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Abstracl. In this paper we present new suficient conditions for 
complete convergence for $urns of arrays of rowwise independent ran- 
dom variables. These conditions appear to be necessary and sufficient 
in the case of partial sums of independent identically distributed ran- 
dom variables. Many known results on complete convergence can be 
obtained as corollaries to theorems proved in this paper. 
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1. INTRODUCTION 

The paper by Hsu and Robbins (1947) initiated numerous explorations of 
the complete convergence of sums of independent random variables. Their 
research was continued by Erdos (1949)' (1950), Spitzer (1956)' and Baum and 
Katz (1965). 

The paper by Kruglov et al. (2006) contains two general theorems that 
provide suEcient conditions for complete convergence for sums of arrays of 
rowwise independent random variables. One of them is presented below as 
Theorem A. The purpose of this paper is especially to show the strength of this 
theorem. In fact, we propose an approach with the help of which we are able to 
prove a number of new results, and in a unified form to reprove many known 
theorems, on complete convergence for sums of independent random variables. 
Specifically, three theorems proved below contain, as particular cases, Spitzer's 
theorem (1956), a number of theorems of Baum and Katz (1965), the basic 
theorem of Bai and Su (19851, Maejima's theorem (1977)' the theorem of Hu, 
Moricz and Taylor (1989), Theorems 2.1, 4.1, 5.1,7.1-7.4 of Gut (1992), and the 
sufficient part of Gut's (1985) theorem. 
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In the following we assume that all random variables under consideration 
are defined on a probability space (62, P). We use standard notation, in 
particular: I [ A ]  denotes the indicator function of a set A G a. The proofs of 
some auxiliary statements are presented in the last part of the paper. 

THEOREM A. Let ( ( X n k ,  1 < k < m,), n 2 1) be a sequence of rowwise in- 
dependent random uariables and let {c,, n > 1) be a sequence of non-negative 
numbers. Suppose that 

0 Crime, C. EL:, P{IX,,I > E) < for aEI E > 0; 
(ii) there exist j > 0, S > 0 and p 2 1 such that - 

Then 

2 C.P 1 max I c [x.,- E (xnk I C I X , , ~ ~  6 6])]1> ~j < m for any E > O .  
n =  1 l<m<m, h = 1  

2. MAIN RESULTS 

The next definition emphasizes the class of random variables that we 
consider in this paper. 

DEFINITION 1. The array {(X,,, 1 < k < m,), n > 1) of random variables 
is stochastically dominated in mean of order a by a random variable X with 
respect to a sequence {b, ,  n 2 1) of positive numbers if 

for some D > O ,  a€(-co, co), and for ail x>O,  n >  1. 

For ol = 0 this notion reduces to the notion of stochastic domination in 
the Cesaro sense which became common in the literature devoted to complete 
convergence of sums of random variables. 

In Definition 1 a sequence {b,,  n 2 1) of positive constants is presented. 
We will deal with non-decreasing sequences of positive numbers that satisfy 
one or both of the following conditions: 

m 

(2) b i Y < m  for any y > 1 ,  
n= 1 

(3) b , , , < b b n  for some b > O  and for all n B 1 .  

The class of sequences with these assumptions is sufficiently wide. It con- 
B tains, for example, the sequenc& b, = n, b, = dn,  b, = n (In (1 + n)) , n 2 1, where 

6 > 1 and fi  is an arbitrary real number. 
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DEFINITION 2. A non-negative function h (x),  x e [0, m), belongs to the 
class SP for some p~ (0, 2) if it is non-decreasing, does not equal zero identically, 

lirn sup h (yx)/h (x) < oo for any y > 0, 
x-m 

and 
.. 

lim sup j la (x) x- 2/P dx/(h iY) y1 < GO. 
Y-m Y 

The class Hp contains all slowly varying at infinity non-decreasing 
non-negative functions which are not equal to zero identically, Knd in par- 
ticular lnS(l +x) with 8 > 0. The functions xu and xulns(l fx) with 
a E [O, 2/p - 1) and /I > 0 are also in X'. 

