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Abstract. A Lkvy process on Rd with distribution p at time 1 is 
denoted by X") = {xi'")]. IT the improper stochastic integral 

f (s] d ~ : f i )  of f with respect to Xtd is definable, its distribulion is 
denoted by (p). The class of all infinitely divisible distributions p on 
Rd such that OJ(p) is definable is denoted by D (a1). The class b (aI), 
its two extensions Be(@) and a,{@r) (compensated and cssentialj, 
and its restriction Do(@,-) (abtiolutcly definable) are studied. It is 
shown that 9., (@,) is monotonic with respect to f ,  which means that 
If21 < lfil implies c Des(@,J. Further, BO(@,] is monotonic 
with respect to f but neither nor a,(@,) is monotonic with 
respect to f: Furthermore, there exist p, f,, and f2 such that 
0 < f2 6 fi , p E jD (Qf J, and p $3 (cPfb). An explicit example for this is 
related to some properties of a class of martingale LBvy processes. 
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1. INTRODUCTION AND RESULTS 

Let ID (Rd) be the class of infinitely divisible distributions on the d-dimen- 
sional Euclidean space Rd. For each ~ E I D  (Ed) let X(p) = {Xlp), t 2 0) be the 
L6vy process on Rd satisfying S ( X y ) )  = y. Here S ( Y )  denotes the dis- 
tribution of Y for any random element I.: Given ,u E ID (Rd) and a real-valued 
measurable non-random function f on [O, a), we say, as in [lo], that f is 
locally X(p)-integrabEe if the stochastic integral J, f (s) dxjP1 of f with respect to 
X") is definable for each bounded Bore1 set B in [0, oo) in the sense of 
Urbanilc and Woyczybski 1141, Rajput and Rosinski [q, Kwapien and Woy- 
czy6ski 151, and Sato [9]-C11J. We write 

t 

1 f (s) dXifi)  = 1 f (s) dXp) . 
0 1os1 



Since this is an additive process in law, we use an additive process modification 
(see [8] for terminology). For p fixed, let 

(1.1) k (Xt") = (f: f is locally ~("1-integrable). 

Characterization of E(X(fi)) in terms of the Levy-Khintchine triplet of p is given 
in [6 ] ,  [5], [9], [lo]. It  is known that L(Xtw)) is a generalization of Orlicz 
spaces, one of whose properties is that L (X(pj) is monotonic, which means that if 

(1.2) fl and f, are measurable and I fil < 1 flI, 
- 

then f2 E L(X(,)) whenever f ,  E k (X")). Given f; let 

(1.3) D [ f ] = D [f; Rd] = {y E I D  (Rd): f is locally X(#)-integrable). 

Then (1.2) implies D [f,] c D [ f,]. We express this property by saying that 
D [ f ]  is monotonic with respect to f. 

Let p E ID(Rd). We say that the improper stochastic integral of f with 
respect to X'p) b definable if f eL(X'fill') and if j', f ( s )dXg)  is convergent in 
probability (equivalently, convergent almost surely) in as t + a. The limit is 
denoted by J':-S(s)d~p. This notation will help to distinguish it from the 
stochastic integral (with random integrand in general) up to infinity of Cherny 
and Shiryaev [2]. We define 

Two extended notions and one restricted notion of defrnability of improper 
stochastic integrals are introduced in [lo] and [ll]. We say that the compen- 
sated improper stochastic integral of f with respect to X(") is deJinabZe if 
f EL (x(") and if there is q E R ~  such that Jr - f (s) dxip*'-q) is definable. Here 
6-, is the distribution concentrated at -q. We say that the essential improper 
integral o f f  with respect to  X(') is definable if f E L(X(')) and if there is a non- 
random Rd-valued function q, on [0, a) such that So f (s) dXiP) -q, is conver- 
gent in probability in Rd as t -+ CO. We say that the improper integral 
J," - f (s)  dXiF) is absolutely deJinab1e if f E L(X")) and if 

m 

(1.5) { l ~ , ( f ( s ) z ) l d s < c o  for all Z E R ~ .  

