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Abstract. There are two main parts to the paper, both connected 
to Benford's Law. In the first, we present a generalization of the ave- 
raging theorem of Flehinger. In the second, we study the connection 
between multiplicative intinite divisibility and Benford's Law, ending 
with a variant of the Lindeberg-Feller theorem that describes a rather 
specific triangular array model leading to Benford behavior. 
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Benford's Law [I] is an empiricaI law asserting that the distribution of 
first digits in data drawn from a multiplicity of sources is approximately 
log,, (k+ 1)-log,, (k) for 1 < k < 9 or, more generally, that the empirically 
observed distribution of the base 10 mantissa is well approximated by the 
"Benford density" r ( y )  : = I/(ylog 10) for 1 < y < 10. (By the mantissa of x > 0 
to base 10 we mean the unique number y ~ [ l ,  10) with x = 10ny for some 
integer n.) 

It is a triviality to see that if there is such a mantissa law, then it must be 
independent of scale, and the Benford density is the only possibility. What is not 
so clear is how to formulate mathematical models of data that lead to Benford's 
Law. While independent sampling from a fked distribution rarely leads to Ben- 
fordian behavior, there are limiting processes that do give rise to limiting 
Benford behavior. We describe in this paper two dif5erent such situations. 

We give first a generalization of the averaging theorem of Flehinger [2]. 
We turn then to the connection between multiplicative infinite divisibility and 
the Benford Law, ending with a variant of the Lindeberg-Feller theorem that 
describes a rather specific triangular array model leading to Benford behavior. 
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2. NOTATION 

We work with a general base b > 1, though in all numerical examples, we 
take b = 10. Having fixed b > 1, let Log x : = logb x = log x/log b denote the 
logarithm to base b. It is convenient to let the mantissa man(x) of x > 0 take 
values in [I, b), rather than the commonly used mantissa range [l/b, 1). That 
is, man(x) is the unique number in [I, b)  such that x  = man(x) b" for some 
integer n = n(x) ,  called the exponent of x. The condition is equivalent, for 
x > 0, to Log x = Logman(x) + n, which is to say that if ( y ]  denotes the frat- 

- 
tional part of y, 

(1) Log man ( x )  = {Log x ) .  

The Benford density r on [I, b) is defined to be the probability density 

1 
r ( ~ ) : = ~ l ~ ~ , ~ ~ ( x ) ,  where a:=logb. 

It is easy to see that a random variable X with values in [I, b) has density r if 
and only if Y := LogX has a uniform density on [ O ,  1). 

Let dl denote the family of complex-valued functions 0 on R which have 
1 as a period in the usual (additive) sense: g (y + 1) = g ( y )  for all y E R, and 
which are Riemann integrable on [0, 11. Denote by I ( g )  the average value of 
g  over one period: I ( g )  : = 1; g ( y )  d y .  Let sB; denote the continuous functions in 
the class dl. 

For any fixed b  > 1, we may consider the group R+ + : = (0, co) under 
multiplication isomorphically mapped to the real line under addition via 
x -+ y = Log x. The Haar measure dx/(x log b) on R++ maps then to the Haar 
(i.e. Lebesgue) measure d y  on R. A fimction f on Rf  + will be said to be 
m-periodic (with b  > 1 as rn-period) in case 

(2) f ( b x ) =  f(x) for all XER". 

Let Ab denote the family of all complex valued f on Rf + satisfying (2), such 
that f is Riemann integrable on [I, b], and let A; denote the continuous 
functions in the class Ab. It is clear by m-periodicity that f E A+', implies that 
f is uniformly bounded over Rf +. It is also clear that f  E Afb if and only if 
g ( y ) : =  f(bY) is in dl. For f  €A,, let 

By a simple change of variable, if g ( y )  : = f  (by), then 
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3. SUMS OF INDEPENDENT RANDOM VARIABLES ON THE CIWCLE 

DEFINITION 3.1. P(R) denotes thc family of probability measures v on 
R which are not concentrated on a discrete arithmetic set of the form 
(a+2nn/m:  ~ E Z )  for some ~ E R ,  ~ € 2 .  

The important point is that v E 9 (R)  implies that the Fourier coefficients 
P (u) : = 1 eiuy v (dy) satisfy 

(4) l$(2nn)l<1 for n ~ Z , n # 0 .  

It has been known for a long time (at least since publishing [41by LStvy in 
1939) that sums of independent random variables on the circle (i.e. with ad- 
dition mod 1) -have very simple limiting behavior. The basic result (,&, for 
example, [5] for an elementary proof) on weak convergence of sums on the 
circle may be stated as follows. 