THEOREM 1. Let ((x&, 1 < k d m,), n 2 1) be an mray of rowwise indepen- 
dent random variables, with means zero when they exist, which is stochastically 
dominated in wean of order a by a random uariable X with respect to 
a non-decreasing sequence (b,, n 3 1) of positive numbers with properties (2) 
and (3), bo = 0, mn d cb,, n 3 1, E(tXIrd(l -"4) h (lXt4/("-"q))) < m for some 
O < q  < 2 ,  r >  1, a <  l/q-1/2, c > O ,  h ~ & ~  with p=q / ( l -q ) .  Then 

for ail E > 0. 
Proof.  We make use of Theorem A with cn = b;-* h (b,) (b,, - bn- ,) and 

X,/bA/4 for a.ll X,,. The exact values of constants c and D in (1) do not play any 
role in our proof. In the following we consider them equal to one. Assump- 
tion (i) of Theorem A follows from (1) and Lemma 2 with 5 = IX/E~ and 
p = qM1- clq). Indeed, 

We used the inequality na, < b,. It can be easily seen that the last expectation is 
finite by the condition E (JXJ'qI(l-aq) h (1x1 q1(1-"4))) < and the properties of the 
function h ~ 2 ~ .  By (1) and Lemma 1 we have 
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In order to prove assumption (ii) of Theorem A we note that 

We used the notation cn = b:-' h (b3  (b,- bn- l) and inequalities (5), rn, < b, 
and (a + b)j < 2j(aj+ g) for all a 2 0, b 2 0 and j > 0. By Markov's inequality 
we obtain 

and hence 

Note that p = q/ ( l  - aq) E (0, 2) by the condition ol < l / q -  112. Since h E &p, for 
b,, 2 1 we have 

Consequently, by (2), the series (6) converges for j > 1 + 2 ( 1  - aq)/(r - 1 )  and 
r > 1. Next, if rq / ( l -aq)  2 2,  then E IXI2 < co and 

The last series converges for j > 1 + rq/(2 -2aq -q) by the condition (2). Note 
that 2 -2aq - q > 0 by the assumption ol < l / q  - 112. If rq/(l  -aq) < 2, then 

E(IXI2 I []XI < bnllq-7) < bj12-2aq-rq)14 E IXlral(l-aq), 

Therefore 



Convergence rates in the law oj large numbers 67 

The last series converges for j > 1 +2(1 -clq)J(r- 1) and r > I. Hence the as- 
sumption (ii) of Theorem A is fulfilled with j > 1 +max {2 (1 -aq)/(r - I), 
rq/(2-2ctq -q)} and r > 1. Consider the case r = 1 separately. Let us put 
ck = b; h (b,) (b,, - b,- ,). For j = 1 we have 

to 

= C h (b,) (b, - b, - ,) P ((X1q/(l -"q) 3 b,} 
n= 1 

The last two series converge by Lemmas 2 and 4 (see Section 3) with 5 = 1x1 
and g = q/(l- aq) for q/(l - olq) < 2. The case q/(l- aq) >, 2 is impossible by 
the assumption a < l / q -  1/2. By Theorem A, 

2 b:-' h (bn)@ (b, - bn- ,) P ( man I YmI > ~b:") < m for all E > 0, 
n= 1 l < m < m ,  

where Ym = zr= lXnk - E (Xnk I [lXnkl < biJq1)). Consequently, by I ~ r n m a  5 we 
obtain (4). 

If the constants b, have a special behaviour, then, as the following theorem 
shows, the increment bn-bndl in (4) may be substituted by b,. 