Here C,(z) is the cumulant function of p, that is, the complex-valued con- 
tinuous function on Rd with Cp (0) = 0 such that the characteristic function f l  (z) 
of p is expressed as @ (z) = exp (C, (z)). For any measurable function f on 
LO, a), let 

m -  

Do (@,) = 9' (a,; Rd) = {p E ID (Rd): j f (s) axi#) is absolutely definable), 
0 
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m -  

3 ( Q j )  = 3 (a,; R 3  = ( P E  ID (R"): j f (s) dX;p1 is definable), 
0 

DC (qf) = a, (@,; Rd) = (p E ID (P): compensated improper integral 

of f with respect to X[" is definable), 

a,, (@,) = a,, (@$; Rd) = { p  E I D  (Wd):  essential improper integral of f 

with respect to X'p) is definable}. 
- 

Further let, for p€ID(Rd) ,  

Lm - (X(')) = (f : f is measurable and f i ~  ID (@ f ;  P)) . - 

It is known that 

We are interested in the problem whether 3 (@,), Do (@,-), 9, (Qj ) ,  and 
Be, (Gs) are monotonic with respect to f. Clearly, 3 (@,) is monotonic with 
respect to f if and only if, for every p~ ID (R*), Lm- (X(")) is monotonic. 

Our results are the following 

THEOREM 1.1. The class a,(@,) is monotonic with respect to J: 

THEOREM 1.2. The class 3'(GJ)  is monotonic with respect to  J: 

The class a ( @ )  is not monotonic with respect to J: That is, for some 
~ E I D  (Rd), Lm- (X(*)) is not monotonic. In order to specify p, we use the 
Lkvy-Khintchine triplet (A, v, y) of p E ID (Ed) in the sense that 

where A is a d x d  symmetric nonnegative-definite matrix, called the Gaussian 
covariance matrix of p, v is a measure on Rd satisfying 

v ({o>> = 0 and 1 (1x1 A 1 )  v (dx) < co , 
Rd 

called the U v y  measure of p, and y is an element of Rd, called the location 
parameter of p. Sometimes we write p  = , U ~ A , ~ , , , .  We say that a measure Q on Rd 
is symmetric if e ( B )  = Q(-3)  for all Bore1 sets 3. 

THEOREM 1.3. Let p = ~ [ A , ~ , ~ ) E I D  (Rd) with A arbitrary and v symmetric. 
(i) If f, and f2 satisfy (1.2) and if p~ 9, (Qf , ) ,  then p E 9, (@,-,). 

(ii) Assume that y = 0. If fi and f, satisfy (1.2) and if p E 1D ( G f  ,), then 
p E 3 (GsJ. That is, - (X(") is monotonic. 

(iii) Assume that y # 0 and Jlxl,, 1x1 v (dx) c m. Then La - (X(q is not 
monotonic. 
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A simple example for Theorem 1.3 (iii) is the case where X'v) is a Brownian 
motion with drift. 

We ask a question whether there exist p, f i ,  and fi such that 0 6 f, < f l ,  
fi EP-  (X'"') and f, $A"- (X'"). The next theorem gives more than the 
affiimative answer. 

THEOREM 1.4. Let fi (s) be a real-valued function which vanishes on [ O ,  a) 
and is continuous on [a,  a) with some a 2 0. Let p E .D (@f,)\.DO (Qf l ) .  Then 
there is a nonradorn open set D in [a ,  co) such that p 9 3 (Qf2 )  for f, (s) = 

fi Is) 10 Is). - 

Notice that this theorem and Theorem 1.2 give a characterization of the 
property that D (@,,)\a0 (@, ,) # 0. 

We say that f (s) x g (s) as s -, cc if there are positive constants c ,  and 
c ,  such that 0 < c, f (s) < g (s) < c2 f (s) for all large s. 

