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Abstract. A Lévy process on R? with distribution u at time 1 is
denoted by X®W={X¥], If the improper stochastic integral
. j':_ f(©)dX® of f with respect to X® is definable, its distribution is
denoted by @ ,(u). The class of all infinitely divisible distributions  on
R? such that @ () is definable is denoted by D (®,). The class D (®),
its two extensions D (®,) and D.(®P,) (compensated and essential),
and its restriction D°(®,) (absolutely definable) are studied. It is
shown that D (®,) is monotonic with respect to f, which means that
/2| < | f1] implies Dee(Dy,) © Dee(Pf,). Further, D°(P;) is monotonic
with respect to f but neither D(®;) nor D, () is monotonic with
respect to f. Furthermore, there exist x, fi, and f; such that
0< f2< f1, €D (Py,), and pué¢ D(P,,). An explicit example for this is
related to some properties of a class of martingale Lévy processes.
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1. INTRODUCTION AND RESULTS

Let 1D (R% be the class of infinitely divisible distributions on the d-dimen-
sional Euclidean space R%. For each pelID(R% let X = {X®, 1 > 0} be the
Lévy process on R? satisfying & (X{)=pu. Here Z(Y) denotes the dis-
tribution of Y for any random element Y. Given ueID(R% and a real-valued
measurable non-random function f on [0, ), we say, as in [10], that f is
locally X"-integrable if the stochastic integral |, f(s)dX{ of f with respect to
X® is definable for each bounded Borel set B in [0, o) in the sense of
Urbanik and Woyczynski [14], Rajput and Rosinski [6], Kwapienn and Woy-
czynski [5], and Sato [9]-[11]. We write

f(dXP = [ f(s)dXP.
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Since this is an additive process in law, we use an additive process modification
(see [8] for terminology). For p fixed, let

(1.1) L(X®) = {f: f is locally X®-integrable}.

Characterization of L(X®) in terms of the Lévy—Khintchine triplet of u is given
in [6], [5], [9], [10]. It is known that L(X™) is a generalization of Orlicz
spaces, one of whose properties is that L (X)) is monotonic, which means that if

(1.2) f1 and f, are measurable and |f5| <|fil,
then f,eL(X") whenever f;eL(X"%). Given f, let
(13) D[f1=D[f;R]={ucID(RY: f is locally X"-integrable}.

Then (1.2) implies D[ f;] < D[f,]. We express this property by saying that
D[ f] is monotonic with respect to f.

Let ueID(R?. We say that the improper stochastic integral of f with
respect to X® is definable if feL(X") and if _fto f(s)dX¥ is convergent in
probability (equivalently, convergent almost surely) in R? as t — co. The limit is

denoted by [, f(s)dX®. This notation will help to distinguish it from the
stochastic integral (with random integrand in general) up to infinity of Cherny
and Shiryaev [2]. We define

(14) o, =2(] f6dx®).

Two extended notions and one restricted notion of definability of improper
stochastic integrals are introduced in [10] and [11]. We say that the compen-
sated improper stochastic integral of f with respect to X" is definable if
feL(X"™) and if there is geR? such that [~ f(s)dX¥**-% is definable. Here

0_, is the distribution concentrated at —q. We say that the essential improper
integral of f with respect to X is definable if f € L(X®) and if there is a non-
random R%valued function ¢, on [0, o) such that j; f(s)dX® —gq, is conver-
gent in probability in R? as t— co. We say that the improper integral

Jo  f()dX® is absolutely definable if feL(X®™) and if

o0

(1.5) flICu(f(s)2)|ds < o  for all zeR®.
0

Here C,(z) is the cumulant function of u, that is, the complex-valued con-
tinuous function on R? with C, (0) = 0 such that the characteristic function /i(z)
of u is expressed as fi(z) = exp(C,(z)). For any measurable function f on
[0, o), let

D(P;) = D°(P;; RY) = {ucID(RY): | f(s)dX® is absolutely definable},

0
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D(P;) =D(P;; R) = {ucIDRY: | f(s)dX®¥ is definable},
0
De (@) = D (P RY) = {peID(RY: compensated improper integral
of f with respect to X® is definable},
Des (D)) = Des (P; RY) = {ueID (R%: essential improper integral of f

with respect to X is definable}.