THEOREM 2. Let ((X,,, 1 < k < m,), mn 2 1 ,  n 2 1 )  be an array of row- 
wise independent random variables, with means zero when they exist, which 
is stochastically dominated in mean of order a by a random variable X with 
respect to the sequence b, = ml+ ... +m,, n 2 1, with the property (3), 
E (IXlrql(l -aq) h(lXtQ1(' -aq)))  < co for some 0 < q < 2, r 2 1, a < l / q  - 1/2, h E YiPp 
with p = q/(l - aq). Then 

(7) b;-l h(b,) P { max 1 x,,I > &b,1I4) < co for all E > 0. 
n = l  l < m < m m  k = l  

Proof.  The sequence of constants b, = ml+ ... +mn, n 2 1, increases 
and b, + - b, = m, 3 1. It satisfies (2) because b, 2 n. Now we may proceed as 
in the proof of the previous theorem with minor modifications. H 

For identically distributed random variables it is possible to provide not 
only sufficient, but also necessary conditions. 
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THEOFEM 3. Let ( X , ,  n 2 1) be a sequence of independent identically dis- 
tributed random variables, S ,  = X I  + . . . + X n ,  0 < q < 2, r 2 1, h E flq. The 
following conditions are equivalent: 

(8) E (IX1Ir* h (1X114)) < m and EXl  = 0 for q 2 1, 

(91 C nrL2 h (n) P ( max IS,I > cnlJq} < co ,for all E > 0, 
n = l  1 C m d n  

m 

(10) C nF-2 h (n) P {ISnl > &n1Iq) < ca for all E > 0: 
I n= 1 

If r > 1, then each of the conditions (8H10) is equivalent to 

Proof .  Assume that (8) holds. In contrast to Theorem 1 now the case 
when rq 2 1,0 < q < 1 ,  E X ,  # 0 may occur. Suppose that these conditions are 
satisfied. By Theorem 1 we have 

nr-2 h (n) P { rnax I C (x,  EX^)^ > &n1/q) < a~ for all s > 0. 
n =  1 l $ m $ n  k = l  

Note that 
1 m E 1x11 

lim - max I C  EX,^ < lim - = 0. 
n + m n l / q ~ ~ m ~ n  k = l  n + a ,  nlJq-I 

It is proved that (8) implies (9), and hence also (10). Assume now that (10) is 
true. Let (Xk, n 2 1) be a sequence of random variables which are independent 
among themselves and of the sequence {X,, n 2 1) such that X', and Xn have the 
same distribution for all n 2 1. For independent identically distributed sym- 
metric random variables Xt) = X,-X,, n 2 1, the following inequality holds: 

m 

(12) C nr-2 h(n)P {ISt)I > &n1J4) < co for all E > 0, 
n = l  

where St1 = XI")+ . . . + Xg). Now we prove that 

(13) lim P {IStlI > &n1J4) = o for all r > 0. 
n+ m 

This is obvious for r 2 2. Let 1 d r < 2. Assume the contrary. Then there exist 
numbers E > 0, y > 0 and a sequence {m,, n 2 1) of natural numbers such 
that 
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We may assume that m,,, B 2mn for all n 2. 1. I f  this is not true, then the 
sequence (m,, a 2 1)  contains a subsequence with this property. Since 

m 

P {  Xp'20)21 /2  fora l l rn=rn ,+l ,  ..., 2m,, 
k=m,+l 

we have 
m 

which together with (12) implies that 

We obtain a contradiction which proves (13). 
Let us put an = P { I X ( ; ) ~  > &nliq}. Note that 

1 - (1  - any = P { rnax IXp)I > 
l d k d n  

< P { max JSg)I > +&nltq) < 2P { ISt'j > ~ n ' j ~ ]  
l < k d n  

The last inequality is Levy's maximal inequality for sums of independent sym- 
metrically distributed random variables (LoGve (1977), Part 111, Chapter V, 
Section 18.1 C). By (13) we have limn,, n ln (1 - G) = 0. By the inequalities 
1 - 8  2 81x1 for x < 0 and ln(1-y)  < -y for Y E L O ,  I ) ,  we obtain 