EXAMPLE 1.5. Let fl (s) be a locally square-integrable f~~nction on LO, a). 
Suppose that f, (s) x s- as s + cr~, and that there are positive constants c and 
so such that 

m 

1 I f i ( s ) - c s l ] d s  < ao. 
so 

Then Theorem 2.8 of [11] states that the class 23(@,,)\B0 (Qf , )  is nonempty 
and that 

p = ~ ( A , v , Y )  ' (@f I)\'' (@f 1) 

if and only if 

J I x l v ( d x ) < a ,  j x f l ( d x ) = O ,  
1x1 ' 1 R d 

t m 

lim j s-I ds j xv (dx)  exists in Rd, and f s- l I J xv (dx)l ds = a. 
t + m  SO 1x1 >s SO IxI>s 

Distributions satisfying these conditions will be given in Example 1.7. 

We show that the class B ,  (8,) is not monotonic with respect to J: 

THEOREM 1.6. Let fl (s) = s-I lIl,,) (s). Suppose that p E a (@,,) and that 
the LCvy measure v of p satisfies 

for some j E {l ,  . . ., d )  a d  c > 0. Then there is a nonrandom open set D in 
11, a) such that p $9, for fi (4 = f l ( s )  1, (s). 

Here x j  is the jth coordinate of XER*.  In Theorem 1.6 we recall that 
p s  D (8,,) implies j I x l ,  1x1 v (dx)  < m b y  virtue of Theorem 2.8 of [ I l l .  
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EXAMPLE 1.7. In Example 2.9 of [11] we have introduced the measure v 
concentrated on (X E Rd: 1x1 = 2,  3 ,  . . .} given by 

v(B) = 1 h(de)  l ,(ng) a,, for Borel sets 3, 
So ~ E Z  

where So is a nonempty Borel set on the unit sphere (It1 = 1) satisfying 
S o n  (- So)  = 0, A is a finite measure on So satisfying Lo [l ( d l )  # 0, Z is the 
class of all integers, and an, n G 2, are such that a, = a ,  = a- = 0 and, for 
positive integers n, m, 

- 
, a L n = O  if 2 m 2 < n < 2 i m + 1 ) 2 , m  odd, 

if' 2"' < n < 2("+ ' I 2 ,  m  even, 

1 I 
an = 1) ) , U - ~ = O  if n = 2 " ' , r n  even, 

1 1  
a. = 0, a-,, = -(-+ if n = 2 m 2 , m  odd. 

n logn log(n+ 1) 

It is shown that & n l s z  Inla, < cg and that, for k = 3,  4, . .., 
ogk)- if 2"' < k  $ 2'" + ')',  rn odd, 

-(logk)-I if 2 m ' < k < 2 i m + 1 ) 2 , m  even. 

Thus 

j 1x1 v  tdx) = J W t )  C Inl an < 02 9 
1x1' 1 So l n ( 3  2 

Further it is shown that J ~ s - l d s f , x , , s x v ( d x )  is convergent as t + co. Let 

p = p(A,v,y, with y = -SRdx (1 + I x ~ ' ) - ~  ~ ( d x )  and A arbitrary. Then 

since the conditions stated in Example 1.5 are satisfied. Choosing j E (1, . . . , d )  
such that jso t j A  (dS) # 0, we can apply Theorem 1.6 to this distribution p. We 
can also apply Theorem 1.4 to this fl and this p. If A = 0, then the process X(p) 
is a compensated compound Poisson process. 
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Using the measure v above, consider 

1 
f ( B )  = v (B)  + - j l ( d t )  1 ,  (2[) for Bore1 sets 3 

2log 2 ,, 
and define P E  ID (Rd) by 

C; (2) = j (ei{z*x) - 1 ) v" (dx) . 
R d  

Then 

1 
- 

1 x/i(dx) = j xC(dx) = j xv (dx) +- j t1E ( d t )  = 0. 
R d R d R" 1% 2 so 

The distribution ji also belongs to TD (@f,)\BO (4PfI) for fl (s) = S-' lll,oo) (s) and 
Theorem 1.6 applies to jl by the same reason as for p. Theorem 1.4 also applies 
to fi (s)  = s- '  lIl,m) (s)  and 6 The Lkvy process x@) associated with @ is a com- 
pound Poisson process with mean 0. 