Further let, for pelD(RY),

L~ (X" ={f: f is measurable and peD(P;; RY)].
It is known that
(1.6) DUP)) = D(P)) © De(Py) © D (D).

We are interested in the problem whether D(®;), D°(P;), D.(P,), and
D (P;) are monotonic with respect to f. Clearly, D(P,) is monotonic with
respect to f if and only if, for every uelID(RY, [*~ (X*) is monotonic.
Our results are the following

THEOREM 1.1. The class D (®;) is monotonic with respect to f.
THEOREM 1.2. The class D°(P;) is monotonic with respect to f.

The class D(®,) is not monotonic with respect to f. That is, for some
pelID(RY, L~ (X™) is not monotonic. In order to specify u, we use the
Lévy-Khintchine triplet (4, v, y) of ueID (R in the sense that

1 . i<z, x»
C = —={(z, A izx) _ 122 d i{y, 2,
. (2) 2<z z>+Rjd(e Tl v(dx)+ily, 2>
where A is a d x d symmetric nonnegative-definite matrix, called the Gaussian
covariance matrix of u, v is a measure on R? satisfying

v({0) =0 and [ (x*Al)v(dx) < o0,
R

called the Lévy measure of p, and y is an element of RY, called the location
parameter of p. Sometimes we write u = i4,,.,). We say that a measure g on R*
is symmetric if ¢(B) = g(—B) for all Borel sets B.

THEOREM 1.3. Let p = p4,, ., €ID (R with A arbitrary and v symmetric.

G) If fi and f, satisfy (1.2) and if peD.(Py,), then peD (D).

(ii) Assume that y = 0. If f, and f, satisfy (1.2) and if pe®D(P;,), then
ueD(Py,). That is, [*~ (XW) is monotonic.

(iii) Assume that y #0 and j|x|>1'|x[v.(dx) < o0, Then I*~(XW) is not
monotonic.
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A simple example for Theorem 1.3 (iii) is the case where X* is a Brownian
motion with drift.

We ask a question whether there exist g, f1, and f> such that 0 < f; < f;,
fiel*~ (X®W), and f,¢L*~ (X®W). The next theorem gives more than the
affirmative answer.

THEOREM 1.4. Let f, (s) be a real-valued function which vanishes on [0, a)
and is continuous on [a, o) with some a > 0. Let ue D (P, )\D°(P,,). Then
there is a nonrandom open set D in [a, o0) such that p¢D(P;,) for fi(s) =
J1(8)1p(s). _

Notice that this theorem and Theorem 1.2 give a characterization of the
property that D(®, )\D°(P,,) # D.

We say that f(s)><g(s) as s — oo if there are positive constants c; and
¢, such that 0 < ¢y f(s) < g(s) <c, f(s) for all large s.

ExampLE 1.5. Let f; (s) be a locally square-integrable function on [0, oo).
Suppose that f; (s)><s~! as s —» co and that there are positive constants ¢ and
S such that

T|f1(s)—cs_1|ds< 0.

So

Then Theorem 2.8 of [11] states that the class D (®,,)\D?(&P,,) is nonempty
and that

B= payn€ED ((pfl)\bo (®y,)
if and only if
[ Ixlv@x)< oo, | xu(dx)=0
|| >1 R4
t

lim {s™'ds [ xv(dx) exists in R?, and fs [ xv(dx)|ds =

=00 g0 |%]>s |x|>s
Distributions satisfying these conditions will be given in Example 1.7.

We show that the class D.(®P,) is not monotonic with respect to f.