$ nan 4 In ln (1 - an)l < 1 -exp(n In (1 -an)) < 2P { max 1S;)I > $ snliq) 
l<m<n 

for all n greater than some no. This and (12) imply that 
m 

C nr- l h (n) P f lXy)I > ~n'14/2) < m for all E > 0. 
n = l  

By Lemma 3 we have E ( I X Y ) ~ ' ~  h (IX(i')I4)) < coy and hence E flX1Irq h (IXl14)) < co . 
Now we prove that a = EX, = 0 for 1 $ q < 2. Assume that this is not 

true, that is, a # 0. Since la1 n g ISn -an1 + ISnI, we have 

and hence 
m m 

ao = nr-2 h (n) $ C nr-2 h (n) P (IS, - an1 > la] n1/4/4) 
n=no n= 1 
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The series on the right-hand side of the inequality converge. The first series 
converges by Theorem I, while the second one by the assumption. We obtain 
a contradiction, and hence a = 0. 

For r > 1 we now prove the equivalence of (8H11). It is obvious that (10) 
follows from (11). Assume that (10) is true. Therefore (12) is also true. Note that 

< 2(~'+l ) (~- ' )  h (2j+')  P ( max 1rn-ltq S$)/ > 6). 
j =  1 i = j  2 r ~ ~ < 2 , + 1  

By LBvy's maximal inequality for sums of independent symmetrically distrib- 
uted random variables we have 

Hence 

The iterated series on the right-hand side may be estimated as follows: 

On the other hand, 
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Here we applied (12) and Levy's maximal inequality for sums of independent 
symmetricaIIy distributed random variables: 

The estimations above and (14) imply that 
m 

C n'-2 h (n) P {sup Irn-'jq s ~ ) I  > E) < cc 
n =  1 m L n  

By the symmetrization inequality (Lohe (1977), Part 111, Chapter V, Sec- 
tion 18.1 A) we have 

P {sup Jm- l t q  Sm-med (m- S,)J > E )  < 2P {sup Jm- S(,S)J > c )  . 
m a n  m a n  

Hence 

Since (10) implies (8), we have E IX,(4 < co and EX, = 0 in the case 1 d q < 2. 
By the strong law of large numbers (LoGve (1977), Part 111, Chapter V, Sec- 
tion 17.1 A 4'), the sequence ( S , / R ~ / ~ ,  n >, 1) converges to zero almost surely, 
and hence 

lim sup (med (m - ' t q  S,)( = 0. 
n+m m a n  

This and (15) implies (11). H 

3. AUXILIARY RESULTS 

Here we prove some lemmas which were used previously. 

LEMMA 1. Let 5 and q be non-negative random variables. If P (5 > x) < 
D P { y  > x )  for some D >O and for all x > O ,  then for p > 0, b > a BO 

E(tPI [a  < 5 B b]) d DaPP(q > a ) + D b P P { y  > b)+DE(qPI[a < q d b]). 

If ECQ m, then E ( t P I [ t  >a]) < DaPP{g > a ) + D E ( q P I [ q  > a]). 

Proof .  The inequalities can be proved with the help of integration by 
parts. H 
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LEMMA 2. Let h (x), x E [0, a), be a non-decreasing non-negative function, 
5 be a non-negative random variable, r 3 I ,  p > 0, {b,, n 2 1 )  be a non-decreas- 
ing sequence of positive numbers, bo = 0. Then 

Proof. The inequality is implied by the following relations: 

C bid h (b,) (b, - b, - ,) P {< > b , l j p )  
n = l  

LEMMA 3. Let h(x), x E[O, m), be a non-decreasing non-negative function 
such that 

lim sup h (2x)/h (x) < CQ , 
x-r m 

5 be a non-negative random variable, r 2 1, p > 0, and {b,, n 2 1) be an un- 
bounded non-decreasing sequence of positive numbers with the property (3), 
bo = 0. Then the exist an integer ko 2 1 and d > 0 such that 

m 

db -' E (trp h (tP/b))  - d (bk,/byP h (b&,/b) < 1 b;- h (b,) (b, - b, - ,) P {i: > b,llP). 
n = l  

