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ON SEQUENCES OF THE WHITE NOISES

BY
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Abstract. The aim of the paper is to prove the strong law of large
numbers for Gaussian functionals (Theorem 3.1). The functionals are
of the form f(X;), where f is integrable with respect to the Gaussian
noise and the random vectors X; are coordinatewise suitable correl-
ated. In the last section we comment on the possibility of building
noise analysis corresponding to the Legendre orthogonal polynomials
analogous to the Wiener white noise theory based on Hermite
orthogonal polynomials (Mehler’s kernel).
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1. WIENER CHAOS DECOMPOSITION AND GEBELEIN’S INEQUALITY

We denote by (R®, £#®) a measurable space, where R* is a countable
product of the real lines and #* is the smallest o-algebra containing all the
cylinder Borel sets. Let u be a countable product of Gaussian measures on-R, ie.

p= @ v,
n=1
where v, is the normalized one-dimensional Gaussian measure, i.e.
1
NG
We use I (u) for (R, dy). In IF(u) we have the norm
I/l = (§ 1/ GO (@)™, 1<p< oo,

Va(dx) = p(x) dx =

exp(—3%x?)dx.

and in the real I?(u) the scalar product
(i gu=§ fx)g(x)p(dx).
Rm
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To avoid ambiguity we recall the definition of the Hermite polynomial of
degree n = 0:
dn
dax"

H,(x) = (—1)'exp (x?)——exp(—x?).

The Hermite polynomials are orthogonal with respect to the weight
exp(—x?), ie.

§ Hy(x) Hpy (x) exp (—x?) dx =2"n!\/;5,,,,,, for n,m=0,1,...
R _

Introducing
| h (g — Hay/2)
" J2"n!
we obtain

(Bny B)y = 0pm for n,m=0,1,...

It is well known that the orthonormal system {h,, n =0, 1, ...} is complete in
I?(R, dv). The multidimensional Hermite polynomials on R® are defined as
a tensor product of one-dimensional Hermite polynomials: For fixed m =
(m);>1€Ng (where No = {0, 1, 2, ...}) such that |m| =)~ m; < co the m-th
Hermite polynomial is defined as

hy (%) = ﬁ Bm(x) for x =(x;)eR™.
i=1

It is well known that the collection (h,,, m € N¥) forms an orthonormal basis of
I ().

Let % be a linear span of (h,, me N§). Note that & is dense in I? () for
all 1 < p < oo. For given |g| < 1, we introduce the Ornstein—Uhlenbeck opera-
tor P, defined on & by the formula

(1.1) P, f(x)= fmf(as\rh/l—e2 nudy), fe&.

Clearly, P, is linear in f and it transforms polynomials into polynomials.
Moreover, it follows, by Hoélder’s inequality that for any p, 1 < p < oo, we have

(1.2) 1P fllp < 1A p-

This shows that (1.1) makes sense for all f in I (u) and P, extends to a linear
~ contraction on I? (u) for 1 < p < oo. Note that P, is positive in the sense that
P,f >0 for all f>0. Each function f in I? (1) can be written as

f = thfma
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where f, = | fhndp, meN". We denote by 5, the closed subspace spanned by
Hermite polynomials h,, of total degree n = [m|. Then we have the following
decomposition of I?(u) into a direct sum of mutually orthogonal subspaces:

(1.3) Ew=@ #,
n=0
called the Wiener chaos decomposition. It is known that

14 Pof= ¢ fEBW, ;

where J, is the orthogonal projection of I? (1) onto the subspace #,. Now, the
Parseval identity gives

(1.5) 1P, flIZ = X @*I: fII3.
k=0

As a consequence of (1.5) we obtain (see [7] and [4]) Gebelein’s inequality:
ProposITION 1.1. If fe @, #,, then

(1.6) 1P, fllz < lel*- £l

Using Gebelein’s inequality, corresponding to k = 1, we can estimate
a correlation coefficient of Gaussian functionals, namely: Let X = (X;), Y =
(Y¥) be random vectors with values in R® and with distribution £ (X) =
L(Y)=p and E(X;Y) = b, i,j=1,2,..., where J;; denotes Kronecker
symbol.