In Section 2 we will give proofs of all theorems stated above. The process 
X('] associated with p in Theorem 1.6 is a martingale Lkvy process and the 
processes 6 f, (s) dX$p) and ji f, (s) dX$,) have intriguing properties, which 
we will discuss in Section 3. Applications of Theorems 1.1 and 1.2 to some 
types of f will be given in Section 4. Determination of for some f is 
made. 

2. PROOFS 

In the following three propositions let p = p ( ~ , ~ , ~ )  E ID (Rd) and f E L (X1')). 
We present necessary and sufficient conditions for p to belong to 3 (Gf) ,  
Do (af 1 3  or Des ( @ f ) .  

PROPOSITION 2.1. The following three statements are equivalent: 
(a) P E B  (8,). 
(b) $ C,( f (s) z)  ds is convergent in C us t 4 oo for each z s R'. 
(c) p  satisfies the following: 

m 

S ds 1 ( I f  (s)xI2 A 1) v(dx)  < a Y 

0 R d  

is convergent in Rd as t 4 CO. 
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P r o  of. See Proposition 5.5 of [lo] and Propositions 2.2 and 2.6 of [Ill. It 
fallows from f e L (X"]) that Ji (c,, (f (s) z)l dr < m and that 

1 1 v (dx) ds < rn 
6 ~ ( ~ ( ~ + ! ~ ( 1 + l ~ ( ~ ~ i 2 - ~ )  )I 

for t ~ ( 0 ,  a), as is shown in Proposition 2.17 and Corollary 2.19 of [lo]. a 

PROPOSITION 2.2. A distribution p is in 3.,(@,) $ and only ij" (2.1) and (2.2) 
are satisfied. 

Proof. See Proposition 5.6 of [lo] or Proposition 2.6 of Ell]. 

P~owsrrro~ 2.3. A distribution p is in Do(@,) if and only if (2.1), (2.21, 
~ n d  

P r o  of, For fixed ts E R denote by p" a probability measure such that 
pu(B) = j lg (UX)  y (ax) for all Bore1 sets B. Let (Au, v", yu) be the triplet of p". 
Then A" = u2 A, vu (3) = j 1 ,  (tax) v (dx) ,  and 

Notice that 

Let 

(2.6) 9 (u) = tr AU + 1 (1x1' A 1 )  vU (dx) + (y"l. 
Rd 

When u = f (s), pu and (Au, vu, y") are written as ,uf(") and (AS("', vf("), y-""). The 
properties (2.1), (2.2), and (2.4) combined are expressed by 

We note that 

(see, in [ l o ] ,  (2.5H2.7) and line 3 of the proof of Theorem 3.14). Hence, if (2.1), 
(2.21, and (2.4) are satisfied, then (1.5) is satisfied, that is, p~ IDO(Gf). 



30 K. Sato 

Conversely, assume that p~ Do(@,). Then p~ and (2.1) and (2.2) 
follow from Proposition 2.1. We have 

<'' *)) ~~f[ l ) (d*)  + <yf(s) ,  1). ~ r n  C, ( f  (s) z) = Im C,m (2) = 1 sin (z, x )  -- 
R d 1 + lx12 

For fured z, 

- 
Hence it follows from (2.2) that 

I 
I where c, is a constant depending on z. Thus we obtain 

using the relation j: 11m~,(f (s)z)l ds < UI. Choosing z = ( d j k ) l s k < a >  1 < j  6 d, 
we obtain (2.4). a 

P r o  of of Theorem 1.1. Use Proposition 2.2. Let fi and f2 satisfy (1.2). 
Suppose that p~ a,, (Gf ,). Then (2.1) and (2.2) hold with fl in place of J: Since 
1 f21 g I f,l, it follows that (2.1) and (2.2) hold with f2 in place of J: This means 

i that P E Des(@f,). 

