-~ 
1.11. 
1.46. 
2.55. 
4.06- lo-' 
4.74- 
1.59- lo-'' 
3.27- 
2.03.10- '' 
7.30. 10-l4 
3.41 . 
7.10, 
9.37.10-= 
1.01. lo-'s 
7.20. 

(3) 
H 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 

(5) 
KSSTAT 

7.57 
6.53 
7.90 
5.05 
5.98 
8.42 
7.78 
7.07 
6.50 
5.88 
7.53 
6.54 
7.83 
6.87 
1.14 
6.36 
8.37 
6.22 
6.58 
7.09 
4.49 
5.05 
7.34 
8.76 
4.88 
5.48 
6.65 
8.40 
7.25 
7.26 
9.43 
5.93 
3.45 
7.53 
6.41 

(6) 
CV 

4.11 
2.23 
2.23 
2.90 
2.60 
3.08 
2.57 
2.23 
2.50 
2.23 
2.23 
2.35 
2.23 
2.50 
3.43 
2.46 
2.38 
3.56 
2.23 
2.51 
3.48 
2.56 

- 2.07 
2.42 
2.23 
2.93 
2.65 
2.23 
2.23 
2.51 
2.50 
2.75 
3.79 
2.23 
3.48 
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defined as 

In the normal case, this statistic takes on the value 3 whereas in the case of 
heavy-tails the values are higher. 

As can be seen from column (2) of Table 1, for the stocks in this study 
kurtosis is significantly greater than 3, indicating leptokurtosis for all 35 
returns series.' This finding agrees with the findings of other researchers who 
have investiiated the German equity market. See, for example, [I71 and [38]. 
For financial data, kurtosis is usually greater than 3 as stated in [ll]. 

3.2. Ko%m(~pr~v--Smir~~ov test. As a test for Gaussianity,. we apply the 
two-sided Kolmogorov-Smirnov test with its well-known test statistic 

where F ,  is the theoretical cumulative distribution function (cdf) tested for, and 
Fa is the sample distribution. For all but one stock in our study, the Gaussian 
distribution could be safely rejected at the 95% confidence level. The values for 
the Kolmogorov-Smirnov test are given in columns (3H6) of Table 1. 

3.3. Hill tan-estimator. The following approach uses the semiparametric 
Hill estimation of the tail index as a proxy for the extreme Pareto part of the 
tail if it should exist. The tail estimator was first introduced by Hill [15] to infer 
the Pareto-type behavior for the sample data. The estimator applies if the tails 
of the underlying cdf follow the Pareto law with tail index cl,. The Pareto cdf is 
in the DA of the a-stable Paretian law for 0 < a < 2 with tail probability in 
the limit 

P ( Y  2 y) = 1-F(y) x Ly-", y- co, 

with slowly varying L. For X(,, < X1n-l, < . . ., the estimator is defined as4 

which under certain conditions is consistent. 
A problem arises with respect to the determination of the proper threshold 

index r indicating the beginning of the Pareto tail of the underlying cdf. This 

In Table 1, WKN is the abbreviation of the German word "Wertpapierke~ummer" which 
means security code number. 

For different values of g the characteristic exponent of the a-stable parametrization and 
the Pareto tail parameter do not correspond. 

Indices in parentheses denote the ordered sample. 
See [32]. 
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may suffice to hint at the questionable quality of the e~t imator .~  Annaert et al. 
[2] investigated the reliability of the H a  estimator. Based on Monte Carlo 
simulation, they find that the Hill estimator retrieves the heavy-tailed charac- 
teristic or tail parameter with sfl~cient exactness whenever the true underlying 
Pareto-stable distribution is in the realm of non-Gaussianity. However, the 
parameter space in the simulation of [2] was very limited in that j3 and p were 
set to 0, and y was restricted to 0.01. On the other hand, we conducted 
a Werent Monte Carlo simulation with a more flexible parameter space. As 
a resuIt, we cannot confirm their support for the Hill estimator. Instead, our 
findings cast serious doubt on the Hill estimator's reliability because it sys- 
tematically overestimates the tail parameter. Even for fairly low u; we find that 
the estimator trespasses the border-line value 2 with a high probability. 

