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Absttact. The aim of the paper is to prove the strong law of large 
numbers for Gaussian functionals (Theorem 3.1). The functionals are 
of the form f (Xi), where f is integrable with respect to the Gaussian 
noise and the random vectors Xi are coordinatewise suitable carrel- 
ated. In the last section wc comment on the possibility of building 
noise analysis corresponding to the Legendre orthogonal polynomials 
analogous to the Wiener white noise theory based on Hermite 
orthogonal polynomials (Mehler's kernel). 
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1. WIENER CHAOS DECOMPOSITION AND CEBELEIN7S LNEQUALITY 

We denote by (R", B") a measurable space, where R" is a countable 
product of the real lines and Bm is the smallest o-algebra containing all the 
cylinder Bore1 sets. Let p be a countable product of Gaussian measures on-R, i.e. 

m 

p =  Ovn,  
n = l  

where vn is the normalized one-dimensional Gaussian measure, i.e. 

We use E (p) for LP (Em, dp). In E (p) we have the norm 

and in the real z ( p )  the scalar product 
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To avoid ambiguity we recall the defitvtion of the Hermite polynomial of 
degree n 2 0: 

The Herrnite polynomials are orthogonal with respect to the weight 
exp (- x2), i.e. 

~ ~ ~ ( x ) ~ ~ ( x ) e n ~ ( - x ' ) d x  = ~ n ! & b . , .  for n, m = 0, 1, ... 
Al - 

Introducing 

we obtain 

(h,, h,), = 6,,, for n, m = 0, 1 ,  . . . 
It is well known that the orthonormal system {hn, n = 0, 1 ,  . . .) is complete in 
I?@, dv). The multidimensional Hermite polynomials on R" are defined as 
a tensor product of one-dimensional Hermite polynomials: For fixed m = 

(mi)+ E N g  (where N o  = (0, 1, 2, . . .)) such that Ira1 = ZIP"_, mi < a3 the m-th 
Hermite polynomial is defined as 

m 

h, (x) = n h,, (xi) for x = (x i )  E Rm 
i =  1 

It is well known that the collection (h,, m E N z )  forms an orthonormal basis of 
L2 Or). 

Let Y be a linear span of (h,, m EN;). Note that Y is dense in LP (p) for 
all 1  d p < co. For given I Q I  < 1, we introduce the Ornstein-Uhlenbeck opera- 
tor P, defined on Y by the formula 

Clearly, P, is linear in f and it transforms polynomials into polynomials. 
Moreover, it follows, by Hblder's inequality that for any p, 1  < p < ao, we have 

(1.2) IIP, f llp G Ilf llp. 
This shows that (1.1) makes sense for all f in E (p) and P,  extends to a linear 
contraction on E (p) for 1  < p < a. Note that P,  is positive in the sense that 
P, f 2 0 for all f 2 0. Each function f in L2(,u) can be written as 
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where f, = 1 f h, dp, m E W.  We denote by Zn the closed subspace spanned by 
Hermite polynomials h, of total degree n = JmJ. Then we have the following 
decomposition of L2(p) into a direct sum of mutually orthogonal subspaces: 

called the Wiener chaos decomposition. It is known that 

where Jk is the orthogonal projection of I? (p) onto the subspace H,. Now, the 
Parseval identity gives 

As a consequence of (1.5) we obtain (see [7] and [4]) Gebelein's inequality: 

PROPOSITION 1.1. I f f  E@E~JF~, then 

Using Gebelein's inequality, corresponding to k = 1, we can estimate 
a correlation coefficient of Gaussian functionals, namely: Let X = (Xi), Y = 

(E;) be random vectors with values in R" and with distribution 2 ( X )  = 

Y(Y) = p and E(Xi q) = @aij, i, j = 1, 2,  . . ., where dij denotes Kronecker 
symbol. 

Introducing random vector Z such that Y(Z) = p and Z ,  Y are stochas- 
tically independent, we infer that (X, Y) and ( U ,  Y) with U = g~ + J ~ z  
have the same joint distribution. This well-known trick and Gebeleins' inequal- 
ity for f, g~I . ? (p )  and (f, I), = 0 give 

G llPBf llz llsllz lel llfllz llg112. 