P r o  of of T h e  orem 1.2. Use Proposition 2.3. Let f, and f2 satisfy (1.2) 
and suppose that ~ E D O ( @ ~ , ) .  Using the function q ( u )  in (2.6) induced b y  

= P(A,V .~ ) ,  we have 

(2.8) 

Let us use 

(2.9) 4 (u) = tr AU+ 1 (1x1' A 1) vU (dx) + sup lyvl.  
R d YER,IV~ 4tuI 

We have y (u)  < @ (u) < (3/2) q (u) as in Proposition 3.10 of [lo]. Thus (2.8) is 
equivalent to 

The function 4 enjoys the property that 4 (f, (s)) d @ ( f ,  (s)) whenever I fz ($1 < 
Ifi (s)l Hence 1; @ ( f 2  (s))ds < GO. This means ~ E D O  (Gf,). s 
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P r o o f  o f  Theorem 1.3. (i) Let fl and j, satisfy (1.2). Assume that 
,UE TI, (Gf,). Then there is q € R d  such that p * 3 (Qfl). Thus 

and fl (s) ( y  - q)  ds is convergent, since v is symmetric. We may and do choose 
q = y. Then we see that p * 6 -, E B (Qf,). It follows that p E (Qf2). 

(ii) Look back to the argument above with y = 0. Then the proof is 
- 

evident. 
[iii) Let 

if O < s < l ,  
if n < s < n + l  with n odd, 
if n < s < n + l  with n  even 

and let f,(s) = sL1  l,14,,(s). Then If2) = ! f i r .  Applying Theorem 2.8 of [ I l l ,  we 
see that f, $km- (X(p)) since y # 0 = I,, x IxI2 (1 + IxI2jL1 v (dx). On the other hand, 
f, €Lm- (X[lr)) by virtue of Proposition 2.1. Indeed, jz ds  {,, ((f, (s) xI2 A I) v (ax) 
< co by the same reasoning as in the proof of Lemma 2.7 of [ill, and 

which is convergent in Rd as t -+ CQ. Hence Lm- (X(lr)) is not monotonic. a 

Proof  of Theorem 1.4. Let ( A ,  v, y )  be the tripIet of p. We use an 
Rd-valued function 

Using [2.5), we see that h(s) is continuous on [a,  a). Since P E  3 (Gf,) ,  we 
have 

and j: h (s)ds is convergent in R1 as t + m (Proposition 2.1). Since p $  DO [Gf, j ,  
we have j: Ih ( $ 1  ds = m (Proposition 2.3). Choose and fix j E (1, . . ., d )  such 
that Sam Ihj (s)! ds = m, where hj(s) is the jth coordinate of h (s). Define D + = 
{ S  2 a: hj(s) > 0), D -  = ( s  2 a: hj(s) < O ) ,  and DO = ( s  3 a: hj(s) = 0). Then 
D+ and D -  are open in [a, co). Let hi+ (s) = hj(s)v 0 and h; (s) = hj+ (s)- 
hj(s). We see that Sam h$ (s)ds = co and J: h,: (s)ds = co. Let D = D+ or D -  

3 - PAMS 26.1 
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(either will do). Let fi (s) = fl {s) lo (3). Then 

t 

= lD(s)h(s)ds. 
4 

If D = Dt, then 

If D = D-, then 

Hence l, (s) h (s) ds is not convergent in Rd. Consequently, p 4 D (@,,) by vir- 
tue of Proposition 2.1. 