Proof. Note that 

The properties of the function h imply the existence of numbers yo 2 bl and 
c > 0 such that 0 < hty)  < ch(y/2) for y 2 yo. If y > 2y,, then 

Consequently, there exist an integer ko 2 1 and d > 0 such that 

k 

C bi- h (bn) (bn - b,, - ,) 2 db; h (bk) for all k >, ko . 
n = l  
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By (3) the inequality bk+ < bbk is true for all k = 1, 2,  . . . and for some b > 1. 
With these remarks we obtain 

m. 

C bL- h (b,) (b ,  - b, - ,) P { c  > b i i p )  

LEMMA 4. Let (b,, n > 1) be an unbounded non-decrensing sequence of 
positiue numbers with the property (3), b ,  = 0, p ~ ( 0 ,  2), h&H',, { be a non- 
negatizle random variable. Then there exist an integer kD 2 1 and K > 0 such that 

Proof.  By (3 )  the inequality b ,+ ,  < bbn is true with some b 2 1. Hence 

The last series can be estimated as follows: 

Since h~ ZP, we have 

1 
Iim sup 1 h ( b x ) x - " ~  dx < <m. 
p m  h ( b y ) y 1 - 2 i p y  

Hence there exists a constant C > 0 such that 
m 

h ( b x ) ~ - ~ ~ ~ d x  < Ch(bbk)bkl-ZiP 
bk 

for all k greater than some integer ko Z 1. It follows from the above estimates 
that 
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where K = 1i-C. With the help of this estimate we obtain 

LEMMA 5.  Let {(XnR, 1 6 1: < m,), n 3 I} be an array qf rowwise indepen- 
dent random variables, with means zero when they exist, which is stochastically 
dominated in mean of order a by a random variable X with respect to an un- 
bounded nun-decrmsing sequence (b, ,  n 3 1 )  of positive numbers, m, < cb,, 
n 2 1, E]x~ '~I ( ' -~~)  < for some 0 < q < 2, r 2 1, a < l/q- 1/2, c z 0. Then 

1 m 

lim - max I C E (X,, I [IX,,l < b,lIq])l = 0. 
n+m bl l < r n < r n ,  k =  1 

P r o  of. The exact value of constants c and D in (1) plays no role in the 
proof and we assume them equal to one. Let rg/(1 -aq) < 1. For any E > 0 
there exists a > 0 such that 

Since a < l / q  and limn,, b, = co, we have bttq > abi for all n greater than 
some no. If n 2 no, then 

By (51, Lemma 1, and the inequality mn < b, we obtain 
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Since 0 < rq/(l - olq) < 1, we have 

~ ( 1 x 1  I [ a  < 1x1 6 6 , 1 / 4 - * ] )  6 b ; / ~ - ~ - ~ ~ ( 1 ~ 1 r q ~ ( 1 - a q ) 1  11x1 > all. 

Therefore 

1 "n 2a E - 
( l x n k l l  CIxnkI  6 b."'l) < , ,g -a-  1 + bnP ([XI > b,1'4-") +-, 

biiq k =  1 b" 4- 
Then (16) follows from the above, since lim,, , b, P (1x1 > h,114-") = 0, and 
l /q-a-1 3 0. The last inequality follows from the assumption that 
rq/(l-aq) < 1 and r 1. Let rq/(l -uq) 2 I. In this case, by assumption, 
EXnk = 0 for all k = 1, .. ., m,, n 2 1. By (5) and Lemma 1 we have 

Since rq/(l - aq) 8 1, we obtain 

Therefore 

Both terms on the right-hand side tend to zero as n + a, which implies (16). H 
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