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Abstract. The Cauchy transform of a positive measure plays an 
important role in complex analysis and more recently in so-called free 
probability. We show here that the Cauchy transform restricted to the 
imaginary axis can be viewed as the Fourier transform of some corre- 
sponding measures. Thus this allows the full use of that classical tool. 
Furthermore, we relate restricted Cauchy transIorms to classical com- 
pound Poisson measures, exponential mixtures, geometric infinite 
divisibiIity and free-infinite divisibility. Finally, we illustrate our 
approach with some examples. 
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WTRODUCTION 

Fourier transforms are very well established tools in analysis, differential 
equations or harmonic analysis. On the other hand, Cauchy transforms are used 
in complex analysis, in the approximation problem or in the moment problem 
and, relatively more recently, in so-called free probability. In Barndorff-Nielsen 
and Thorbjornsen (2002) and Jurek (2004) it was shown that Voiculescu trans- 
forms of free-infinitely divisible measures are closely related to Fourier trans- 
forms of some (classical) infinitely divisible measures expressed by random 
integrals (integration with respect to a LCvy process). That fact suggested that 
there might be an intrinsic relation between those two transforms, Fourier's 
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and Cauchy's. This is what we present in this note. One may expect that these 
relations will shed more light on the fact that there are so many parallel results 
in classical and free probability theory. 

1. THE CAUCHY TRANSFORM AS SOME FUNCTIONALS 
OF THE FOURIER TRANSFORMS 

For a finite Bore1 measure m on the real line R, let us recall that its Cuuchy 
transform Gm is defined by - 

(11 
1 

G,(z):= J-~(dx)  for ZEC\R= { z E C :  Sz # 0). 
Rz-X 

Since G, (z) = G ,  (3, we may consider Cauchy transforms on half-planes either 
on C+ or on C-.  This transform G,(z) is the key notion in so-called free- 
probability but in this note we restrict our investigations only to the Cauchy 
transforms and some functionals of them. From Akhiezer (19651, p. 125, or 
Lang (1975), p. 380, we have 

rn ([a, b] )  = - lim 1 3Gm (x + iy) dx provided m ((a, b))  = 0. 
Y+O n, 

Thus G, uniquely determines m but for that one needs to know Cauchy trans- 
form in strips {x+iy: x € R , O < y  < E )  for some E > O .  

In some instances, as is the case here, we know (define) G, only on the 
imaginary axis. Then it will be denoted by g, and referred to as the restricted 
Cauchy transform, i.e., g, (it) : = G,(it), t E R\{O). Explicitly, 

1 X 
g,(it) = -it J----m(dx)-J- m(dx)  for t #O.  

t2+x2 t2+x2 

Of course, we also have g, (it) = g,(- it). 
One of the main results here is 

THEOREM 1. The restricted Caeschy transform g,(it), t # 0, uniquely deter- 
mines the measure m. 

Besides that we will relate restricted Cauchy transforms to some func- 
tional~ of the Fourier transforms, to laws of product of independent random 
variables, to geometric infinite divisibility and some random integrals. 

In the sequel, for a finite measure m its Fourier transform (in probability 
theory called its characteristic function, in short: char. f.), denoted by riz, is given 
as follows: 

f i  (t) : = j eitX m (dx) for t E R.  
a 
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1.11. Mxtores of measures and the restricted Caslchy transform. Let e de- 
note an exponential random variable or an exponential distribution, i.e., it has 
probability density function e-" lfO,,,. Its Fourier transform is equal to eA(t) = 
(I-it)-'. Let 

CO 

(4) m(') (A) : = 1 m (s- A) e-" ds for Bore1 subsets A c R 
0 

be the exponential mixture of a measure m. Note that if p is the probability 
distribution of a random variable X and is independent of the exponential 
random variable e, then ,d') is the probability distribution of e . X  (In Jurek 
(1990), mixtures rn(" for a-finite measures m on a Banach space and G-finite 
measures II  on. (0, m) were studied.) 

Proof  of Theorem 1, Step  1. Simple calcuIations give 

1 m 

(5 )  (mCe>)^(t) = J - m(dx)= Jm(st)e-"ds for t f R .  1 - i tx o 

Since from the last equality we can get a Laplace transform of the function (.), 
we conclude that 

(6) my> = m$"> implies m, = m2. 