Introducing random vector Z such that ¥ (Z) = p and Z, Y are stochas-
tically independent, we infer that (X, Y¥) and (U, Y) with U = oY +./1—0* Z
have the same joint distribution. This well-known trick and Gebeleins’ inequal-
ity for f, geI?(u) and (f, 1), =0 give

(1.7) IE fX)g(Y))| = [E(f(D)g(Y)) = |E[P, f(Y)g(Y)]I
< |IP, flizllgll2 < lel 1112 llgll2-

2. APPLICATIONS OF GEBELEIN’S INEQUALITY

Let Ry = (g;;):,j>1 be a given real symmetric, nonnegative definite matrix
such that

@.1) e <1,i,j=1,2,..., and gs=1,i=1,2,...,
22) C=sup} lod < 0.
v
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Let us introduce a matrix R = (i, )i jk, 1> 1, Where ry 1 ; = 0i50g for i, j, k, | =
1,2, ... It is easy to check that the matrix R is symmetric and nonnegative
definite. There exist a probability space (22, &, P) and a centered Gaussian
system (X);x»1 on this space such that

(23) E(Xikal) = Qijékl: i,j: ka l = 1: 25

Let us put X; = (Xu, k= 1),i=1, 2,... Therefore we get a sequence of ran-
dom vectors (X;) with values in R* and with distribution ¥ (X)) =y,
i=1,2,... By Ry we denote a set of all real sequences with a finite number of
nonzero terms, i.e.

Ry = {(x)eR™: x; =0 for large j}.

Let us define a linear operator A: RY — R by the formula

A(x) = ( Z Qijxj)’ x = (x;)eRg.
j=1

We can extend A4, using Hoélder’s inequality, to a continuous linear operator

over the spaces 7, 1 < p < co. Namely:

LEMMA 2.1, For every 1 < p < o0 we can extend the operator A to the
continuous operator A:IF —IF with norm ||A|| < C.

Applying Lemma 2.1 and inequality (1.7), we get

LEMMA 2.2. Let the sequence (X;);»1 of Gaussian vectors satisfy conditions
(2.1)+2.3) and let (f)i>1 = I?(w). Then for each n>1 we have

(24) Var(ij1 fx)<c --il Var (f;(X)).

Moreover, for arbitrary Borel subsets (A);», of R*® we obtain
"L (X, 2
E(,IZI_IAI()—>S" C .
yo_ P{Xied} Y P{XieA}
Proof. Applying inequality (2.4) to the functions f;(x) = I 4,(x)— P {X;e A;}
and g;(x) = I,,(x)—P{X;e A;}, where I, is the indicator of the set 4, we
obtain (2.5). =

CoROLLARY ‘2.1 (Borel-Cantelli lemma). Let the sequence (X;);>, of Gaus-
sian vectors satisfy conditions (2.1}2.3) and let (4;);>, be a sequence of Borel
sets in R® such that

(2.5)

Ms

(2.6) P{X;eA;} = 0.

i=1

Then.
2.7) ' P{X,e4d; io} =1.
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Moreover, if

0

2.8) Z P{X;ed;} < o,
then
(29) P{XiEAi i.O.} =0.

3. THE LAW OF LARGE NUMBERS
Let the sequence (X,);>; of Gaussian vectors satisfy conditions (2. 1)—{2 3)
and let us consider the average
‘ X X
(3‘1) . f( 1)+ +f( n)’

n

where f is a Borel function. The question is the following:

For which functions f is the average (3.1) convergent to Ef(X;)?

In [2] and [3] it was proved that the average (3.1) is convergent in ! (P)
for feI!(v) and as. for Gaussian sequences (X;) whose correlation matrices
satisfy conditions (2.1) and (2.2). We are able now to extend this result replacing
the sequence of Gaussian random variables (X;);» ; with the sequence of Gaus-
sian random vectors (X,);»;.

Using a method adapted from [5] or [6] and from [2] and [3], we can
. prove the following

THEOREM 3.1. Let the sequence (X,);»1 of Gaussian vectors satisfy condi-
tions (2.1)42.3) and feI'(u). Then

13 J(X) s Ef (X)) as.
i=1

Proof. Since the argument is very similar to the proof of Theorem 3.3 in
[3], for the sake of completeness we present here only the main steps. It suffices
to prove this theorem for fel!(u) and f > 0. For each « > 1 let us define
a sequence (k,, n=0,1, 2,...) of integers as follows:

k=1, k,=[c¢"],nz=1

where [x] is the integer part of x. It is clear that

lim e = L

n—w kn+ 1 B uc'
Moreover,
(32) ‘ AV k-1 S m < kogm-

mz21lnmz1
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From the above and from nonnegativity of f it follows that

(33) kﬂ(m)*lskn(m)ﬂ — Skn(m)—l S& < Skn(m) — k"(m) Skn(m)

kn(m) kn(m)——l kn(m) m kn(m)—l kn(m)—l kn(m) ’
where S, = Z;":l f(X;). Suppose that the following statement holds:
(3.4) /\ S, —— Ef(X)) as.
a>1

By this assumption and from (3.3) for a fix « > 1 the inequalities

S . S
fEf (X1 < 11m inf —mem Stacm < lim 1nf — < lim sup— o lim sup = — 4 Ef (X )

m— oo n(m) m—ao M m- m= oo kn(m)
hold on ,, where P(2,) = 1. Therefore
S
llm — =Ef(X,) as.