THEOREM 1.6. Let fi(s) = 57" 1;,5)(s). Suppose that ue® (P, and that
the Lévy measure v of p satisfies

C
(1.7) lelf>sxjv(dx)| ~Togs as s — o
for some je{l,...,d} and ¢ > 0. Then there is a nonrandom open set D in

[1, o) such that p¢Dc(Py,) for f(s) = f1(s)1p(s).
Here x; is the jth coordinate of xe R’ In Theorem 1.6 we recall that
peD(P,) implies jlxl>1lx|v(dx) < oo by virtue of Theorem 2.8 of [11].
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Exampri 1.7. In Example 2.9 of [11] we have introduced the measure v

concentrated on {xeR’ |x| =2, 3,...} given by
v(B) = j'i(dé Y 1p(né)a, for Borel sets B,
neZ

where S, is a nonempty Borel set on the unit sphere {|&] =1} satisfying
Son(—So) =D, 4 is a finite measure on S, satisfying f;_CA(d¢) # 0, Z is the
class of all integers, and a,, neZ, are such that ao =a; = a-; =0 and, for
positive integers n, m,

1/ 1 1 N
= — —_ = i m? 2(m+1)2
(10gn fog(nt 1)), a_,=0 if 2" <n< , m ocAid,

1 1 1 ’ 2 42
a,=0, a_,=- - if 2™ <n < 207D 1y even,
n\logn log(n+1)

1/ 1 1 ,
= — —_ = i = 2m
a, n(logn+log(n+1))’ a_.,=0 ifn , m even,

1/ 1 1 2
-0, a_,=- if n=2",m odd.
=54 n(logn+log(n+1)) " m odd

It is shown that Z|n|zzlnl a, < oo and that, for k=3,4, ...,
S nay = logh)™t  if 2™ <k <2V m odd,
w2 l—COogh)™t if 2™ <k <2M*1° m even.
Thus
Jolxlvidx)= [ Ad&) Y, Inla, < o,

[x|>1 So In|=2

= 00,

[stds| | xv(dx|_|jg,ud¢1 “14s| 3

[x]>s Inj>s

[ x;v(dx)= jf,l(dé) Y na,.

|x|>s |n|>s

Further it is shown that ﬁs‘ldsjlxl>sxv (dx) is convergent as t — co. Let
1= fiayy With y = =[x |x|>(1+|x|*) "' v(dx) and A4 arbitrary. Then

[ xpu(dx)=0 and peD(@;N\D°(P,,) for fi(s) =51 11,0 (s),
Rd

since the conditions stated in Example 1.5 are satisfied. Choosing je {1, ..., d}
such that § So £;A(dE) # 0, we can apply Theorem 1.6 to this distribution p. We
can also apply Theorem 1.4 to this f; and this u. If 4 = 0, then the process X®
is a compensated compound Poisson process.
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Using the measure v above, consider

¥(B) = v(B)+ﬂjA(d6 13(26)  for Borel sets B

and define fieID (R by
Ci(2) = [ (= —1)¥(dx).
R4

Then
j xfi(dx) = j x¥(dx) = j' xv dx)+?§ EA(dE) =

The distribution 7 also belongs to D (®,,)\D°(®,,) for f; (s)=s"t 1[1 (5) and
Theorem 1.6 applies to fi by the same reason as for u. Theorem 1.4 also applies
to f1(s) = s 7' L{1 ) (s) and fi. The Lévy process X® associated with / is a com-
pound Poisson process with mean 0.

In Section 2 we will give proofs of all theorems stated above. The process
X® associated with p in Theorem 1.6 is a martingale Lévy process and the
processes [, fi(s)dX% and j(t) f>(s)dX® have intriguing properties, which
we will discuss in Section 3. Applications of Theorems 1.1 and 1.2 to some
types of f will be given in Section 4. Determination of D (®,) for some f is
made.

2. PROOFS

In the following three propositions let u = pi4,,,, € ID (R?) and feL(X™W).
We present necessary and sufficient conditions for p to belong to D (®,),
DO(D)), or D (P)).

ProrosITION 2.1. The following three statements are equivalent:

(2) neD(@)).

(b) _f:) C.(f(s)z)ds is convergent in C as t — oo for each zeR".

