PROBABILITY AND MATHEMATICAL STATISTICS Vol. 26, Fasc. 1 (2006), pp. 23–39

MONOTONICITY AND NON-MONOTONICITY OF DOMAINS OF STOCHASTIC INTEGRAL OPERATORS

Ken-Iti Sato

Abstract: A Lévy process on \mathbb{R}^d with distribution μ at time 1 is denoted by $X^{(\mu)} = \{X_t^{(\mu)}\}$. If the improper stochastic integral $\int_0^{\infty-} f(s) dX_s^{(\mu)}$ of f with respect to $X^{(\mu)}$ is definable, its distribution is denoted by $\Phi_f(\mu)$. The class of all infinitely divisible distributions μ on \mathbb{R}^d such that $\Phi_f(\mu)$ is definable is denoted by $\mathcal{D}(\Phi_f)$. The class $\mathcal{D}(\Phi_f)$, its two extensions $\mathcal{D}_c(\Phi_f)$ and $\mathcal{D}_{es}(\Phi_f)$ (compensated and essential), and its restriction $\mathcal{D}^0(\Phi_f)$ (absolutely definable) are studied. It is shown that $\mathcal{D}_{es}(\Phi_f)$ is monotonic with respect to f, which means that $|f_2| \leq |f_1|$ implies $\mathcal{D}_{es}(\Phi_{f_1}) \subset \mathcal{D}(\Phi_{f_2})$. Further, $\mathcal{D}^0(\Phi_f)$ is monotonic with respect to f. Furthermore, there exist μ , f_1 and f_2 such that $0 \leq f_2 \leq f_1$, $\mu \in \mathcal{D}(\Phi_{f_1})$, and $\mu \notin \mathcal{D}(\Phi_{f_2})$. An explicit example for this is related to some properties of a class of martingale Lévy processes.

2000 AMS Mathematics Subject Classification: 60E07, 60G51, 60H05.

Key words and phrases: Improper stochastic integral, infinitely divisible distribution, Lévy process, martingale Lévy process, monotonic.

THE FULL TEXT IS AVAILABLE HERE