THEOREM 3.2. Let v E 9 (R), let XI, X,, . . . be i.i.d. with distribution v, and 
let S ,  : = XI + . . . + Xn. Then the distribution of St : = (S, )  = S,  mod 1 con- 
verges weakly on the circle to normalized Lebesgue measure. Consequently, for 
any g ~ d ' ~ ,  Eg(Sn)+I(g) as n-co. 

The following variant will be useful later in the paper. 

THEOREM 3.3. Let v, Xj and S ,  be as in the preceding theorem. For g E dl, 
let A denote the additive convolution operator Ag (y) : = Eg ( y  + XI). Then A is 
a positive linear map of dl into itself, A1 = 1,  and the iterates of A satisfy 

P r o  o f. We prove this first in the case g E di. It is easy to see that A maps 
df into itself (dominated convergence) and that I (A(g) )  = I (g)  by Fubini's 
theorem. Let $, (y) : = e2"imY for M E 2, SO that $,E dl. Then 

a! a! 

(6)  A$, ( y) = 1 $, (y + z )  v (dz) = 1 e2"ime + ") v (dz) = P (2n n) $, ( y )  . 
- w  -a! 

We may write g = I (g) +(g - I  @)) so that An g = I (g)+ An(g - I  (g)), as A maps 
constants to themselves. It suffices therefore to prove that for an arbitrary 
h E df with I (h)  = 0, An h + 0 uniformly as n + a. Now, h is continuous, and 
so (by Fejiir's theorem, for example) h can be approximated uniformly on R by 
a trigonometric polynomial of the form p = xy= -, uj e2"'jY with a ,  = 0. Given 
E > 0, choose such a q with Ilh-qllm < 42. In view of (6), 

which by (4) tends uniformly to 0 as n + co, say IIAn(h-q)l[, < 4 2  for n 2 no. 
But (IAn qllm < ~ / 2  for all n, so l[An hll, < E for n $ no. This completes the proof 
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in the case g ~ d f .  Given an arbitrary g E dl and c > 0, we may choose g, E di" 
with g1 < g < g2 and i ( g ,  - g l )  < E .  (To see this, first approximate g above and 
below by step functions on LO, 11.) In particular, Agl d Ag < Ag,, and as 
noted in the first sentence of the proof, 0 d I  ( A  (g ,  - g , ) )  < E.  As e 3 0 is arbi- 
trary, this clearly implies that Ag is Riemann integrable, and consequently 
Ag E dl. Similarly, An g, < An g < An g, and, for j = 1, 2, and An ( g j )  tends uni- 
formly to I (gj) ,  by the case just proved. Therefore, there exists no so large that 
llAngjllm < E for n > n o , j  = 1, 2. It follows that IIAng-I(g)ll ,  < 3~ for n 3 no. 
As E > 0 is arbitrary, this proves the general case. rn 

- 

4. A GENERALIZATION OF FLEIHNEER'S THEOREM 

DEF~NTION 4.1. Let P b ( R f  +) denote the family of probability measures 
p on R'+ such that p is not carried by a geometric sequence of the form {cbnl": 
n E 2) for any c > 0, m E Z.  

Given p E Pb (W +), its image under the map x + Log x : = logb x will be 
denoted by v. I t  is easy to see then that v satisfies Definition 3.1, so that 
V E P ( R ) .  The measure isomorphism thus established between ( R + + ,  p) and 
(R, v) and the particular Haar measures described above then allow us to read 
off the following result directly from Theorem 3.2. 

THEOREM 4.2. Fix b > 1. Let p~ 9, (Rf +) and let XI, X2, . . . be i.i.d. with 
distribution p. Then, for any f E A b ,  E f  (XI . . . X,) + ib ( f )  as n + a. 

Suppose ,u E Pb (R+ +) is the distribution of a strictly positive random var- 
iable W. We define then the multiplicative convoIution operator M on by 

The analogues of the arguments in the preceding section show that M is a posi- 
tive h e a r  map of A, into itself and of A', into itself, with M1 = I. With 
v defined as above, the operator M on Ab corresponds to the operator A on 
dl in the sense that, for f E M b  and g ( y )  : = f (by) so that g E d l ,  

From Theorem 3.3 we may read off the following multiplicative version under 
this measure isomorphism. 

THEOREM 4.3. Let f E Ab. Then M" f ( x )  + ib ( f )  ungormly in x as n + a. 