(c) u satisfies the following:

@.1) [ £ (tr A)ds < oo,
22) uj?ds f(f &)X A1)v(dx) < o0,

! 1 1
ey {7 (S)<”R5ax<1+|f(s)x|2‘1+|x|2>”("")>ds

is convergent in R* as t— oo.
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Proof. See Proposition 5.5 of [10] and Propositions 2.2 and 2.6 of [11]. It
follows from feL(X®) that f|C,(f(s)z)ds < co and that

1 1
Qf (S’(”.L"(l 7o 1 +|x|2)”(d")>

for te(0, o), as is shown in Proposition 2.17 and Corollary 2.19 of [10]. =

PROPOSITION 2.2. A distribution p is in D, (D) if and only if (2.1) and (2.2)
are satisfied.

ds < oo

Proof. See Proposition 5.6 of [10] or Proposition 2.6 of [11]. =

PRrOPOSITION 2.3. A distribution u is in D°(®,) if and only if (2.1), (2.2),
and : ‘

ds < o0.

24 j

1 1
/) (”“L f x (1+| oG 1+|x|2)"(dx)>

Proof. For fixed ueR denote by u* a probability measure such that
#*(B) = f 1p(ux) u(dx) for all Borel sets B. Let (4%, v*, y*) be the triplet of y*.
Then A* =u?A, v*(B) = [15(ux)v(dx), and

1 1
' uv+5ux<1+| ) 1_|_|x|2)v(dx).

Notice that

1| ] (el + )
@9 L T Y99 < L e <
Let
(2.6) o) =trdA*+ jd(|x|2 A D) v (dx)+ [y

When u = f (s), u* and (4%, *, 7*) are written as p/® and (47, v/©, /), The
properties (2.1), (2.2), and (2.4) combined are expressed by

2.7

Oty B

@(f(s)ds < 0.
We note that
|C.(f (9)2)| = |Cprear (2

2
<B4 470431 12) § (2 A 1)VO (@) + 1l )
R2

(see, in [10], (2.5)42.7) and line 3 of the proof of Theorem 3.14). Hence, if (2.1),
(2.2), and (2.4) are satisfied, then (1.5) is satisfied, that is, ue D°(®,).
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Conversely, assume that pe®°(®,). Then peD(P,) and (2.1) and (2.2)
follow from Proposition 2.1. We have

<z, x)

n |x|z) s (dx)+ <yf(S), Z).

ImC,(f(s)z) =ImCprn(z) = § (sin {z, x)>—

R4

For fixed z,

{z,x) {0 (x® as |x| -0,

Sz )= TTRE - 10()  as x| - w.

Hence it follows from (2.2) that

. {z, x>
IL sin {z, x>_ij——|3)z|5

VOEx) < ¢, | (X2 A1)V @dx)
R4
=c; Rfd(lf(S)XV A1) v(dx),
where ¢, is a constant depending on z. Thus we obtain
]?Kyf(s), z>|ds < oo
0

using the relation f, |Im C,(f(s)z)|ds < co. Choosing z = (3p)1 <k<a> | <j < d,
we obtain (24). =

Proof of Theorem 1.1. Use Proposition 2.2. Let f; and f, satisfy (1.2).
Suppose that ge D, (P,,). Then (2.1) and (2.2) hold with f; in place of f. Since
Ifal < |f1), it follows that (2.1) and (2.2) hold with f; in place of f. This means
that peD(Py,). =

Proof of Theorem 1.2. Use Proposition 2.3. Let f; and f, satisfy (1.2)
and suppose that ue D°(®,,). Using the function ¢(u) in (2.6) induced by
U= Hav,y, We have

(2.8) fo(fis)ds < .
0

Let us use

(2.9) G () =tr A"+ | (xI* A 1)v* (dx)+ Rslulp u 7).
Ré veR,|v| < |u

We have ¢ (u) < @ (4) < (3/2) ¢ (u) as in Proposition 3.10 of [10]. Thus (2.8) is
equivalent to

(2.10) °j°<,3( f1()ds < .

The function @ enjoys the property that @ (f2(s)) < ¢ (/1 (s)) whenever | f; (s)] <
|/ (s)I. Hence [, @(f2(s))ds < co. This means peD°(Py,). =
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Proof of Theorem 1.3. (i) Let f; and f, satisfy (1.2). Assume that
peD.(Py,). Then there is ge R such that p*d_,eD(P;,). Thus

o0

Gj?fl(s)z(trA)ds <o, [dsf(fi(s)x*Ar1)v(dx) < o0,

] R4

and _f:] J1(s)(y—qg) ds is convergent, since v is symmetric. We may and do choose
g =7. Then we see that u*d_,eD(Py,). It follows that ue D (P,,).