Thus the proof is reduced to (3.4). Consequently, now we start with the proof
of (3.4). We see that

Stn—ESi, —— 0 as. iff —lﬂ’is" ——0 as,

k" n—+ o k" n— oo

where S5, = Z:'; Je(X) and (X)) = f(X)I{f (X)) <i}. The last convergence

3.5)

_is equivalent to

/\ P(limsup {|S;, — ES; | > ek,}) =0
e>0 n— o
In turn, this will follow if we show that the series

Y P{|S;,—ES;,| > ek,}

n=1

converges. By Chebyshev’s inequality and by Lemma 2.2 we obtain

= . Var (S;) C il i 1
> PUSL~ESL) > ok} < 3 08 < O % var(£ex) Y o
n=1 . n=1 & =1 n=1,i<k, *n
Now,
o 1 Gy .
=1z;<kk—3<i—2, l=1,2,...,

for some constant C; = C; («). Therefore

® Var ( f (X,))

Y P{|S;, —ES;| > ¢k,} < < 2Ef(X;) <0,
n=1

where C, = C+C; and the proof is complete. &
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Theorem 3.1 admits a converse in the following sense:
ProrosiTION 3.1. Let f be a Borel function on R® and let

lim sup [S,/n| < «©

on the set with positive probability. Then feL(u).

Proof. Again the argument is similar to the one-dimensional case (see [37)
and it is omitted. m

Similarly, in the non-identically distributed case we have _

THEOREM 3.2. Let the sequence (X;);», of Gaussian vectors sansfy condi-
tions (2.1)2.3) and (f);», < I?(1). Moreover, let

supE|fi(X)| < o0 and i Var(f (X; ))
iz1 )

Then
+ % LA~ B0 50 as.

4. COMMENTS ON LEGENDRE POLYNOMIALS

Let (I, #7°) be a measurable space, where I” is a countable product of
the interval I = [—1, 1] and 47 is the g-algebra of Borel subsets of I*. Now,
let © be a countable product of the uniform distributions on I, i.e.

p=Q I,
n=1
where 4, is the normalized one-dimensional Lebesgue measure
An(dx)=p(x)dx =3%dx, n=1,2,...

The Legendre polynomials are given by the formula

1 a
n!2"dx"

P,(x)= (x*-1», n=0,1,...

They are orthogonal with respect to 4, and

[ Py(X) Pp(X)di; (x) = @n+1)3,, for m,m=0,1,...
I

Introducing

B,(x)=./2n+1P,(x), xel,n=0,1,...,

we obtain a complete orthonormal system in I? (I, 4,). The multidimensional
Legendre polynomials on I* are defined as a tensor product of one-dimen-
sional polynomials, namely:

14 — PAMS 26.1
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For fixed m = (m;);>, € N§ such that [m| = Y,_ m; < oo the m-th Legen-
dre polynomial is defined as

= ]._.[ pmi(xi) for x = (x)eR>.
i=1

The collection (P,,, me N¥) forms an orthonormal basis of I? (I*, p). Let S =
span {P,,: meN,} and define for |r| < 1 a linear operator K,: S —> S by

Kr(f)(x)=ZrIMI(f’ pm)npm, xEIm: fES:

where

(fs Padu = | f(x) Pru(x)dpe().

We see at once that the definition of K, makes sense and K, is a self-adjoint
operator. Since the one-dimensional kernel

[ve}

Qr(x9 t)= Z r"pn(x)pn(y)s X, yEI’
n=0
is positive (see [1]), the linear operator K, is a contraction on If (I, u) for
1 < p < . Moreover,

_LKr(f)dp'= _[ofd#, fELl(Iwa 1>

and therefore K, is positive.

On the contrary to the Gaussian—Hermite case, the existence of a sequence
of random vectors (X;) = I*® satisfying the condition corresponding to (2.3) is
not clear at all. However, provided it exists, similar results can be obtained also
in the Legendre case. Thus, we can obtain the analogues of Gebelein’s in-
equality, Lemmas 2.1 and 22 and Theorems 3.1 and 3.2. '

Existence of a sequence of random vectors (X;) — I*® satisfying (2.3) for the

_ particular matrix R, with enftries

1

Qi = =g i,j=1,2,...,

can be achieved by constructing a homogeneous Markov process (X(@),t=0)
with state space I, transition probability

P(xa L, A) = _[Qt(xs y)d'll (y),
A
and with the initial distribution being uniform on I. For this pfocess we have
E[X ()X ()] = jexp(—|t—sl), s,:>0.

It is interesting that this process (X (z), ¢ > 0) has a cadlag version.
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