2. APPLICATIONS OF GEBELEIN'S INEQUALITY 

Let R ,  = (gij)i,j21 be a given real symmetric, nonnegative definite matrix 
such that 

(2.1) Q < 1, i, j = 1 2 ,  . . . and eii = 1, i = 1, 2, . . ., 
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Let us introduce a matrix R = (rk,l;i,j)i,j,k,l> where rk,l;i,j = eij dkl for i, j ,  k ,  1 = 
1 ,  2 ,  . . . It is easy to check that the matrix R is symmetric and nonnegative 
definite. There exist a probability space (9, SY P) and a centered Gaussian 
system (Xik)i , ,3,  on this space such that 

Let us put X; = (Xi,, k  2 I), i = 1,2,  . . . Therefore we get a sequence of ran- 
dom vectors {%;) with values in R" and with distribution $P(Xi)  = p, 
i = 1 , 2 ,  . . . By R," we denote a set of all real sequences with a finite - number of 
nonzero terms, i.e. 

R," = {(xi) E Rm : xj = 0 for large j ) .  

Let us define a linear operator A:  W z  -+ R by the formula 

We can extend A, using Holder's inequality, to a continuous linear operator 
over the spaces lP, 1 < p S m. Namely: 

LEMMA 2.1. For every 1 4 p < co we can extend the operator A to the 
continuous operator A :  lP + ZP with norm IlAll < C. 

Applying Lemma 2.1 and inequality (1.71, we get 

LEMMA 2.2. Let the sequence (Xi ) i2  of Gaussian vectors satisfy conditions 
(2.1H2.3) and let (A);,,  c I? (p). Then for each n B 1 we have 

Moreover, for arbitrary Bore1 subsets (Ai) i31 of Rm we obtain 

P roof. Applying inequality (2.4) to the functions ( x )  = IAi (x)-  P  f Xi E Ai) 
and g j ( x )  = I,, ( x ) -P  { X j  E Aj ) ,  where I ,  is the indicator of the set A, we 
obtain (2.5). 

COROLLARY 2.1 (Borel-Cantelli lemma). Let the sequence (Xi)i3 of Gaus- 
sian vectors satisfy conditions (Z . l j (2 .3 )  and let ( A i ) i 3 ,  be a sequence of BoreI 
sets in Rw such that 

(2.6) 

Then. 
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Moreover, &f 

(2.8) 

then 

3. THE LAW OF LARGE NUMBERS 
- 

Let the sequence (X3ial of Gaussian vectors satisfy conditions (2.1)-(2.3) 
and let us consider the average 

where f is a Bore1 function. The question is the following: 
For which functions f is the average (3.1) convergent to Ef (XI)? 
In [2] and [3] it was proved that the average (3.1) is convergent in I! (P) 

for f EL? (v) and a.s. for Gaussian sequences (Xi) whose correlation matrices 
satisfy conditions (2.1) and (2.2). We are able now to extend this result replacing 
the sequence of Gaussian random variables (Xi)i3, with the sequence of Gaus- 
sian random vectors ( X i ) i 3  l .  

Using a method adapted from [ 5 ]  or [6] and from [2] and [3], we can 
prove the following 

THEOREM 3.1. Let the sequence (Xi)i31 of Gaussian vectors satisfy condi- 
tions (2.1H2.3) and f E L? (p).  Then 

P r o  of. Since the argument is very similar to the proof of Theorem 3.3 in 
[3], for the sake of completeness we present here only the main steps. It suffices 
to prove this theorem for f E L1(p) and f 2 0. For each o: > 1 let us define 
a sequence (k,, n = 0, 1, 2, .. .) of integers as follows: 

where [x] is the integer part of x. It is clear that 

Moreover, 
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From the above and from nonnegativity of f it follows that 

where Sm = Z'', f (Xi ) .  Suppose that the following statement holds: 