(i) Look back to the argument above with y =0. Then the proof is
evident. -

(iif) Let

0 f0<s<1,
fis)=<s"1 if n<s<n+1 with n odd,
—s™1 if n<s<n+1 with n even
and let f5(s) = 571 1}1 ) (5). Then | f5| = | f,|. Applying Theorem 2.8 of [11], we
see that f ¢ L~ (X®) since y # 0 = [, x x> (1 +|x|*) " v(dx). On the other hand,

f1eL°~ (X®) by virtue of Proposition 2.1. Indeed, [ ds [, (1/1 (5)x|* A 1) v (dx)
< oo by the same reasoning as in the proof of Lemma 2.7 of [11], and

t 1 1 t
gfl(s)<))+ﬁ[,x(l+|f1(s)x[2—l+IXI2>v(dx))dS = £f1(3)ds%

which is convergent in R? as ¢t — co. Hence I°~ (X®) is not monotonic. &

Proof of Theorem 1.4. Let (4, v, y) be the triplet of . We use an
R%-valued function

1 1
T+ fL () x> T+ [x]?

@11 h(s)= fi(s)y+ | fi (S)x( )V(dX)-
R4

Using (2.5), we see that h(s) is continuous on [a, o). Since ueD(P;,), we
have

[ fi)*(trd)ds < oo, [ds [ (fi(s)x>A1)v(dx) < o,
a a Rd

and 5: h(s)ds is convergent in R® as t — co (Proposition 2.1). Since p¢ D°(&;)),
we have _f:o |h(s)lds = co (Proposition 2.3). Choose and fix je{l, ..., d} such
that f:o |h;(s)lds = oo, where h;(s) is the jth coordinate of k(s). Define D* =
{s=a: hy(s)>0},D” = {s > a: hj(s) <0}, and D° = {s > a: h;(s) = 0}. Then
D" and D~ are open in [a, co). Let hj (s) = h;j(s)v0 and hj (s) = hj (s)—
hy(s). We see that |~ h (s)ds = oo and [”h; (s)ds = co. Let D =D* or D~

3 — PAMS 26.1
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(either will do). Let f5(s) = fi(s)1p(s). Then

: 1 1
‘E,(fZ(s)y_'_JafZ(s)x(l+|f2(s)x|2_1+|x|2)v(dx)>ds

! 1 1
=[5 (s)lp(s)(y+ de<1 ra (s)x|2‘1+|x|z)v(dx))ds

=j'11,(s)h(s)ds.

If D=D", then
t t )
f1p(s)hj(s)ds = (R} (s)ds > o0 as t > 0.

If D=D", then
t t
[1p(s)hj(s)ds = — [h; (s)ds > —o0 as t— 0.
Hence j; 1p(s) h(s)ds is not convergent in R%. Consequently, u¢ D (®,,) by vir-
tue of Proposition 2.1. =
Proof of Theorem 1.6. Let the triplet of u be (4, v, y). In order to
prove that p¢ D (P,,) it is enough to show that, for every geR?,

t

_ 1 1
_l"s 1 1D(s)(y—q+}£dx(1+|S_1x|2—~1+|x|2)v(dx))ds

is not convergent in R? as t — co. Let h(s) be as in (2.11). This is an R%-valued
function, continuous on [1, co). Since y = —f ,x[x|>(1+|x[*)" ! v(dx) (see
Theorem 2.8 of [11]), we have

1
= iyl ——— d > 1.
h(s) 1!-15 x(l—l—ls'lxlz 1>v( x) for s

Choose j as in (1.7) and let h;(s) be the jth coordinate of h(s). Since j'l h(s)ds is

convergent in R? as t —» oo (see Theorem 2.8 of [11]), j"'l h;(s)ds is convergent
in R. We claim that

t
(2.12) fI1h;(s)|ds ~ cloglogt as t— o0.
1

Indeed,
. t t
fI(s)lds < §s7| | x;v(dx)|ds+1,+1,,
1 1

|x]>s
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where
Loy x;v(dx) Lo, x;|s™ 1 x|? v (dx)
Iy=s7 | =g alds: L=[s EETRICSRTa
1 xi>s 1H1Is™ " x| 1 1<jxss 11877 x|

