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Abstract. The purpose of the paper is to provide precise esti- 
mates for the Green function corresponding to the operator7(l- A P 2 ,  
0 < < 2. The potential theory of this operator is based on Bessel 
potentials J ,  = (I-A)-"/'.  In probabilistic terns it corresponds to 
a subprobabilistic process obtaincd from thc so-called relativistic 
a-stable process. We are interested in the theory of the killed process 
when exiting a &xed half-space. The crucial r6le in our research is 
played by (recently found) an explicit form of the Green junction of 
a half-space. We also examine properties of some exponential func- 
tional~ corresponding to the opcrator (I- AYl2. 

ZOO0 Mathematics Subject Classification: Primary 60J65; Sec- 
ondary 60J60. 

Key words and phases: Bessel potentials, Riesz kernels, relativis- 
tic process, stable process, Poisson kernel, Green function, half-spaces. 

1. INTRODUCTION 

As E. M. Stein remarked in his monograph [lo], fractional Sobolev spaces 
and potential spaces are among the most important Banach spaces of functions 
to analyze various problems from analysis and potential theory. 

While fractional Sobolev spaces are defined in terms of Riesz potentials 
I, = ( -A)-*/ ' ,  potential spaces employ Bessel potentials J ,  = (1- 

It is remarkable that both these objects are closely related to the potential 
theory of specific LCvy processes: in the first case it is the d-dimensional sym- 
metric (rotation invariant) u-stable LCvy process; in the latter case we have to 
deal with the so-called &-stable relativistic LCvy process. More specifically, the 
operator -(- A)"I2 is the infinitesimal generator of the symmetric a-stable LCvy 
process and I, is its (formal) inverse. For the Bessel potential J ,  the situation is 
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more complicated: the operator - ( I -  A)ai2 is the generator for a subproba- 
bilistic process with the potential J,.  More precisely, the operator I - ( I  - A)"/2 
is the generator of the relativistic (or-stable) process and, in probabilistic terms, 
J ,  is its I-potential. 

Potential theory based on Riesz kernels (or, equivalently: potential theory 
for a-stable rotation invariant LBvy process) is well developed and rich in 
explicit formulas, much like in the classical case of Brownian motion process. 
The homogeneity of Riesz kernels yields many elegant-and transparent for- 
mulas for harmonic measure and Green function for such basic sets as balls 
and half-spaces in Rd (see e.g. [I]). These formulas played an important r81e in 
setting up the so-called boundary potential theory of the operator - (- A)"]' and 
the Schrodinger operator based on it (see e.g. [2] and 131). 

In contrast to this situation, up to now there were no explicit formulas 
known either for harmonic measure or for Green function for the relativistic 
process for sets such as half-planes or balls. Nevertheless, an adequate bound- 
ary potential theory for bounded smooth sets was set up by Rymar [9]. 

In the recent paper [5] explicit formulas for harmonic measure and Green 
function for half-spaces for the operator - ( I -  A)"I2 are given. The purpose of 
the present paper is to extend results obtained in [4] for the operator 
-(- A)"I2 to the case of the operator - ( I -  A)"I2. The basic tool employed in 
this paper consists of the formula for the Green function. Section 3 contains 
very precise estimates for this function. In the next section we examine an 
exponential functional u; (x, b). The decisive r61e is played again by the Green 
function. The paper ends with some examples where the critical value bo for 
u,l (x, b) is evaluated for various potentials q. 

2. PRELIMINARIES 

We present here some basic material regarding the a-stable relativistic 
processes. For more detailed informations the reader is referred to [9] and [6] .  

We first introduce an appropriate class of subordinating processes. By 
q ( t )  we denote the strictly 8-stable positive standard subordinator with the 
Laplace transform 

Let BB (t, u), u > 0, denote the density function of Tg(t). Next, if 3, is the sym- 
metric Brownian motion in Rd with characteristic function of the form 

then the process BT,(,, is the standard symmetric a-stable process, under the 
usual assumption that the processes 5 ( t)  and B(t )  are stochastically indepen- 
dent. 
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Now, for m > 0 and t > 0 define a probability density function 

Applying ( 1 )  we derive the Laplace transform of Bg(t, U ,  m): 

(3) E0 exp ( - Aq (t  , u, m))) = em' exp ( - t (1 + rnl/@)fi). 