P roo f  of Theorem 1.6. Let the triplet of p be (A, v, y). In order to 
prove that it is enough to show that, for every q€Rd, 

is not convergent in Rd as t + CO. Let h (s) be as in (2.1 1). This is an Rd-valued 
function, continuous on 11, a). Since y = -jR, x 1x1' (1 + 1x1')- v (dx) (see 
Theorem 2,8 of [Ill), we have 

Choose j as in (1.7) and let hi($ be the jth coordinate of h (s). Since h (s) ds is 
convergent in Rd as t + co (see Theorem 2.8 of [ll]), Sl hj(s)ds is convergent 
in R. We claim that 

Indeed, 
t t 

{lhj(s)lds< 1 Ss-ll 5 x ~ v ( ~ x ) ~ ~ s + I ~ + I ~ ,  
1 Ix]>s 
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where 

We will denote positive constants by c,, c,, . .. The quantities I, and I2  are 
bounded in L, since 

x j v  (dx) 
= i s - 1  I j .,>, 1 + I S - ~ X I ~  

and since 

a, i,=Es-l j xj IS- l x i Z  V @ X )  

I l < I x I G s  ~ + I s - ~ x I ~  

cC 1x1 Is-' xiZ v (dx) 
I,<Ss-lds J 

l < l x J C s  1 + I s - 1 x 1 2  1 

- log 2 -- 1 Ixlvldx). 
2 lx1>1 

Thus we obtain, for some so > 1, 

from condition (1.7). Similarly, 
t ds J lhj(s)l ds 2 e5 J -- cfj 3 c ~ I o ~ I o ~  t-c,. 
1 so s logs 

Looking back more carefully, we see that (2.12) holds. We have, a fortiori, 

Now define D', D-, Do, h; (s), and hJy (s) as in the proof of Theorem 1.4. 
Then 

a, w 

jhjf(s)ds=co and j h j ( s ) d ~ = o o .  
1 1 

We have 

because it follows from 
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that 

Using (2.131, we see that 

1 ds 1 I ds 
lirnsup-j I,+ (s)- + lim sup - I 1,- ( s ) ~  2 1 

t-+m loglogt, slogs t+m loglogt, 

Choose D = D +  or D- in such a way that 

Choose t,, + oo such that (loglogtn)-'~~l,(s)(slogs)-lds tends to some 
b > 0. Then 

since, for any k > 0, 

1 
ds logk ' j l (  

as 
j ~D(s); 2 s ) ~  + b log k. 

log log t" 2 1% log t n  ,' 
We claim that, for any choice of q E Rd, f f ~ n  ID (s) (hj(s) - S-I qj) ds is divergent as 
ra + ao. If q j  = 0, then this is divergent since 

which diverges to co or to - oo. If qj  # 0, then 

is divergent, because 

t" t" 

J lD(s)Ihj(s)l ds < J Ihj(s)l ds - cloglogtn 
2 2 

from (2.12) and in virtue of (2.14). The proof is complete. FI 

3. REMARKS ON MARTINGALE ~ v Y  PROCESSES 

We have the following genera1 result. Recall that f EL(X(@)) for all 
p ~ i D ( R 3  if and only if f is locally square-integrable on [0, co) (see [lo]). 
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PROPOSITION 3.1. Let X'" be a martingale Levy process on Rd. Let f be 
locally square-integrable on LO, m). Then E: = jL f ( s ) d X p )  is a martingale ad- 
ditive process. 