As just mentioned, a problem arises with respect to the determination of 
the proper threshold index r indicating the beginning of the Pareto tail of the . 

underlying cdf when computing the Hill estimator. As r increases, a, gradually 
descends to cross the conditional value of the estimated a-stable parameter. 
Beyond certain values of r, a= falIs to approach the value of 1. The Hill 
estimator estimates the a-stable characteristic parameter correctly, in some 
instances, at tail lengths of between 10% and 15%. But no common threshold 
value can be determined for all the stocks analyzed in this study.7 

With this ambiguity existing as to where the tail of the underlying sample 
distribution begins, Lux [21] still rejects the hypothesis of tails stemming from 
an a-stable distribution for German blue chip stocks as a result of Hill es- 
timation based on varying tail lengths of 2.5%, 5%, lo%, and 15%. Covering 
an earlier period, Akgiray et a1. [l] performed a test for the tail indices of the 
most liquid German stocks based on maximum likelihood estimation of the 
generalized Pareto distribution, 1 -(1 +yxw-')l/Y, rather than the Hill estima- 
tor. They also rejected the a-stable hypothesis for the tails even though they 
cannot deny the overall good fit this class of distributions provides, and suggest 
a universal 10% tail area optimal. 

Results of the Hill estimation of the tail index for our sample stocks are 
reported in Table 2 with standard errors and 95% confidence bounds, respec- 
tively. The instability of the estimator for varying tail lengths becomes striking- 
ly obvious. The plots (not displayed here) reveal that the tail corresponds to the 
characteristic stable parameter for tail sizes roughly within 10% and 15%. As 
can be seen by the lower bounds, when the respective tail lengths represent the 
extreme 15% of the returns, in 31 out of 35 cases, we cannot reject a stable 
distribution at the 95% confidence level. Still, we find that the Hill estimator is 
inappropriate to serve as a reliable estimator for the tail index. 

Admittedly, there have been attempts to find methodologies for assessing the appropriate 
tail sizes. See, for example, 1221. 

Problems of this sort are also mentioned in [32]. 
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TABLE 2. Hill estimates of log-returns (with over 2,000 observations). Standard errors and 95% 
confidence bounds in parentheses, respectively 

e ~ i l l  

2.5 % 

4.7388 
-0.9842 

(2.9513; 6.5262) 
3.6164 

-0.3854 
(2.8774; 4.3554) 

2.9701 
-0.3165 

(2.3632; 3.5770) 
3.8560 

- 0.5448 
(2.8276; 4.8845) 

3.4210 
- 0.4274 

(2.6079; 4.2341) 
3.2290 

-0.4862 
(2.3155; 4.1425) 

3.6056 
-0.4470 

(2.7549; 4.4564) 
3.3505 

-0.3571 
(2.6659; 4.0351) 

3.5725 
-0.4299 

(2.7530; 4.3920) 
3.2762 

-0.3491 
(2.6067; 3.9456) 

3.3556 
-0.3576 

(2.6699; 4.0413) 
3.4590 

-0.3915 
(2.7103; 4.2077) 

3.6715 
-0.3913 

(2.9212; 4.4217) 
3.1270 

-0.3763 
(2.4097; 3.8444) 

2.2613 
-0.3871 

(1.5423; 2.9802) 

WKN 

500340 

515100 

519000 

543900 

550000 

550700 

551200 

575200 

575800 

593700 

(334843 

627500 

648300 

656000 

660200 

h i l l  

10% 

2.4965 
- 0.2447 

(2.257; 2.9673) 
2.5888 

-0.1353 
(2.3250; 2.8526) 

2.5960 
-0.1077 

(1.8498; 2.2695) 
2.5170 

-0.1720 
(2.1829; 2.8511) 

2.4401 
-0.1490 

(2.1501; 2.7300) 
2.1401 

-0.1557 
(1.8382; 2.4420) 

2.2767 
-0.1378 

(2.85; 2.5448) 
2.5713 

- 0.1344 
(2.3093; 2.8333) 

2.2923 
-0.1348 

(2.298; 2.5548) 
2.4859 

-0.1299 
(2.2326; 2.7392) 

2.1875 
-0.1143 

(1.9647; 2.4104) 
2.4141 

-0.1335 
(2.1540; 2.6742) 

2.3913 
-0.1250 

(2.1477; 2.6350) 
2.3120 

-0.1362 
(2.0468; 2.5772) 

1.8110 
- 0.1474 

(1.5259; 2.0961) 