We define the a-stable relativistic density (with parameter m) by the fol- 
lowing formula: 

where g,(x) is-the Brownian semigroup, defined by (2). 
Let K,, Y ER, be the Macdonald function with index v, called also the 

naodi$ed Bessel function of the second kind, which is gven by the following 
formula: 

m 

K ,  (r )  = 2-I -' rv e-' enp (-2) nl-' da,  r > 0.  
0 

For properties of K ,  we refer the reader to [8]. In the sequel we will use the 
asymptotic behaviour of K, : 

r ( v ) ( r ) - v ,  r - + o i ,  v z ~ ,  Kv (r) E - 
2 Z 

(6)  KO (r) E -log r, r -+Of ,  

where g (r) E f (r) means that the ratio of g and f tends to 1. For v < 0 we have 
K, (r) = K -, (r), which determines the asymptotic behaviour for negative in- 
dices. 

A particular case of an a-stable relativistic density when cl = 1 is called the 
relativistic Cauchy semigroup on Rd with parameter m. The following formula 
exhibits the explicit form of this density: 

LEMMA 2.1 (relativistic Cauchy semigroup). The density py of the relativis- 
tic Cauchy process is of the form: 

&" (x) = 2 ( m / 2 ~ ) ( ~  + '-)I2te"' K(d+ l),2 (m(1xI2 + t2)ll2) 
(1-42 + t2 ) (d+ l)/4 ' 

The Fourier transform of the transition density (4) is of the following 
form: 
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LEMMA 2.2 (Fourier transform of pj"). The  Fourier transform of or-stuble 
relativistic density p y  is of the form: 

A 

p; (z) = emt exp (- t (lzlZ + m2/a)*/2).  

Using the Fourier transform we obtain the following scaling property: 

py (x) = mdIa pAt (m1J" x) . 
In terms of one-dimensional distributions of the relativistic process (starting 
from the point 0) we obtain - 

where Xy denotes the relativistic E-stable process with parameter m, and "f" 
means equality of distributions. 

In what follows we put p,l (XI = p, (x) (i,e. for rn = 1). By U," (x) we denote 
the R-potential of pT(x), that is, 

Again we denote by Un(x) the R-potential in the case m = 1. 

LEMMA 2.3 (m-potential for relativistic process with parameter m). We have 

where 

We also recall the form of the density function v ( x )  of the LCvy measure 
and the infinitesimal generator of the relativistic a-stable process (see, e.g., [9 ] ) :  

LEMMA 2.4 (LBvy measure and generator of relativistic process). The den- 
sity v of the LCuy measure of the relativistic process with parameter m is of the 
form: 

while the generator is given by the formula 

We now state two results from the paper [ 5 ] .  In what foIIows we put 
H,  = {x E Rd; xd < b), and 5 (xf denotes the distance from the point x E Hb to 
the boundary of the set H,.  The first result provides the formula for the density 
function of m-harmonic measure for the set fib for the a-stable relativistic 
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process with parameter m: 

The second formula is of a prime importance here; it provides the m-Green 
function for the set Hb for the relativistic process with parameter m. The 
rn-Green function can be defined as the density function of the m-potential (or 
m-resolvent) for the process killed when leaving the set H,. We have 

In the sequel we aIways take m = 1; results for the general case can be easily 
obtained taking into account the appropriate form of the scaling property (8). 
Hence in the notation we drop the parameter rn = 1: for example, GBb(x ,  y) 
denotes Gk, (x, y). 

Throughout the paper, by c, C we denote nonnegative constants which 
may depend on other constant parameters only. The value of c or C may 
change from line to line in a chain of estimates. 

The notion p(u) % q (u), u E A, means that the ratio p (u)/q (u), u E A, is 
bounded from below and above by positive constants which may depend on 
other constant parameters only. 