Step  2. Recall that e (m) : = e-m(R)zk:=o m*'/k! is said to be cornpound 
Poisson distribution (it corresponds to Poisson number of summands) and 

(7) (e (m))"(t) = exp (~ ((t) - m (R)) = exp 1 (eifX - 1) m (dx) for t E R,  
R 

and, of course, e(m) uniquely defines m. Furthermore, from (5) we get 

(e (m<e)))A(t) = exp f - - 
1 -itx 

S tep  3. Finally, let us introduce new functionals of measures: 

Thus, using (1) we have explicitly 
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Combining (8) and (10) we obtain 

(1 1) exp [h, ( t )  - rn (It)] = (e (mCe))) " ( t )  

Step  4. From the above and (6) we infer that h,  uniquely determines the 
measure m, which in turn by (9) means that g,(it), t # 0, uniquely identifies the 
measure m. This completes the proof of Theorem 1. 

Here are some consequences of the above proof, rather than of the theo- 
rem itself, that relate the restricted Cauchy transform to some characteristic 
functions. - 

COROLLARY 1. (a) The functions (m (R))-' h, (t), t E R, are Fourier Pans- 
forms of' random variables e .X,  where e and X are independent random variables 
with the ex~onentiaf and m (.)/m (R)  probability distributions, respectively. 

(b) Let a" be the symmetrization of the standard exponential random varia- 
ble e and independent of a random variable X whose probability distribution is 
m(.)/m(R).  Then 

Part (a) follows from (10) and the fact that for independent random varia- 
bles we have 

where Y ( Z )  denotes the probability distribution for a random variable 2. 
Similarly we get part (b) using formula (2). 

Finally we have the following algebraic relations between Cauchy and 
some Fourier transforms, which was suggested by a Boolean convolution in- 
troduced by Speicher and Woroudi (1997) and the mixtures given in (4). 

T H J ~ R E M  2. For probability Bore1 measures p and v and their restricted 
Cauchy transforms g, and gv there exists a unique probability measure Q such that 
its restricted Cauchy transform is given by 

s, (it). gv (it) 
SQ (it) = for t # 0. 

g, (it) + gv (it) - itgC(it) - gv (it) 

If e denotes the standard exponential probability measure, then the above for 
probability Boref measures p1 and p2 means that 

(fiie))"(t) . (PY)IA(t) 
OlY))^(t) + (P.l<z'))^(t) - (pie))"(t) - GuY))^(t) 

= (eCe))*(t) for t E R. 

Equivalently, we have 
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Proof. S tep  1. For a measure p and its Cauchy transform G, let us 
define the transform 

which is an analytic function that maps Ct to C-u R and E,, (z)/z -+ 0 as 
z -, co non-tangentially (i.e. such that the ratio %z/3z is bounded). Conversely, 
if E : C+ + C- u R is an analytic function so that E(z)/z + 0 as z -+ co non- 
tangentially, then there exists a measure p such that E = E,. That fact led 
Speicher and Woroudi (1997) to the following notion of so-called Boolean 
c~auolution 0:  for measures p and v there exists a unique measure Q r p@v 
such that 

I (14) E , ( z ) = E p ~ , ( z ) = E E , ~ z ) + E v ( z )  for z € C f .  

Step 2. Combining (13) and (14) we get 

from which we get equality (12). Using the characteristic functions h, from 
I Corollary 1 (a), we arrive at 

which concludes the proof of the second part because h,(t)  = (jde>)" (t) by 
Corollary 1. 

8.1.1. Remark. The above proof is based on structural characterizations 
of some analytic functions with a specific behavior at infinity. An open question 
is to find a more direct, more probabilistic argument for the above factoriza- 
tions. 

1.1.2. Remark. From (12) we note that for Dirac measures 6,  and 6,  
(a, b ER) we have 6,CEdb = ha+, (= 6,  * 6,). Similarly, if y, denotes the Cauchy 
distribution with a parameter a > 0 (cf. Section 3.2 below), then using (29) we 
get Y O @ Y ~  = yo+, (= ~a * ~ b ) .  

1.2. Random integrals and the restricted Caucby tramform. In the past it 
was shown that many classes of probability distributions can be identified as 
classes of distributions of some random integrals of the form 

j f (t) d x ( r ( t ) ) ,  A c [O,  co), Y, is a Lkvy process and 9 (&(I)) = v, 
A 

13 - PAMS 26.1 
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where f and r are deterministic functions; see for instance Jurek (1985), (1988), 
(2004) or Jurek and Vervaat (1983) or Iksanov et al. (2004) [see www.math.uni. 
wroc.pl/ "zjjurek/conjecture.] 