~ H I U  

15% 

1.8616 
-0.1481 

(1.5749; 2.1483) 
2.2716 

- 0.0968 
(2826; 2.4606) -- - - = 1.8129 
' -0.0772 
(1.6620; 1.9637) 

2.1379 
-0.1190 

(1.9062; 2.3697) 
2.8910 

-0.1039 
(1.8864; 2.2918) 

1.8320 
- 0.1085 

(1.6208; 2.0433) 
1.8241 

-0.0899 
(1.6488; 1.9994) 

2.1572 
-0.0919 

(1.9777; 2.3367) 
2.1258 

-0.1018 
(1.9272; 2.3244) 

2.1192 
- 0.0903 

(1.9429; 2.2955) 
1.8024 

- 0.0768 
(1.6524; 1.9524) 

1.9455 
- 0.0876 

(1.7745; 2.1166) 
1.8024 

-0.0768 
(1.6525; 1.9524) 

2.061 1 
-0.0988 

(1.8683; 2.2539) 
1.6200 

-0.1070 
(1,4120; 1.8280) 

bll 

5% 

3.3593 
- 0,4746 

(2.4633; 4.2552) 
3.2018 

-0.2380 
(2.7404; 3.6632) 

2.7820 
-0.2068 

(2.381 1; 3.1829) 
3.7595 

-0.3668 
(3.538; 4.4653) 

2.9580 
-0.2574 

(2.4609; 3.4552) 
2.9854 

-0.3112 
(2.3882; 3.5826) 

2.8059 
- 0.2424 

(2.3377; 3.2740) 
3.1801 

- 0.2364 
(2.7219; 3.6384) 

2.8145 
- 0.23 62 

(2.3579; 3.2710) 
2.9345 

-0.2181 
(2.5116; 3.3573) 

2.9855 
-0.2219 

(2.5553; 3.4158) 
3.8200 

-0.2429 
(2.6117; 3.5522) 

2.7990 
-0.2080 

(2.3957; 3.2024) 
2.6687 

-0.2239 
(2.2358; 3.1016) 

2.1767 
-0.2547 

(1.6905; 2.6629) 
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Table 2 ctd. 
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4 PARAMETRIC ESTIIMATION CONI3ITIONAL ON THE a-STABLE DISTRIBUTION 

So far, we have rejected the hypothesis of Gaussian returns. Additionally, 
we concluded that the Hill estimator does not sufiice to determine the tail 
index. Hence the hypothesis of Pareto-type tails in the realm of a-stability 
could not be rejected. Now, conditional on the assumption that the a-stable 
distribution is correct, we set about to estimate the four stable parameters 
based on three different techniques: maximum likelihood estimation (MLE), 
quantile estimation, and characteristic function based estimation. All estima- 
tion results can be found in Table 3. 

WKN 

823210 

823212 

840400 

843002 

4.1. Maximam likelihood estimation. In the following, parameter estimates 
are obtained conditional on the a-stable distribution function. For conducting 
MLE of the parameters with the likelihood f (x I a, y ,  /?, pl), two methods have 
been suggested. The first method, suggested by [29Iy8 minimizes the infor- 
mation matrix which is known to be the negative inverse of the Hessian matrix 
of the likelihood function. This is done by some numerically efficient gradient 
search. The second method is based on a computationally efficient Fast Fourier 
Transformation (FFT) introduced by Mittnik et al. 1251. We will refef to the 
first and second methods as the Nolan method and FFT method, respectively. 

The FORTRAN program code of the Nolan method used in this study is 
incorporated in an executable program offered on Nolan's internet web page. 
Applying some constraints concerning the boundaries, etc., values obtained for 
a for our sample of stocks are between 1.4605 and 1.9117. The values of fl  are 
s i d c a n t l y  different from no skewness, i.e. f l =  0, with a majority indicating 

B ~ i l l  

5 % 

3.2903 
-0.3041 

(2.7040; 3.8766) 
3.6152 

- 0.4703 
(2.7225; 4.5079) 

2.7247 
- 0.2025 

(2.3321; 3.1173) 
3.1357 

-0.3720 
(2.4260; 3.8454) 

The reader can find a vast resource of a-stable MLE on Nolan's web site at American 
University including his executable program codes. 