3. GREEN FUNCTION OF - (1 -A)"" FOR H ,  

In the one-dimensional case we have 

and the formula (9) becomes 

An equivalent and very useful version of the above formuIa reads as follows: 

In the general d-dimensional case apart from (9) we have the following equiva- 

11 - PAMS 26.1 
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lent formula for the Green function of the set H,: 

If we substitute (Ix- yI2 + s)l12 = + l x  - yl ,  then 

where 

In order to provide estimates for the Green function in the case a < d we 
consider the following integral for a, b > 0: 

b Ua/2 - 1 (2a + u)"I2 
b) = J KdI2 (a + v)  dv. ,, (a+ v ) ~ / ~ -  

To get estimates in the case a 2 1 = d it is convenient to use another integral 
depending on a, b > 0: 

b g - 2 0  a j 2 - 1  v 
L ( a ,  b) = 1 dv.  ( ~ + a ) ' - ~ ~ ~  

Note that 
? l - a  

and 

in the one-dimensional case. Thus to obtain estimates for the Green function it 
is enough to find estimates for the integrals I and L, which is carried out in the 
following lemma. 

LEMMA 3.1. If a < d ,  then 

If a = 1 = d, then 
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If o l >  d = 1, then 

(15) L(a,  b) w aa12-'(b A lp12, b G u  or l < a < b ,  

(1 6) L(a,  b) w (a v l)ai2 ( b  A 1)a-I , a < l < b  or a d b g l .  

Proof. We begin with estimating I: 

= I(a, bh l )+R(a ,  b),  

where 

We will later show that R(a ,  b) is at most of the same order as I ( a ,  b A 1). 
Namely, there is a constant C such that 

Hence I (a ,  b) x I (a,  b A 1 )  and it is enough to consider the case b < 1. Note 
that 

b / ~  

x au-d/2 J vaI2- (I + v)('-~)/' K~~~ (a (I + v)) do.  
0 

First assume that a < 1 and b < 1. From (5) we have Kdj2(v)  x v - d i z ,  

0 < v < 1. Thus 

Next we consider b < 1 6 a. Then by (7) we have 
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and hence 

Now, if o: < d, taking into account that I ( a ,  b) = 1 (a, b A 1) and applying the 
estimates for the Macdonald function K, (see (5) and (7)) we can write a unified 

- 
estimate 

which is (12). To end the case o: < d we need to establish (17). We have 

which proves (17). 
Now we deal with the situation u 2 d = 1. Consider first the case when 

b < a :  

This shows that 

L (a, b) NN aK/2-1 (b A 1)"12, 

which proves (13) and (15) for b d a. 
Next, we consider the case when b 2 a > 1: 

This obviously shows that 

which proves (13) and (15) for 1 < a d b. 
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Now, what remains is the case when b 2 a but a < 1. Suppose that or > 1 
and b 2- 1. Then, taking into account that a < I, we have 

This shows that in this case 

Assuming next that a = 1 and a < 1 4 b we obtain 

Next we have 
1 e - 2 u  Ija e-2ua 

d u =  j 2 
u112 (v+a)u2 

du w log -. 
ullz (u + 1)lI2 a 

Thus (19) and (20) give (16) and (141, respectively, for a 6 1 d b: 
The last case to examine is a < b < 1. Then 

Hence in this case 
bja U ~ j 2 -  1 

du = du / (u+ 1)l-d' 

This completes the proof of the last case and ends the proof of the lemma. rs 

Lemma 3.1 together with the observation that 

gives immediately the following estimates for the Green functions. 

THEOREM 3.2. Assume that d = 1 and ct 2 I. m e n  Ix - yl B 1 A S  (x) A 6 fy) 
we obtain 
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while for Ix- y) < 1 A 6 (x) A S ( y )  we get 

In the remaining case, cl < d, we have 

[(a c,, A 8 ( Y )  A l).i2 A 
= U I ( ~ , Y )  Ix-ylA1 

For 0 < ol < 1 = d we may write a more explicit form of (21):  

Another very useful estimate for the Green function is obtained from the 
"sweeping out" principle. As a result, we obtain 

Applying the estimates for the Macdonald function K ,  (see (9-04)) we obtain 

COROLLARY 3.3. We have the fo1Iowing estimates: 

N 
N A 

1~-,,j1/2 
for a < d  < a f l ,  

z v for a + l  < d ,  

1 2 
G., (x, y) 4 ;KO (lx- yl) = e for ol = 1 = d ,  
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for a > l = d .  