For purposes of this note let us introduce, after Jurek (2004), a random 
integral and its corresponding random integral mapping X as follows: 

where Y, is a Levy process with cddag paths, the integral is defined (as simple 
as possible) by formal integration by parts, and 9 (X) denotesthe probability 
distribution of a random variable X. In terms of Fourier transforms, (15) 
means that 

From (16), using the Laplace transform argument (the same way as for (6)), we 
infer that A'" is a one-to-one mapping; for details see Jurek (2004), Proposition 3. 

COROLLARY 2. (a) For a finite measure wr and its restricted Cauchy trans- 
form g, we have 

(b) For a finite measure m we have 
m 

2' (1 td Y,(,, (I - e-')) = X (e (m)) = e (de)). 
0 

This means that the random integration with respect to a compound Poisson 
process Yd,)(t), t 2 0, is the same as the exponential mixing of an exponent 
measure m in a compound Poisson measure elm). 

Proof.  Putting e(m) for v into (16) and using (7) we get 

that is, log (X (e (m)))^(t) = (t) - m (R) and (1 1) give part (b). Finally, (9) im- 
plies equality in (a). 

1.2.1. Remark. From part (b) we also infer the property (6) because X is 
a one-to-one mapping. 

13. Geometric infinite divisibility and the restricted Cauchy transform. Af- 
ter Klebanov et al. (1984) (cf. also Ramachandran (1997)), we say that a random 
variable X has a geometric infinitely diuisible distribution if 

117) 
d Gp V (0 < p < 1) 3 (rv's G,, Xip), X(ZP), XY), . . .) X = C X:?, 

j= 1 
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where XY), j = 1 ,  2, . . ., are independent and identically distributed and 13, is 
independent of them and has the geometric distribution with parameter p 
- the moment of the first success in the Bernoulli trials, i.e., P(G,  = J)  = 
(1  -pY-' p, j = 1, 2, 3, . . . By GID we denote the class of all geometric 
infinitely divisible distributions (random variables or characteristic functions). 

From (17) one infers that for any c > 0 functions 

(18) R 3 t +  
1 

EGID provided # is a char. f. 
1 + c (1 - #J (t)) 

- 
Moreover, characteristic functions of the form (18) play the role of the com- 
pound Poisson measures e(m) for the class GID. 

COROLLAR~~ 3. For c > 0 and a finite measure m functions 

are Fourier transforms of geometric infinitely divisible distributions. 
I n  other wards, for c > 0 and the restricted Cauchy trangurm g, there 

exists a geometric infinitely divisible characteristic function kc,,  such that 

1 rn(R)+cF1 
g, (is) = i 

csk,,, (- s - I )  - s 1 , s # O .  

P roof. Since kc,. is of the form (18) and, by Corollary 1 (a), (m (R))- ' hm (-) 
is a characteristic function, it follows that kc,, E GID. Moreover, from (9) we get 
the second equality, i.e., the restricted Cauchy transform g, in terms of GID 
Fourier transform. 

1.4. Free-infinite divisibility and geometric infinite divisibility. For a proba- 
bility measure p one defines Fp(z) := l/Gp(z), where G, is the Cauchy trans- 
form from (1). Furthermore, the Voiculescu transform & is defined as 
& (z) : = F; (z)- z, where one proves that the inverse function F; exists 
in some Stolz angles; for more details cf. Bercovici and Voiculescu (1993), 
Corollary 5.5. A measure p is said to be JEee-infinitely divisible if for each 
n 2 2 there exists a probability measure pn such that G(z) = Gn(z)+ 
. . . + Q,, (z) (n times). From Barndorff-Nielsen and Thorbjornsen (2002), Propo- 
sition 5.2, we have the following free-probability analog of the LCvy-Khin- 
tchine formula: 

p is free-infinitely divisible 8 its Voiculescu transform Vp is such that 

with the three parameters a, c2 and a measure M the same as in the cIassical 
Livy-Khintchine formula. 
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COROLLARY 4. Suppose that c > 0 and Vp is the Voimlescu transform of 
a fiee-infinitely divisible probability measure p. Then functions 

- 1 
(20) w ,  (t)  : = (1 - c ( i t )  V ( ( i t  ) are GID char. f. 

More explicitly, 

Here a E R, a2 2 0 and M is a a-Jinite measure that integrates min ('1, x2) over 
the real line, and this triplet is uniquely associated with the measure p. 

P r o  of. This is so because limt,o w,,, ( t )  = 1 by (19) (note the integrability 
condition for M) and 

= exp [it T/, ((it)- I)] E I D  (infinite divisible char. f.) 

by Jurek (20041, Corollaries 5 and 6. (More precisely, these are character- 
istics of integral (15); class C c ID.) Consequently, b y  Ramachandran (1997) 
we conclude that W , , ~ E G I D .  The remaining part follows from Jurek 
(2004), Corollary 6, or Barndorff-Nielsen and Thorbjornsen (2002), Proposi- 
tion 5.2. 