4 1 1 1 1  

2.5% 

4.5295 
-0.6048 

(3.3834; 5.6756) 
4.6111 

-0.8848 
(2.5'879; 6.2343) 

2.8750 
-0.3064 

(2.2875; 3.4625) 
3.9076 

-0.6789 
(2.6485; 5.1667) 

a ~ i l l  

15% 

1.9243 
-0.1016 

(1.7264; 2.1223) 
2.3372 

-0.1709 
(2,0057; 2.6686) 

2.0676 
-0.0881 - 

- -  (1.8955; 2.2396) 
2.2079 

-0,1478 
(1.9207; 2.4951) 

& ~ l l l  

10% 

2.5392 
-0.1646 

(2.2193; 2.8591) 
2.6067 

-0.2350 
(2.1534; 3.0601) 

2.4309 
-0.1271 

(2.1832; 2.6786) 
2.6Q67 

-0.2150 
(2.1910; 3.0225) 
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slight positive skewne~s.~ The FFT methodio applies an FFT approximation 
of the pdf to conduct the computation of the likelihood. The benefit of the FFT 
method is the reduction in computation time.'' The estimates for a correspon- 
ded to those obtained from the Nolan method, ranging from 1.4461 7 to 1.8168. 
For the FFT method, too, the values for P generally suggest skewness for most 
stocks. 

The minimum value obtained for a! was identical for both the Nolan and 
FFT methods. It was also found for the same stock. This is in contrast to the 
maxima which were, additionally, obtained for different stocks. Interestingly, 
though; the' maximum value estimated by the Nolan method matched the 
a value 'estimated for that very same stock by the FFT method. 

4.2. Qaantile estimation. While Fama and Roll [8] provided the foun- 
dation for the quantile estimator, it was McCulloch [24] who modified the 
estimator, providing estimation of parameters for skewed a-stable pdf's. The 
estimator matches sample quantiles and theoretical quantiles tabulated for 
different values of the parameter tuple. 

The values for oc for our sample of stocks range from 1.3975 to 1.8019. It is 
somewhat striking that the values seem to be slightly lower than those obtained 
from the MLE using both the Nolan and FFT rnethods.I3 

4.3. Characteristic function based estimation. The last of the three estima- 
tors we used in this study is the characteristic function based estimator. Its 
existence is not surprising since the theoretical characteristic functions of the 
a-stable distribution are known. Hence, one only needs to fit the sample char- 
acteristic function (SCF) and retrieve the parameters. Generally, this approach 
is based on [19]. Let the SCF be 

1 "  6 (0) = - C exp {iOj7J. 
*,=I 

Ordinary Least Squares (OLS) estimates for the stable parameters are obtained 
from the natural logarithm of equation (4). 

For further complications inherent in the program code as to the computational results, 
the reader is referred to the manual given by the program's author. 

lo Since estimates from the FFT method do not significantly deviate from the Nolan meth- 
od, they are not listed here. 

l1  The code in MATLAB was provided by Stoyan Stoyanov, FinAnalytica Inc. 
l2 The implementation of the McCulloch estimator in MATLAB was enabled through the 

translation of the original FORTRAN code by Stoyan Stoyanov, FinAnalytica Inc. 
l 3  This type of downward bias was found, for example, as a result of Monte Carlo studies by 

Blattberg and Gonedes [3] using the quantile estimator by Fama and Roll [8] and should be less 
likely when applying the estimator by McCulloch [24] due to the fact that it is a consistent 
estimator. 
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The problem with the numerical method as proposed by Koutrouvelis 
[19] is that the frequencies B,, most suitable for the respective regression, must 
be looked up in tables indexed by sample size and initial parameter estimates. 
This leads to a large computational effort. Kogon and Williams [IS] remedied 
this shortcoming by using a common, finite interval for the 8, with fixed grid 
size for all parameters and samples. This procedure, called the Fixed-Interval 
(FI) estimator, results in a substantial computational improvement. They sug- 
gested that the best interval would be L0.1, 11 with up to 50 equally spaced grid 
points. While with respect to precision the FI estimator is slightly inferior to 
the original-one by [19]-for some parameter tuples, this is more than offset by 
its speed. 

For the characteristic function based estimator, an implementation in 
MATLAB of the FI estimator has been used.14 The fixed interval was set as 
suggested by [I81 with 10 scalar frequency points and step size 0.1. Estimation 
results are reported in Table 3. The values obtained for a for the stocks in our 
sample are between 1.5377 and 1.8828. Values for JBl > 0.1 can be observed in 
two cases. The majority of the values indicates slight positive skewness. Com- 
putation time was significantly reduced compared to the previous alternatives. 