Proof.  Let p = p( ,,,,, ). We have E IXINl < c~ and 

Let (A,, v,, y,) be the triplet of k;. Proposition 2.6 of [11] states that 
t - 

A, = 1 f ( s ) ~  Ads, 
0 

t 

v, (B) = 1 ds 1 I, (f (s) x )  v (dx) for B Bore1 with 3 0, 
0 Rd 

Hence, recalling that jlxl, 1x1 v (dx)  < m, we obtain 

1 t 

= J l f ( s ) l d s  j I x ( v ( d x ) + j  f ( S ) ~ ~ S  1 Ix12v(dx) < m. 
0 1x1 > 1 0 1x1 < 1 

Thus EII/;I < m. Now we have 

x 1xI2 v (dx) 
as = 0,  

0 

that is, (I;) is a martingale additive process. BA 

Remark  o n  P r o p o s i t i o n  3.1. If X(" is a martingale LCvy process and 
if f s L (Xm), it is not necessarily true that Y,  = ro f (s) dXtP) is a martingale 
additive process. In fact, E I Y,I may be infinite. For example, let X1" be a com- 
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pound Poisson process on Rd with mean zero. Then any measurable function 
f belongs to L(X@)) as Example 4.4 of [LO] states. If If (s)l ds = m, then 
E I x.1 = coy because, choosing n > 0 such that 0 < JIxI>a 1x1 v (dx) < m for the 
Levy measure v of X1p), we have, for the Levy measure v,, of KO, 

which implies that E 1x,I = CQ . 
Remark on mart ingale additive processes related to Theo- 

rem 1.6. The Levy process X(@) associated with p in Theorem 1.6 is a martin- 
gale, that is, it satisfies E IXp)I < m and EXiP) = 0. Consider the case d = 1 .  Let 
h(s), D', D - ,  and Do be as in the proof of Theorem 1.6. Thus 

and D', D - ,  or Do is the set of s 2 1 at which h(s)  is positive, negative, or zero, 
respectively. Let 

t t 

E; = IS - '  l r l , , , ( ~ ) d X P ,  I.;' = Js-' l D P ( ~ ) d x $ ~ )  for p = +, - , 0. 
0 0 

Then {I.;], (I.;'), {I;->, (KO), and {I.;+ + Y,-) are martingale additive proces- 
ses, as is shown in Proposition 3.1. We can show that 

(3.2) Y,, Y,' + x-, and I;' are convergent in R a.s. as t -+ m y  

These are remarkable behaviors. If A = 0, then each of I;' and x- is the 
compensated sum of the jumps of X(" in the union of some nonrandom time 
intervals with some nonrandom weights. For these behaviors it is essential that 
the Gvy measure is nonsymmetric and close to symmetric. Theorem 1.3 (ii) 
states that martingale compound Poisson processes with symmetric LCvy 
measures do not exhibit this kind of behaviors. 

Proof  of (3.1H3.3). Let the triplet of xp be (A?, v?, y f )  for p = +, -, 0. 
Then 

f 

A? = J s-' l D P  (s)  Ads, 
1 



Stochastic integral operators 37 

t 

vf (B)  = 1 1, (s) ds 1, (s-I x) v ( d x )  for B Bore1 with B $ 0, 
1 R 

Since A: and J (x2 A 1) vf (dx) are bounded and increasing, xP - yf is conver- 
I! gent in probability as t 4 co. Since it is an additive process, XP-yf is also 

convergent a.s. Since y: + oo and y, + - m (see the proof of Theorem 1.6), we 
obtain (3.1). We have convergence of E;O since yp = 0. Convergence of Y, comes 
from the fact that p E 3 (Gf ,). RecaIIing that = I.;" + I;- + X0,we obtain 
(3.2). In order to see (3.3), let v,- be the LBvy measure of Y,-. Then 

1x1 

= S 1x1 v(dx) j s-I ds = j 1x1 log 1x1 Y (dx) ,  
1x1 2.1 1 1x1 > 1 

which is infinite by virtue of Theorem 2.8 of [I11 and of the fact that 
p # ID0 (Qs,). Hence E 1 Y, - I = a. 

4. APPLICATIONS 

The following results are consequences of Theorems 1.1 and 1.2. 