2 REMARKS ON THE FUNCTIONS Fm 

As we have seen in Seqtion 1.4, in the free-probability theory besides the 
Cauchy transform G, an important role is played by a companion function 
Fm(z) := l/G,(z). If one would like to consider the Voiculescu transform 
T/, only on the imaginary axis, then the invertibility of F,(it) must be settled. 
Here are preliminary results in that direction. 

Let fm(it) := F,(it), t # 0, be the companion function of the restricted 
Cauchy transform. 

PROPOSITION 1. (a) For each finite and non-zero Bore1 measure m on R its 
restricted Cauchy transform g,(i -) never vanishes on R\{O), the function t -, 
t -  39,  (it) is one-to-one on the haEf-line (0, CQ) and lim,, + , (it) gm (it) = m (R). 
The analogous result holds for the negative half-line. 

(b) The imaginary part of the function R+ 3 t + fm (it) : = l /g ,  (it) E Cf sat- 
i$es the inequality 0 < m (R) r < 3 fm(it) and limt+ ,. , (it)-' fm (it) = ( m ( ~ ) ) -  '. 
Furthermore, if m is a measure satisfying these conditions such that %gm(it) = 0, 
then there exists a constant 0 < dm < oo such that i(dm, CQ) c fm( iR f )  G C+. 
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P r o of. Since, by (1) and (2), 

r 1 X 
99, (it) = - t  J - m(dx) ,  % g m ( i t ) = - 1 -  t 2 + x Z  t 2 + x 2  

m(dx) ,  t # 0 ,  

for s 2 t > 0 the equality t -I  g, (it) = s-I gm(is) implies that 

t - Zg, (it) = s 3 g ,  (is), 

and thus 

Hence, for m #. 0, the above implies that s = t. Consequently, the function 
0 < t + t - lSg, ( i t )  is one-to-one, which completes the proof of part (a). 

For part (b) let us introduce the notation: 

1 X 
a , : =  J- m ( d x ) > O ,  b , : = j -  m ( d x ) ~ R  for t > 0 .  

t 2+x2  t 2 + x Z  

Thus g, (it) = - ita, - b, and, consequently, 

1 at 
- i t ,  - 

bt 
fmt i t )  = g.0 - t or +b: t2a:+ b: 

E Cf whenever t > 0. 

Assuming that m is a probability measure and using the Schwarz inequality we 
obtain (tat)' + b: < a,, which with the above definition of fm gives the inequali- 
ty for the imaginary part of f,(it). A similar argument holds for an arbitrary 
finite measure m. 

Finally, for s > 0, in order to have is = f,(it) for some t > 0 one needs 

1 
b, = 0 and s = l/(ta,), i.e., s - = - 

t l t 2 + ~ 2  m (dx) . 

But the function t -+ tat is continuous and lim,,, tat = 0. Putting 

we see that the equation above holds for s > dm. 

3. EXAMPLES 

We will illustrate our results and technics by some examples. For the 
computations below, from the definition ( 1 )  and formula (2), one needs to keep 
in mind that 

if 32 > 0 then 3 (Gm (z)) < 0 and if 3z < 0 then 3 (G, (z)) > 0. 
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Consequently, for the restricted Cauchy transform g, (it) we get 

3(g, (it)) < 0 for t > 0 and 3(g,  (it)) > 0 for t < 0. 

3.1. Semicircle law. From Voiculescu (1999), p. 299, let us consider a prob- 
ability measure ,ua7 a > 0, such that its Cauchy transform is equal to 

and assume we do not know the measure pa. Hence the restricted Cauchy 
transform is equal to 

Thus, by (9) and Corollary 1 (a), 

is a Fourier transform of the random variable a - X , ,  where these two are 
independent variables and p, is the probability distribution of Xu. Hence 