4. EXPONENTIAL WNCTIONALS CORRESPONDING TO -(I-A)',' 

- 
We now consider some exponential functionals for the operator - ( I -  A)"/'. 
The typical assumption on potentials q defining the exponential factor in 

the Feynrnan-Kac theory is that it belongs to the Kato class f &  determined 
by the operator -(I - A)"/'. It is, in fact, defined in terms of the potential Ul as 
follows: 

DEFINITION 4.1. We say that a Borel function q on W~ belongs to the Kato 
class y", 

we write q ~ f T ~ ~ ~  if for every bounded Borel set B we have l , q ~ f l "  ,. 

LEMMA 4.2 (properties of the class 33). (i) We haue Lm (Rd) G $5 If 
f €La(@ and q ~ $ ; ,  then f q ~ y t .  

(ii) If q ~ $ t ,  then 

Hence, iJ" q~$:,,,, then q ~ & ,  (Rd). 

Remark  1. Since the local behaviour of the potential Ul is identical with 
that of potentials K, (or compensated potentials, if d = 1 d a) in the case of the 
standard symmetric (rotation invariant) stable processes (see, e.g., [4]), the 
Kato class defined in terms of the potential U, coincides with the correspon- 
ding one for the symmetric (i.e. rotation invariant) stable process. 

THEOREM 4.3. Assume that q~ yl and 

Then Gx, Iql (x) < a. If d = 1 and q  2 0, then the condition (23) is also neces- 
sary. If q E$? and q E L1(Rd), then Gx, q (x) is a continuous function of x 
and 

lim sup GHblql(~) = 0. 
b + - a  x a d b  
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P r o  of. We prove the first part of the theorem. For a fixed y ,  0 < y < 1, we 
obtain 

We have here G,,(x, y) < Ul (lx-yl). This and the assumption q~f",ield 
that for a given e > 0 the supremum over XER' of the first term on the 
right-hand side of the above equality is less than E, whenever y iii small enough. 
On the other hand, if ]x-yl 2 y, then 

Therefore, the integrand in the second term is continuous in x, vanishes at 
b and is bounded by 

We now prove that if d = 1, q 3 0 and the condition (23) fails, then 
G(- ,,, q (x) = m . Assume that y < 2x - b = x -(b -x) < x. Then we have 
(b - x)/(x - y) < 1. Thus, we obtain 

Since obviously x-y < b-y, the last expression is not less than 

This proves that for d = 1 and q 2 0 the condition (23) is also necessary. 
If we assume that q~ Li (Rd), then we obtain 

sup Gw (q((x) < E f CeeY 
x n 6 b  

Y j Iq(y)l dy, 
y a i b  

where E and y are as before. This completes the proof. ia 

As explained in the Preliminaries we consider the operator - ( I -  4)"12 as 
the infinitesimal generator of the Feynman-Kac semigroup (T),,, based on 
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I - ( I  - A)"/' with the potential q = - 1. This semigroup acts according to the 
following formula: 

We thus define the exponential functional with respect to this semigroup as 
follows: 

t 

ei(t) = exp(Je- 'q(~,)du).  
0 

We define the exit time of H ,  as z,, = inf {t : X, $ R,}. We further define the 
fundamental expeclation related to the operator - (I -A)"j2  as u; (x, b) = 

Exe:  ( z ~ ~ ) .  In the remaining part of the paper we attempt to establish criteria 
under which the functional uk(x, 6)  is finite. 

Write 
I 

A(t) = Jepuq(X,)du. 
0 

We obtain 
A(t+s) = A(s)+epsA(t)oB,. 

Observe that for nonnegative potentials q this implies subadditivity of the 
functional A(t), so a version of Khasminskii's lemma follows (see, e.g., [7]). 

LEMMA 4.4 (Khasminskii's lemma). Suppose that q 2 0. Then for all n 

sup Ex LA ( T ~ ~ ) ~ ]  < n! sup Ex [ A  ( T ~ ~ ) ] ~ .  
x X 

sup Ex [A(zar,)] = r < 1 ,  
X 

then 
sup Ex [exp (A (T,,))] G l/(l- r) . 

X 

Our purpose is to evaluate for which x and b such that x, < b the func- 
tional u;(x, b) is finite. Under the usual convention that the supremum over 
empty set equals - oo we have the following 

LEMMA 4.5. DeJine for q E f :  

If q E L1 (Rd), then bo > - oo and for xd < b < bo we obtain 0 < u,l (x, b) < co. 