We will denote positive constants by ¢y, ¢,, ... The quantities I; and I, are
bounded in 1, since

© || v (dx) Xl =1 g
I, < 1 — = s
1 !s ds,x|j>sl+|3_1x|2 |x|j>1|x|v(dX) { T a2

' 1 1
= | |x|(loglxl—ilog(l+|x|2)+§10g2)v(dx)s_cl | Ixlv(dx)

Ix|>1 |x|_>1
and since
© x| |s ™t x|% v (dx) ©s s x|?ds
I,< [s'd biils —xi“vidx) _ o(dy) [ 515 xI"ds
? J;S Sl<lx|-<.s L+]s™ ! x[? le£1|xl (x)lil 1+s™ x*
log?2
=EZ ( |xlv(x).
2 Jx]=>1

Thus we obtain, for some sy > 1,

ds
slogs

t t
[Ih;(s)lds < c, § +c¢3 < ¢ loglogt+c,
1 so

from condition (1.7). Similarly,

ds
slogs

t t
§1r;(s)lds > cs § —¢Cs = Csloglogt—c,.
1 s

Looking back more carefully, we see that (2.12) holds. We have, a fortiori,
[ 1h;(s)lds = 0.
1

Now define D, D™, D° hj' (s), and hj (s) as in the proof of Theorem 1.4.
Then

[hf(®ds=0 and [ h; (s)ds= co.
1 1

We have
« ds
2.13 0
( ) £1D (S)Slogs<m’
because it follows from
s™1 x| v (dx) s™1 x]?v(dx)

lhi) = s | x;v(dx)|— | - f |

[xi>s iss LHISTIX? i, 1+[s™1x)?




34 K. Sato

that
= [ Lo k@l ds > [ 1o o ()] § xv(dx)l——w

|x|>s

° ds
ZCQIIDO(S)SIO S—Clo.
Using (2.13), we see that
. 1
h:—»w lo logtj b () + lglogtj p- ()slogs

Choose D = D* or D™ in such a way that

ID()

limsup ———

1~ loglogtsy slogs

Choose t,— oo such that (loglogt,) ™! [~ , 1p(s)(slogs)™*ds tends to some
b > 0. Then

1 tn ds

(2.14) loglog t,,£ Ins )? B
since, for any k > 0,
1 logk '
loglog t,,i Io(s ) loglog t,,{

We claim that, for any choice of g€ R?, 2 1p(s)(h;(s)—s " g;)ds is divergent as
n— oo. If g; =0, then this is divergent since

Eln(s)hj(s)ds = tjjh,* (s)ds or tghj_ (s)ds,
which diverges to co or to —oo. If g; # 0, then
tf1D(s)hj(s)ds—qjtj?1D(s)s_1ds
is divergent, because ’ ’
j 1p(s)|h;(s)l ds < jlh (s)|ds ~ cloglogt,

from (2.12) and in virtue of (2.14). The proof is complete. m

3. REMARKS ON MARTINGALE LEVY PROCESSES

We have the following general result. Recall that feL(X®) for all
pelD (RY if and only if f is locally square-integrable on [0, o) (see [10]).
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PrOPOSITION 3.1. Let X be a martingale Lévy process on R°. Let f be
locally square-integrable on [0, co). Then Y, = [, f(s)dX® is a martingale ad-
ditive process.

Proof. Let y = py,,,. We have E|X¥| < o0 and

a1+ x|
Let (4, v, 7;) be the triplet of Y,. Proposition 2.6 of [11] states that

0=EX§"’=t( +j il v(dx ))

A, = [ 16" Ads,
0

v, (B) = j‘ds { 13(f(s)x)v(dx) for B Borel with B-aé 0,
0 Rd

1 1
_ff(s)(y+j' (1+|f(s)x|2 1+|x|2)v(dx))ds

Hence, recalling that jlx|>1 |x]v(dx) < o0, we obtain

J Ilv@x)={ds [ 1f(s)xlv(dx)

|x| > 1 0 |fs)x]>1
< j‘dsI lj |f(s)x|v(dx)+jd.\s| lj | (s) x| v (dx)
0 x|>1 0 x| <1

-~

=J1fG)ds | Ixiv@dx)+[f(s)*ds | |x]*>v(dx) < 0.