For f E At, m-periodicity and continuity of f show that min f and max f 
are achieved in the interval [I, b), and 
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COROLLARY 4.4. Let f  E A,, let f, : = f ,  and for n > 0 

Then f , ~ A f ,  for n 3 1 ,  a d  

lim min fn = lim max S, = I b ( f ) .  
n - r m  n-c m 

Proof.  Let y ( d x ) : =  I(o,l,(x)dx. Then f n ( x ) = M "  f(x). s 

TIEOREM 4.5. For f E Ah, define f, as in the preceding corolhry, so that 
frn~A!; for m 2 1. Let &Cj) :='f ('j) for integers j 2 1 .  For integers m ,  N > 0, 
de$fine 

I N  

Then for every integer rn 2 1 

lim sup J",(N) = max f, and lirn infL ( N )  = min f,. 
N - t  m N + c o  

In view of the preceding corollary, this shows 

(10) lim lim inf Tm ( N )  = lim lim sup f, (N) = Ib ( f ) .  
m + m  N+m m-cm ~ - r ~ a  

P r o  of. We prove the result first in the case f E df,. The function f being 
m-periodic with b as m-period, and uniformly continuous on [I, b), given 
E > 0, there exists 6 > 0 such that If ( t )  -f (t')l < E whenever It - t'l < 6 with 
t . t' 2 1. For any integer k, we have k E [bn,  bR+'), where n : = [log, k] 2 0. For 
k > b/6 so that logb k > 1 +log, ( l /6 ) ,  and therefore n = [log, k] > log, (1/6), we 
have, for k < x < k + l ,  

because Ix/bn- k/bnl $ l /bn < 6 and 1 < k/bn d x/bn < b. This being true for all 
sufficiently large k, it follows that 

and as E > 0 is arbitrary, we have 

limsup f ( x )  = limsup f (N). 
X'OD N-+ m 

The analogous result clearly holds for lim id .  This proves in particular that 
lim inf,,, & ((N) = liminf,,, f  (x) = min f ,  and the analogous equality for the 
lim sup. This establishes the case m = 0 of the assertion in the proposition. 
Assume, inductively, that the assertion holds for all integers m < M. As f 
is uniformly bounded, say (f ( < c, we have (f,l < c and (&I B c for all rn > 0. 



For any integer M > 0 and M- 1 < x 6 M, we may write 

Each of the last two terms is bounded in absolute value by c/(N-1), and by 
inductive hypothesis, supj- ,,, 1 f,-, (u) -flM- (j)l  tends to 0 as N 4 m. It 
follows that 

- 
sup IfM ( x )  - f ~  ( N ) /  0 as N -t 

N - i S x 4 M  

completing the inductive step. This proves the theorem in the case f E A;. The 
general case follows upon applying this case to f, EMC,, and noting that 
I b  (f 1 = 1, (fib . 

In the particular case where f (x) denotes the frequency of the first digit 
i in (0, x), the result contains, thanks to Corollary 4.4, a well-known result of 
Flehinger [2] asserting 

(11) lim lim inf Tm (N) = lim lim sup f, ( N )  . 
m+gr N + m  m-+m N + m  

What we gain here is the identification of the common value as Ib ( f ) ,  under the 
weak conditions of Theorem 4.5. 

4.6. An application to sums of independent random variables. We consider 
now possible Benford behavior for data that may be considered to be a sum 
S, of a Iarge number n of independent random variables X,, each with finite 
expectation. We further assume that the conditions of the weak law of large 
numbers apply so that for some finite m, S,/n -, m in probability as n -t a. 

PRo~osrr~o~ 4.6. Assume m # 0, P ( S ,  = 0 )  = 0, and let x, : = Log (n lml). 
Then the asymptotic properties of the mantissa, distributfon of IS,I are the same 
as those of the deterministic sequence x,, in the following sense: for every g E di, 

Proof. We may assume llgll < 1. Given E > 0, choose 6 < 1/10 such that 
Ig ( y )  - g  (y')I < 4 3  if ly - y'l < 6. Choose then no so large that 

As the function y -r Logy on [I-6, 1 +S] has derivative no more than 1, we 
have 

P Log- > S  <&/3.  { 3 } 
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Now write 

Eg IISnI)-g (xn) = E (9 (ISnl)-g (x~)) ( 1 ~  + lAc), where A : = Log- > 6 . {I ::I I 
Then we have I E ( ~  (IS,I) -g (x,)) I,] < 2~/3.  On A', ,Log JS,I -xnl < 6, SO that 

Ig llSnI) -g (x,)[ < &/3; hence we have I E  (g (ls,I) - g  (x,)) 1A.1 d 4 3 ,  and thus 
IEg(LoglSnI)-g(xn)l < E for n 2 no.  