Proof.  The proof follows easily from Khasminskii's lemma and Theo- 
rem 4.3. E 

We call b, the critical value for the functional ec,l (x, b). 
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Below we present examples of potentials q and evaluate the critical value 
bo. In all examples potentials depend only on the last variable: q ( y )  := q (y,). 
This, in fact, reduces the computations to the one-dimensional case: 

Therefore, we consider first the one-dimensional case and transform the 
formula for the Green operator into a form more suitable for computation. We 
always assume that q E f",nLf (R1). 

LEMMA 4.6. Assume that q E fw L1 (W1). Then .for x < b we have 

Proof.  We follow the calculations provided in [4] for the stable case. 
After changing the order of integration we obtain for x =S b: 
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1 b - x  -"q(u-v+x)dv 
1 - a12 I d u .  

As a corollary, we provide a simpIe proof of the formula for Ex exp (- z,,). 

COROLLARY 4.7. We have 

1 -Ex exp (- r,,) = 1 -Ex" exp (- z(- ,,F,,) = 
r ( d 2 ,  6 (4) - 

(a/2) ' 

where by y we -denote the incomplete gamma function. 

Proof. Applying the formula (24) we easily see that 

Exexp(-z,,) = EXdexp(-z(-,,b,). 

Then, by the last formula from the proof of Lemma 4.6 we obtain 

l-Erdex~I-~(-,,b,) = G(-,.,,l~;l.-d) 

We now consider specific potentials q and evaluate sup,,,, GHb q (x). We 
begin with a particularly simple situation which occurs when q (y) = exp ( y,,). 
We then obtain 

EXAMPLE 4.8. Let q ( y )  = exp (yd). Then we have 
21 -a12 exp (x,) (b - xd)"j2 

G,, q (4 = 
(d2) 

Thus, $ 

then u,l (x, b) < cc for xd < b. For O: = 1 the critical value is bo = In (ne)/2. 

Proof.  Justifications of the above formulas follow easily from (26) and 
elementary calculus, and are omitted. H 

We now examine the case of the potential q (y) = exp (-y,). Note that this 
function is unbounded over the set (- co, b). Applying again the formula (26) 
we easily infer that for all x such that x, < b we have G,, q(x) = co. By Jen- 
sen's inequality and Theorem 4.3 we obtain u;(x, b) = co as well, for all 
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xd < b. Therefore, we consider the potential q ( y )  = exp ( -  yd) l(-c,c) ( y d )  with 
c > 0. 

We evaluate the critical value b, for this potential. 

EXAMPLE 4.9. Let q ( y )  = exp (- yd) I( (yd),  c > 0. We obtain for 
b >  -C 

Lr L: 

sup G,, q (x) = max G,, q (x) < 
x a Q b  - C < X I < C  ar (a/2) 

- Thus, if b is such that 

then u; ( x ,  b) < m for x, < b. 

Proof .  Observe that it is enough to restrict our attention to the 
one-dimensional case. 

We then notice that since G(- , , , ) (x ,  y) = 0 for y 2 b, we obtain 

whenever b < -c. We therefore assume throughout the remainder that 
b > -c .  We always assume that x d b. 

We consider first the case x < -c .  By the form of the Green operator we 
obtain 

We further obtain 
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where the last inequality follows from the fact that the previous expression is 
a nondecreasing function of x. Thus, we obtain 

- b  - b -  x  G -c. 

Direct calculations provide the value of the last quantity for (bj < c as follows: 

2 1 - a e c a - 1 r ( a / 2 ) - 2 y ( a ,  2 ( b + ~ ) ) ,  

where y is the incomplete gamma function, or 

whenever b 2 c.  We now consider the case when - c  < x < b < c. Then, inte- 
grating by parts, we obtain 

Next, we consider the case when -c  < x < c < b. We obtain 
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+ 2ex j e-2u 
[(u + c)*I2 - (U - c)ai2] du ~r ( 4 2 1 2  (U - X) - a/2  

The last integral is the same as in the previous case and i s  evaluated in the 
same way. Thus, in this case we obtain 

The remaining case is when c < x < b and in this case we have 

- - 2 8  e-2u 
S [(u + cyJ2 - (11 - c)aJ2] du 

ar (a/2)= ,(u - ~ ) ~ - ~ l ~  

Again, the last integral was already evaluated. This observation justifies our 
claim. m 
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