0 Jx]>1 0 Ixj<1
Thus E|Y| < co. Now we have
x x>

a1+]x|?

1 1
— jf(s)<y+_f <1+|f(s)x|2 1+|xl2>v(dx))ds

£©)x1£6) v (@)
+£ o Rwyrae

t 2 d

Rd

EY, =y, + j. v, (dx)

that is, {¥;} is a martingale additive process. =

Remark on Proposition 3.1. f X®isa martmgale Lévy process and
if feL(X™), it is not necessarily true that Y, = j f(s)dX® is a martingale
additive process. In fact, E|Y,| may be infinite. For example let X be a com-
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pound Poisson process on R with mean zero. Then any measurable function
f belongs to L(X%) as Example 4.4 of [10] states. If {7 o |f(8)lds = o, then

E|Y,| = oo, because, choosing a > 0 such that 0 < _[ >4 X1V (dx) <o for the
Lévy measure v of X®, we have, for the Lévy measure v Of Yo,

§ levto(dX)=j ds | |f(s)x]v(dx)

|x}>1 0 [f(s)x]>1

> [ Ixv(dx) § [f(s)lds = o0

|x|>a [0.to]n{[f(s)| > 1/a}
which 1mphes that E|Y, | = o

Remark on martlngale additive processes related to Theo-
rem 1.6. The Lévy process X® associated with p in Theorem 1.6 is a martin-
gale, that is, it satisfies E|X®)| < oo and EX{® = 0. Consider the case d = 1. Let
h(s), D*, D™, and D° be as in the proof of Theorem 1.6. Thus

1 1
h(s)=s"1 st — d for s> 1
W= 1, x(1+(s'1x)2 1+x2)”( M forsz
and D*, D™, or D° is the set of s > 1 at which h(s) is positive, negative, or zero,
respectively. Let

t
Y= 1,0 (8)dXP,  ¥P=[s7 1pp(s)dX( for p=+, —, 0.
0 0
Then {Y}, {¥;*}, {¥;"}, {¥.°}, and {¥,* + Y,”} are martingale additive proces-
ses, as is shown in Proposition 3.1. We can show that

-~

(3.1) " >0 and Y > —o0 as ast— o,
(3.2) Y, ,*+Y, and Y are convergent in R as. as t — o0,
(3.3) E|Y,_| =

These are remarkable behaviors. If 4 =0, then each of ¥,* and Y, is the
compensated sum of the jumps of X in the union of some nonrandom time
intervals with some nonrandom weights. For these behaviors it is essential that
the Lévy measure is nonsymmetric and close to symmetric. Theorem 1.3 (ii)
states that martingale compound Poisson processes with symmetric Lévy
measures do not exhibit this kind of behaviors.

Proof of (3.1)(3.3). Let the triplet of Y;? be (Af, v?, y/)forp= +, —, 0.
Then

AP = 2 10 (s) Ads,

...r_q-‘
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t
VP (B) = fl,,p(s)dsjlﬂ(s‘lx)v(dx) for B Borel with B30,
1

ilm(s Yh(s)ds.

Since Af and f{, (x? A 1)v/ (dx) are bounded and increasing, Y?—9? is conver-
gent in probability as t — co. Since it is an additive process, Y,?—77 is also
convergent a.s. Since y;” — oo and y;” — — oo (see the proof of Theorem 1.6), we
obtain (3.1). We have convergence of Y, since y? = 0. Convergence of ¥, comes
from the fact that ue D(@P,,). Recalling that ¥, = ¥,*+ Y, + ¥,°, we obtain
(3.2). In order to see (3.3), let v,_ be the Lévy measure of Y,_. Then

[ Xlve- (dx) = jds § o Is7tx|v(dx)

Jx]>1 s~ 1x|>1
]
= [ |xlv@dx) s tds= [ [|x/loglx|v(dx),
[x]>1 1 [*]>1

which is infinite by virtue of Theorem 2.8 of [11] and of the fact that
p¢D°(P,,). Hence E|Y,_| =

4. APPLICATIONS

The following results are consequences of Theorems 1.1 and 1.2.
PROPOSITION 4.1. Let f; and f, be measurable and | f5| < |fil. If D(P;) =
D(D,,) or if D(Py,) = Des(Py,), then D(P,,) = D(Dy,).