PROPOSITION 4.1. Let fi and f2 be measurabIe and 1 fil < Ifll. If %(If , )  = 

Do (@f,) or if a ( I  ,) = a,, (@ ,), then ID (@,, j c 3 (@ , ,). 
Proof.  In general we have (1.6). Hence it follows from Theorem 1.2 that if 

3 (I,,) = Do (I,,), then 

it follows from Theorem 1.1 that if 3 (IP *) = ID,, (@,J, then 

completing the proof. 

EXAMPLE 4.2. Let fl be a locally square-integrable function on [0, co) 
satisfying f, ( s j x s -  lt" as s + co with some a E (0, 1 ) u  (1, 2). Let fi (s) and f3 (s) 
be measurable and satisfy ] f, (s)l < I fi (s)l < I f3 ($1. If a E (0, I), then 9 (Gf,) c 
3 (I,,) c (@,J. If a E (1, 2), then (I,,) c 9 (@, 3. 

Indeed, we have 9 (@,J = Do (@, ,) = a,, (@ if a E (0, I), and (G,,) = 
Do (I,,) '$ a,, (@ ,) if a E (1, 2) (Theorem 2.4 of [Il l) .  Hence Proposition 4.1 
applies. 
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PROPOSITION 4.3. Let f be a IocaIIy square-integrable function on [0,  co) 

such that there are positive constants oc, c l ,  and c2 satisfying 

(4.1) exp ( - c2 s? 6 f (s) 6 exp ( - c, s") for all large s. 

Then 

(4.2) = D(@,-l= B c ( @ f )  = Bed@,") 

= ( p ~  ID (P): j (log' Ixl)l1"p (dx) < co) 
Rd 

= (p E ID (P): J (log' ]xl)'/" v (dx) < m), 
R d 

where v is the LQvy measure of p and log' u = (log u) v 0. 

Obviously, in (4.2) we can use (log(l+ lxl))''' for 1x1 > 1 in place of 
(log' Ixl)llU. 

Proof  of P ropos i t i on  4.3. Let M = ( p  E ID (Rd): j,,(log' Ixl)'/"p(dx) 
< a). Then M takes the last expression in (4.2), which is a consequence of 
Theorem 25.3 of [8]. Let A(s )  = exp(-cjsn), j = 1, 2. Using Theorem 5.15 of 
[lo] for these functions, we see that 

Combined with Proposition 2.3 of this paper, the proof of that theorem also 
shows that T,O (@f,) = M.  Since f, (s) < f (s) < f, (s) for all large s, it follows 
from Theorems 1.1 and 1.2 that 

Thus ID0 (Qf )  = Be, (@,) = M. Using (1.6), we also have T, (Qf) = Dc(@,-) = M. H 

Theorem 5.15 of [ lo]  deals with a function f (s) such that 

with a > 0, PER, and c > 0. This function satisfies (4.1). Thus, if we show 
Theorem 5.15 of 1101 only for f (s) = exp (- cs"), then the proof of our Proposi- 
tion 4.3 is obtained and the rest of Theorem 5.15 of [ l o ]  is a consequence of 
our Proposition 4.3. 

EXAMPLE 4.4. Let f be as in Proposition 4.3. If f, (s) and f, (s) are rneasu- 
rable and satisfy I f2(s)l d If (s)l < I f3 ( $ 1 ,  then I D ( @ f , )  c ID(@,) c T? (Gf,). Use 
Propositions 4.1 and 4.3. 

Let Lo(Rd) be the class of selfdecomposable distributions on Rd and let 
&(Rd), rn = 1 ,2 ,  .. ., be the nested subclasses of Lo(Rd) studied by Urbanik 
[12], 1131 and Sato 171. The stochastic integral representation of Lo (Rd) given 
by Wolfe [15], [16], Jurek and Vervaat [4], and others is of the form with 
f (s) = e-S. Further, the representation of Lm(Rd) for m = 1 ,2 ,  . . . given by 
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Jurek [3] can be rewritten in the form af with f (s) = exp(--csl""+l)). Hence 
we can apply Proposition 4.3 to those cases. Further applications related to [I] 
are in progress. 
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