By this assumption and from (3.3) for a fix cr 3 1 the inequalities 

1 1 Skncm) < S m  
S m <  1- Sk E f  (X ,) < - lim inf - , iim inf- < lim sup - -, tx lm sup = aEf'(Xl) 

01 a m + m  kn(rn) m + m  w m+m m m + m  k n ( m )  

hold on Sa,, where P(f2h) = 1. Therefore 

Thus the proof is reduced to (3.4). Consequently, now we start with the proof 
of (3.4). We see that 

where S", f" (Xi) and f (Xi) = f ( X i )  I { f (Xi) < i ) .  The last convergence 
is equivalent to 

/\ P (lim sup {Isin - ESEnI > ~k,}) = 0. 
E > D  "+* 

In turn, this will follow if we show that the series 

converges. By Chebyshev's inequality and by Lemma 2.2 we obtain 

Now, 

for some constant C1 = Cl (a). Therefore 

where C2 = C * C1 and the proof is complete. 
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Theorem 3.1 admits a converse in the following sense: 

PROPOSITION 3.1. Let f be a Bore1 function on W" and let 

lim sup IS,/nl < m 
n+ m 

on the set with positive probability. Then f E L1 (p). 
Pro o f. Again the argument is similar to the one-dimensional case (see [3]) 

and it is omitted. rn 

Similarly, in the non-identically distributed case we have - 

I THEOREM 3.2. Let the sequence ( X i ) i 3 1  of Gaussian vectors satisfy condi- 
tions (2.1)-(2.3) and (hIi c L2 (p). Moreover, let 

sup E [fi (&)I < cg and var  ( A  (xi)) 
i2 

< a. 
i3 1 i= 1 

Then 

4. COMMENTS ON LEGENDRE POE'IINOMUES 

Let (I", ~8,") be a measurable space, where I" is a countable product of 
the interval I = [ - 1, I] and is the 0-algebra of Bore1 subsets of I". Now, 
let p be a countable product of the uniform distributions on I, i.e. 

where A, is the normalized one-dimensional Lebesgue measure 

The Legendre polynomials are given by the formula 

1 d" 
Pn(x)  = -- (x2-I)n? n = 0,  1, ... 

n! 2" dx" 

They are orthogonal with respect to 1, and 

~ P n ( x ) P , ( x ) d R , ( x ) = ( 2 n + l ) 6 , , n  for n,m=0,1, ... 
I 

Introducing 

we obtain a complete orthonormal system in L? (1, A,). The multidimensional 
Eegendre polynomials on I" are defined as a tensor product of one-dimen- 
sional polynomials, namely: 
14 - PAMS 26.1 
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For fixed sn = (mi)i3l EN? such that Iml = EL, mi < cr, the rn-th Legen- 
dre polynomial is defined as 

w 

Prn ( x  = p i  x i  for r = ( x i )  € R m .  
i =  1 

The collection (p,, m E N z )  forms an orthonormal basis of I? (Im, p). Let S = 
span (p, : m E NO) and define for Irl < 1 a linear operator K ,  : S + S by 

where 

We see at once that the definition of K, makes sense and K ,  is a self-adjoint 
operator. Since the one-dimensional kernel 

is positive (see [I]), the linear operator K ,  is a contraction on LP(Im, p)  for 
1 < p < a. Moreover, 

and therefore K, is positive. 
On the contrary to the Gaussian-Hermite case, the existence of a sequence 

of random vectors (Xi) c I" satisfying the condition corresponding to (2.3) is 
not clear at all. However, provided it exists, similar results can be obtained also 
in the Legendre case. Thus, we can obtain the analogues of Gebelein's in- 
equality, Lemmas 2.1 and 2.2 and Theorems 3.1 and 3.2. 

Existence of a sequence of random vectors (Xi) c I" satisfying (2.3) for the 
particular matrix Ro with entries 

can be achieved by constructing a homogeneous Markov process ( X ( t ) ,  t  2 0) 
with state space I, transition probability 

and with the initial distribution being uniform on I. For this process we have 

It is interesting that this process ( X ( t ) ,  t  2 0) has a cidldg version. 
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