It is evident from all estimation results that the parameters indicate non- 
Gaussian distribution~ of the returns, i.e. values cl are well below 2. Results are 
reasonably close throughout the different methods despite theoretical descrepan- 
cies of the three estimators. 

5. MODELING THE RETURNS AS GARCH 

Our Iast set of empirical results, and possibly the most interesting, are 
those obtained from an analysis of the autoregressive moving average (ARMA) 
innovations with respect to generalized autoregressive conditional heteroscedas- 
ticity (GARCH). The ARMA-GARCH model used in this study is 

where E~ 1 5, N (0, ht), and 5, is the filtration at time t. Empirically, it has been 
observed in [4] that a simple GARCH(1,l) performs at least as well as 
a long-lagged ARCH(8) process. An attribute of the special GARCH(1,l) 
process for modeling financial data series is its capability to capture leptokur- 
tosis. While the results from fitting the returns series to ARMA structures 

l4 This has been implemented by Stoyan Stoyanov, FinAnalytica Inc. 
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are not displayed here,15 in most cases the preferred mode1 was an MA(1). In 
some cases, the AR(1) model was found to provide the best fit. The selection 
criterion considered first-differencing appropriate for one stock, only, but in 
that instance it was found that the suggested model was not invertible. Con- 
sequently, we imposed a no-first-differencing restriction and obtained an MA(1) 
model with similar value for the selection criterion. In all cases, diagnostic and 
significance checks suggested that the returns are best modeled as whte noise. 

Francq and Zakoian [lo] prove that under quite general conditions for 
pure GARCH as well as ARMA-GARCH Quasi-MLE such as Berndt, Hall, 
Hall, and Nausmarm (BHHH) produces asymptotically normal estimators 
when innovations satisfy second moment conditions. In the case of infinite 
variance processes such as a-stable innovations, convergence occurs even faster. 

For a valuable and exhaustive account of various sorts of ARCH proces- 
ses and their respective estimation methods, the reader is strongly advised to 
consult [6]. 

An interesting generalization of GARCH processes, the R-GARCH(r,p,q), 
is presented in [30]. It  incorporates an additional component into the dy- 
namics of the conditional variance, namely, the sum of r i.i.d. lagged positive 
random variables 9,- i. l6 For strictly cl-stable innovations gi totally skewed to 
the right, Nowicka-Zagrajek and Weron [30] show that the sum of the under- 
lying process is unconditionally symmetric stable. This is of particular impor- 
tance when considering aggregated returns. 

The introduction of a Student's t-distribution permitting skewness or, sim- 
ply, skew-t distribution, serves as a reasonable competitor to the a-stable dis- 
tribution in this context. The univariate pdf about mean or location zero, first 
introduced as a multivariate version in 1141, takes the following form accord- 
ing to Fernandez and Steel [9]: 

The parameter v indicates the degrees of freedom as with the t-distribution and 
the parameter y corresponds to skewness, with y = 1 indicating symmetry. Any 
other value for y indicates skewness of some degree. The parameter zZ is inter- 
preted as precision. It is inversely proportional to the scaling parameter a2, 
which, in turn, is a real multiple of the variance if it exists. In applications 

l5 Results are available upon request. 
l6 The process is assumed to, conditionally, follow a Gaussian law with variance governed 

by the GARCH structure. 
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in the literature, z is very often set equal to 1.17 Equation (5) reduces to the 
regular Student's t pdf when P = 0, I = 1, and t = l . ls 

The model we suggest is a GARCH(1,l) structure of the generalized form 

where we know S = 2 from the original set-up with Gaussian innovations. In 
the Gaussian case, c, = h y 2 .  This is impossible, however, if the distribution 
under consideration does not have finite moments of order greater than 6 for 
some S < 2. Since first absolute moments exist for the theoretical distributions 
fitted to the 1og-r-return s-eries as well as innovations, 6 = 1 is chosen as in 
[32]. l 9  The GARCH(1,l) structure is parsimonious regarding a parameter use 
and still enjoys popularity for its great flexibility in financial appIications as 
noted for example by Nelson [28] and several of his later articIes. 