Proof. In general we have (1.6). Hence it follows from Theorem 1.2 that if
D(D,,) = D°(P,,), then

iy (Qfx) = bo (¢f1) = DO (@fz) c?® (@fz);
it follows from Theorem 1.1 that if D(P,,) = D (Py,), then
D (¢f1) < Des (Qfl) < Des (¢fz) =D (bez),

completing the proof. =

ExaMmPLE 4.2. Let f; be a locally square-integrable function on [0, o0)
satisfying f; (s)>=<s~'/* as s — oo with some ae(0, 1)u(1, 2). Let f;(s) and f3(s)
be measurable and satisfy | f,(s)| < |f1 (8)| < |f3(s)]. If 2€(0, 1), then D(P,,) =
D(P;) c D(Dy,). If ae(l, 2), then D(P,) = D(Dy).

Indeed, we have D(9;,) = D°(Py,) = D (D) if 2€(0, 1), and D(Py,) =
D(D,) Z Des (@) if ae(l, 2) (Theorem 2.4 of [11]). Hence Proposition 4.1
applies.
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PRroPOSITION 4.3. Let f be a locally square-integrable function on [0, c0)
such that there are positive constants «, ¢,, and ¢, satisfying

4.1 exp(—cy89) < f(s) <exp(—cy 5% for all large s.
Then
(4.2) DO(B)) = D(P)) = De(P)) = Des ()

= {ueID(®: [ (log™ )" p(dx) < o0}
= {ueID(RY): | (log* |x])"*v(dx) < o0}y

where v is the Lévy measure of u and log* u = (logu) v 0.

Y% for |x| > 1 in place of

Obviously, in (4.2) we can use (log(L+|x])
(log™ |x|)*/~.

Proof of Proposition 4.3. Let M = {ucID(R?): [ .(log" [x|)'* u(dx)
< oo}. Then M takes the last expression in (4.2), which is a consequence of
Theorem 25.3 of [8]. Let f;(s) = exp(—c;s”), j =1, 2. Using Theorem 5.15 of

[10] for these functions, we see that
D(@)) = Do(®y) = Dua(@) = M, j=1,2.

Combined with Proposition 2.3 of this paper, the proof of that theorem also
shows that D°(P) = M. Since f>(s) < f(s) < f1(s) for all large s, it follows
from Theorems 1.1 and 1.2 that

bo (¢f1) < bo (¢f) < DO (¢fz)9 bes (¢f1) < bes (¢f) < bes (sz)'
Thus D°(P,) = D (P,) = M. Using (1.6), we also have D(P;) = D (P;) =M. =
Theorem 5.15 of [10] deals with a function f(s) such that

f(s)=<sPexp(—cs®) as s—

with o« > 0, feR, and ¢ > 0. This function satisfies (4.1). Thus, if we show
Theorem 5.15 of [10] only for f(s) = exp (— cs®), then the proof of our Proposi-
tion 4.3 is obtained and the rest of Theorem 5.15 of [10] is a consequence of
our Proposition 4.3.

ExAMPLE 4.4. Let f be as in Proposition 4.3. If f,(s) and f;(s) are measu-
rable and satisfy |f; (s)| < |f(5) < |f5(s), then D (D) = D(P,) < D(P,). Use
Propositions 4.1 and 4.3.

Let Lo (R% be the class of selfdecomposable distributions on R? and let
L.(RY), m=1,2,..., be the nested subclasses of Ly (R studied by Urbanik
[12], [13] and Sato [7]. The stochastic integral representation of L, (R?) given
by Wolfe [15], [16], Jurek and Vervaat [4], and others is of the form &, with
f(s) = e”*. Further, the representation of L, (R% for m=1, 2, ... given by
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Jurek [3] can be rewritten in the form @, with f(s) = exp(—cs'/™* ). Hence

we can apply Proposition 4.3 to those cases. Further applications related to [1]
are in progress.
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