.L 

(24) E [exp (ite . X,)] = 1 (ts) e-S ds = ~ E R .  
0 1 +JGV7 

Substituting l / u  for t (u > 0) and changing variable one gets 

where fl is the Bessel function of the first kind of order one. The last equality is 
from Gradshteyn and Ryzhik (1994), Section 17.13, formula No 103 on p. 1182. 
This, with Theorem 1 (iv) in Jurek (2003), gives 

where 3, (t) is a Fourier transform of a selfdecomposable distribution (given by 
series of independent Laplace random variables multiplied by zeros of a Bessel 
function) and l/B1 (it) is again a Fourier transform. This is an example of a pair 
of Fourier transforms from the van Dantzig class 9 (van Dantzig property); cf. 
Jurek (2003), Theorem 1 (i), (iv), and Section 4 on p. 218. More importantly, in 
(26) we recognize that pa has the semicircle law. And this is what we should get 
because, indeed, (22) is the Cauchy transform of the semicircle law; cf. Voicu- 
lescu (1999), p. 299. 
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Similarly, from Corollary 1 (a) and (23) we infer that 

is a Fourier transform of a compound Poisson measure. 
Furthermore, from Corollary 3 with c = 1 we get 

i.e., it is a Fourier transform and it corresponds to a symmetric geometric 
infinitely divisible distribution. 

3.2. Cauchy distribution. This time we know that y, is the Cauchy random 
variable with the probability density a/(n (a2 +x2)), x E R (a > 0 is a parameter) 
and with the Fourier transform expl- a It]), t ER. By (9) and Corollary 1 (a), we 
conclude that 

where again we got a selfdecomposable distribution. This with Corollary 2 (a) 
implies that 

is a Fourier transform of a compound Poisson measure. And Corollary 3 al- 
lows us to conclude that 

i.e., it is a Fourier transform and it corresponds to a symmetric geometric 
infinitely divisible distribution. Finally, from (29) and (9) we retrieve the re- 
stricted Cauchy transform for the Cauchy distribution y,: 

sign (s) 
GYo (is) = - for s # 0 

i (Is1 + a) 

(note that the formula on p. 302 in Voiculescu (1999) is valid only in a half- 
plane). 

3.3. Gaussian distribution. Let Jlr denote the standard normal distribution 
(variable) with the probability density function (2n)-'I2 exp ( - x2/2), x E R. 
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From (9) and Corollary 1 (a) we infer that 

m 

= exp (l/(2tZ)) j exp ( -  2-I (st + t - ds 
0 

sign[t)- m 

=exp(l/(2t2))t-l j exp(-w2/2)dw 
t - 1  - 

= ( 2 . ~ ) l / ~  t -  exp (1/(2t2)) [@ (sign (t)  . m) - @ (t - I)] 

where @ denotes the cumulative distribution function of the standard normal 
distribution N, is a Fourier transform of e . N .  Furthermore, 

132) gN(iw) = - i & exp (w2/2) sign (w) dj (- IWI),  w f 0, 

is the restricted Cauchy transform of N. 

4. COMMENTS AND REMARKS 

Remark  1. For the class GID, a Cauchy probability distribution (with 
the probability density 2-I exp [- 1x11 and the Fourier transform (1 + t2)-I) 
corresponds to a standard normal distribution (Gaussian) in ID; cf. Klebanov 
et al. (1984), at the bottom of page 758. In this context, let us mention that in 
free-idmite divisibility, the semicircle distribution (the example in Section 3.1) 
plays the role of a standard normal distribution. 

Remark  2. For a finite measure m, let us define a function u, (t) by the 
following equality: 

then on the right-hand side we recognize a functional of the Voiculescu trans- 
forms (via (19)) for free-infinitely divisible measures. But, as in the case of the 
classical ID, not all infinitely divisible characteristic functions are of the form 
(7), so not all functionals of free-infinitely divisible distributions have trans- 
forms of the form (33). In fact, (7) "encourages us to abandon the assumption 
that rn is finite" writes Stroock (1994), p. 136. In a similar spirit, if we assume 
that a measure M integrates rnin(1, x2), then (33) naturally extends to 
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which coincides with 'Poissonian' analog of free-infinitely divisible distribution, 
and Levy exponents of class d probability measures; see Barndorff-Nielsen and 
Thorbjornsen (2002), Proposition 5.2, and Jurek (20041, Corollary 6. Note that 
the integrand above is bounded by const. min (1, x2). 

Remark  3. Let m be a finite measure on Rd and let us begin with the 
definition 

Is ,  ( t )  : = j 1 
m(dx),  t~ Wd, 

Rd 1 - i (t, x} 
- 

where (., a }  denotes the scalar product in Rd, Then many of presented here 
results will hold true with some obvious modifications; note that in Jurek 
(2004) or in Iksanov et al. (2004) random integrals are given for Banach space 
valued Levy processes. See Araujo and Gin6 (19801, Chapter 3, for the classical 
infinite divisibility on Banach spaces. Hence one may use (34) as the stepping 
stone for free-probability in finite (infinite) linear spaces. 
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