For na # 0, if we define h ( t )  : = (Log@ Iml)}, then clearly h (bt) = h (t) for all 
t > 0. As t varies from 1 to b, Log ( t  Iml) varies continuously from Log(1ml) to 
1 +Log (lrn]). It follows that h on [I,  b) is a sawtooth function with ilope 1 and 
a downward jump of 1 at one value of t E [l, b ] ,  taking values in [0, 1). There- 
fore, ~ E A ~ .  AS the fractional parts (x,) of x, may be identified as h(n), they 
will in genera1 oscillate indehitely as n increases. If we take any subinterval 
J c [ O ,  1) and let f (t) = l , (h( t ) )~A, ,  we obtain 

It follows then from Theorem 4.5 that the x, are equidistributed on [0, I), 
though not in the usual sense. It is in fact necessary to look not just at the 
proportion of the first n of the xk in 3 as n 4 co, but to perform the averaging 
indefinitely. In any case, this weak form of equidistribution of the x, does give 
a corresponding weak form of Benford's Law for the mantissa distribution of 
IS,[. Note that the special case Sn = n amounts to the original setting modelled 
by Benford [I] as well as Flehinger [2]. 

5. INFINITE DIVISIBILITY 

Let (p,),, denote a weakly continuous convolution semigroup of proba- 
bility measures on the real line. We shall rule out the case where there is 
a discrete arithmetic subset S = (0, f c, f 2c, . . .) such that each p, is carried 
by a translate of S. The only cases ruled out occur when the Gaussian com- 
ponent is null and the LCvy measure is finite and carried by an arithmetic set of 
this type. 

We denote by p: the measure p, wrapped around the unit circle K, so that 

for B a Bore1 subset of [0, 1). Then, for any positive or bounded measurable 
function g on [0, I), letting g" denote its periodic (with period 1) extension to the 
real line, 

m 

(12) j = j ijdp*. 
C0,1) - m  
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The following is well-known and simple to prove in the same way as 
Theorem 3.2. 

PROPOSITTON 5.1. If (p,) is non-arithmetic, then p: converges weakly on 
[O, 1) to the uniform distribution on [0, 1 )  as t -t a. 

This elementary result has implications for Benford type behavior, for if 
X,  -- f i ,  it follows that the mantissa of exp(XJ will converge in distribution to 
the Benford Law. We examine two special cases below. 

5.1. Gamma semigroup. Let U,, . . ., U ,  be independent, uniform on (0, I), 
and fw. any p > 0. Let X, : = Up . . . U:, let M, be the base b mantissa of X,. 
Then, recalling the notation of Section 2, : = -Log Xn is a sum of indepen- 
dent exponential (alp) variates, and hence is gamma (n, alp). Therefore M ,  con- 
verges in distribution to the Benford Law, thanks to Proposition 5.1. (The 
convergence of the mantissa of products of independent uniform variates to the 
Benford distribution goes back a considerable way. See for example the discus- 
sion and references in [3].) 

52.  Normal and lognormal. Let Z be standard normal and let Y : = sZ + rn, 
where s > 0. The fractional part Yo of Y has Fourier coefficients 

where 4,(y) = exp(imy-s2 y2/2) is the characteristic function of k: Conse- 
quently, 

c, = exp (2x imn - 2n2 s2 n2) = exp (2x i,u* - 2n2 n2 n2/a2). 

As these coefficients are absolutely summable, the density of Yo is given by the 
Fourier series 

m 

fro ( y )  = 1 exp (2ximn - 2n2 s2 n2) exp ( - 2n iny) 
n =  - m  

(This could also have been obtained by an appeal to the Poisson summation 
formula.) The symmetry of the coefficients about 0 allows the series to be 
written 

m 

f y ~ ( y ) = 1 + 2 ~ e x p ( - 2 n 2 s 2 n 2 ) ~ ~ ~ ( 2 ~ n ( y - r n ) ) ,  O < y < l ,  
n = l  

and from this we obtain 
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leading to the uniform bound 

1 exp (- 2x2 s2 n2) 
sup I ~ , o ( Y ) - - Y ~  G - c 

o s y < l  R " = I  n 

The behavior of the sum in the last expression is easy to estimate. For arbitrary 
c > 0, the function x + exp(-cx2)/x is obviously decreasing on (0, m), and 
a simple computation shows that the second derivative remains positive for 
x > 0. The function is therefore convex, and consequently the value at n is 
bounded by the integral over ( n -  1/2, n+ 1/21. This leads to 

- 

sup ~F,D ( y )  - yl < exp (- 2x2 s2) + j 
O < y - = l  - X 312 X 

Estimate the integral in the last expression from above by 
m 2 e ~ p ( - 2 ~ Z s 2 ~ 2 )  4 m  exp ( - 97c2 s2/2) 

dx =- 1 xexp(-2n2s2x2)dx = 
312 9?C2 s2 

To summarize: 