In our paper, the skew-t and a-stable distributions were tested against 
each other as alternative distributions for the ARMA residuals (E,), virtually 
being the log-returns in many cases. In fact, the normal distribution was 
also analyzed; however, since it performed poorly, we did not consider it any 
further. 

Depending on the distribution, the notation St,bGARCH(r,s) and 
tt,, GARCH(r,s) can be used to indicate a-stable or skew-t innovations, respec- 
tively. Preference is based on the maximized logarithmic likelihoodz0 functions 
of the i.i.d. ( r , ) .  In the a-stable case, the likelihood equals 

which in contrast to the normal and skew-t distributions is known not to 
have an analytical solution. Consequently, it has to be approximated numeri- 
cally. 

For a numerical approximation of the a-stable likelihoods, MATLAB 
encoded numerical FFT approximations were performed. The skew-t likeli- 
hoods are analytically solvable.21 Results show that for some stocks, the 
skew-t and a-stable alternatives behave alike according to the log-likelihood 
values. 

l7 See, b r  example, [12]. 
la Alternative representations of the skew-t pdf can be found, for example, in 1163. 
l9 Mittnik and Padella [26] leave more room to play in the sense that S enters as a variable 

parameter for each distribution, respectively. 
Conditioning starting values are set equal to their expected values. However, as argued in 

[2q, these values have little to no impact on the outcome of the estimation. 
Basic GARCH estimation programs in MATLAB provided by Kevin Sheppard from the 

University of California at San Diego were altered by us to allow for the a-stable distribution. 
The current internet location is http://www.kevinsheppard.com/research/ucsd~g~ch/u~d~garch. 
aspx. 
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The fit was also compared using the Anderson-Darling (AD) good- 
ness-of-fit test, 

AD = sup IF, (4 - P (x)l 
XER Jf l  (XI (1 - P (XI) ' 

where f (.) denotes the estimated parametric pdf, FB5(.] is the empirical sample 
pdf computed as 

and I ( - )  is the indicator function. 
The AD-statistic is well suited for detecting poorness of fit, particularly in 

the tails of the cdf. As can be seen in Table 4, the a-stable distribution outper- 
forms the skew-t alternative in most  instance^.^' Even though we tested lag 
structures of up to (s = 5, s = 5),23 our preference was with a lag structure of 
(1,l) justifying the GARCH(1,l) model for the reasons commonly cited in the 
literature. 

6. CONCLUSION 

All of the tests performed in this study reject the Gaussian hypothesis for 
the logarithmic returns of the German blue chip stocks we analyzed. The 
nonparametric estimation results indicate that the rejection of the stable hypo- 
thesis by other researchers is not based on a reliable empirical test. The mod- 
eling of returns using a-stable distributions we report seems promising in spite 
of the lack of an analytic form of the probability distribution function. This is 
due to the tight fit of the approximated a-stable cdf to the empirical cdf com- 
bined with dependable estimation of the stable parameters. 

- As a negative aspect mentioned by several researchers, for example Lux 
1211, the a-stable alternative sometimes slightly overemphasizes the mass in the 
extreme parts of the tails compared to finite empirical data vectors. This is in 
'contrast to our findings. We discovered that the tail shape of the a-stable class 
is extremely suitable for the returns we considered, particularly in the context 
of GARCH modeling. The alternatives in our study provided by the normal 
and skew-t distributions could not systematicalIy outperform the u-stable dis- 

22 Analyzing foreign exchange data of U.S. dollar versus several important international 
currencies, Mittnik and Paolella [26l found comparable results. But one has to keep in mind that 
their counterpart distribution is the Student's t-distribution with less flexibility than the skew-t 
distribution we use in this study. So, our results might be considered even more striking in this 
context. 

23 Tabulated results of lags up to five are available upon request. 
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tribution. Instead, they produced equivalent results at best. Particularly, with 
respect to fitting the empirical tails, they performed poorly. 

Theoretically, using the or-stable distribution is reasonable because it is the 
distributional limit of a series of standardized random variables in the domain 
of attraction. Thus, the a-stable class is a natural candidate for modeling the 
return distribution. Practically, when protecting portfolios against extreme los- 
ses, it becomes particularly important to assess the extreme parts of the lower 
tails adequately. Hence the stable Paretian distribution ought to be favored 
due to its very good overaIl fit of the distribution function in addition to the 
superior tail fit.' -- - 
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