PROPOSITION 5.2. Let YO denore the fractional part of Y : = s Z +  m, where 
Z is standard normal. Then 

exp ( - 27c2 s2) exp ( - 9rc2 s2/2) 
sup JFp(y)-yJ $ h(s),  where h(s) := 

+ 9n3s2 O F y C  1 R 

FIGURE 1. Graph of s + h(s) 

Recall that a variate X is lognormal with shape parameter o > 0 if 
X = keg', where k > 0 and Z is standard normal. We now fix the base b = 10 
so that ol = log 10. Finding the mantissa distribution of X is equivalent to 
finding the distribution of the fractional part of LogX = sZ +rn, where s = a/u 
and rn = Log k. I t  follows that for lognormal data with shape a, the closeness of 
the mantissa distribution to the Benford distribution is the same as given in the 
last proposition with s = o/a. 



184 M. J. Sharpe 

Typical values of h(s) and the corresponding CT = cis values are given by 
the following table: 

s h(s) rr 

The technical report [6] contains an interesting but incomplete discussion 
of the role of lognormal data in producing Benford distributions. Scott and 
Fasli [6] observed from simulations that if X = exp (02 + p) is lognormal, then 
the first digits in X closely resemble the Benford distribution if 0 > 1.2, but that 
for smaller values of 0 this is not the case. The discussion above provides 
a mathematical explanation to back up their observations. At the critical c 
value 1.2 observed by Scott and Fasli, the s value is 0.521 and h(s)  = 0.0015, 
signifying that first digit probabilities from independent samples drawn from 
a lognormal with shape u distribution should have agree with the Benford 
distribution to within 0.003, which in the worst case (P{firstdigit = 9)) 
represents an error of about 6.5% from the true value. 

6. A TRIANGULAR ARRAY MODEL 

Let X = UK where U, V are independent, strictly positive, with U having 
a lognormal distribution with a > 1.2. Since (LogX)' = (Log U)'+(Log V)* 
and (Log U)' is close to uniform, so is (LogX)'. That is, the mantissa of X will 
have a density that is close to the Benford density. It therefore seems of interest 
to delineate those distributions which factor into an independent product of 
a lognormal and an arbitrary positive variable. This is equivalent of course to 
specifying distributions on the entire line that are the independent sum of 
a normal and another arbitrary variable. 

There is in fact a variant of the Lindeberg-Feller theorem that covers this. 
Let T denote a triangular array of random variables, say LT : = (X,,j)l .jGk,,n2 

such that the variables in each row are independent, and let Sn : = X,,, + . . . + 
+X,,kn. Suppose S, converges in distribution to S. We do not assume that the 
variables in the rows are uniformly asymptotically negligible (which would 
imply that S must have an infinitely divisible distribution), but the idea is to 
impose a Lindeberg-Feller type condition on a large enough subset of the K 
Specifically, let us assume that for each row n there is a subset Jn of indices, 
which we may assume without loss of generality to have the form J ,  = (1, . . ., j,,), 
such that the triangular array Fl : = (X,J)l ,jGjn,,3 satisfies the following pair of 
conditions : 

jn 
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for every e z 0, lim E{X?,j;  IXn,jI  > e )  = 0. 
n-rm j,l 

Let F2 : = (Xn,j)jn< j S k n , n , ,  denote the complementary triangular array. 

THEOREM 6.1. Under the conditions of the preceding paragraph, the limit 
variable S decomposes into a sum S = X+ Y of independent variables X and I: 
X being normal with variance at least a2. 

Proof,  Passing to a subsequence if necessary and changing the definition 
of a2 if necessary to something greater, we may assume that 

- 
.i= 

cr: := C cr2 > 0. 
j= 1 . - 

Let Rn : = X , .. In view of the usual Lindeberg-Feller theorem, R. con- 
1 .' 

verges in distribution to a normal variate X with variance 02. Let cpaTj denote 
the characteristic function of XnTj .  Because we assumed that S, converged in dis- 
tribution, HE, r p . ~  converges pointwise to the characteristic function qs of S. As 

it follows that nzjn+, .p.,j converges pointwise to a continuous function $, 
which must therefore be a characteristic function. This proves that the charac- 
teristic function qs (t) = exp ( - o2 t2 /2)  $ (t), as claimed. ra 

As financial models frequently involve a multiplicative Brownian com- 
ponent, it would appear that financial data of this type should exhibit Benford 
behavior if the volatility times time elapsed is even modestly high. 
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