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Abstract. Consider a random field of tensor product-type X (t), 
~ E [ O ,  lld, given by 

where ( A ( ~ ) i , 0 ~ 1 2 ,  is an orthonormal system in L, KO, 11 and 
( t k l k E N d  are non-correlated random variables with zero mean and unit 
variance. Wc investigate the quality of approximation (both in the 
average and in the probabilistic sense) to X by the n-term partial sums 
X, minimizing the quadratic error E IJX-X,112. In the first part of the 
paper we consider the case of fixed dimension d. In the second part, 
following the suggestion of H. Woiniakowski, we consider the same 
problem for d -+ oo. We show that, for any fixed level of relative error, 
approximation complexity increases exponentially and we find the ex- 
plosion coefficient. We also show that the behavior of the probabilistic 
and average complexity is essentiaIly the same in the large domain of 
parameters. 
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1. INTRODUCTION 

Let X ( t )  = Ckm=, SA qk (t), t E be a random function represented via 
random variables tk and the deterministic real functions q,. Let X,(t) = 
x;', ek % (t) be the approximation to X of rank n. How large should n be in 
order to make approximation error small enough? Provided a functional norm 
I(.)( is given on the sample paths' space, the question can be stated in the 
average and in the probabilistic setting. Namely, find 
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or 
n P T ( ~ ,  8)  := inf {n: B ( [ I x - x , I I  2 E )  < 6) 

In this work we mostly consider the random fields of tensor product-type with 
T c R f  In the first part we investigate the problem for fixed X, IT: and d. Our 
main goal is to show that two regimes are possible: either (when 6 is not very 
.small) nPT(c, 6) behaves exactly as navg (6)  or (when 6 is very small) both parame- 
ters are important. We find a precise border between two regimes and give 
exact asymptotic formulas for navy€) and nP"z, 6). 

In the second part of the paper we consider sequences of-related tensor 
product-type fields X(d)(t), t E T ( ~ )  c Rd, with d 4 a and study the influence of 
dimension parameter d. It turns out that the rank pz which is necessary to 
obtain a relative error E increases exponentially in d for any fixed E .  The explo- 
sion coefficient admits a simple explicit expression and does not depend on E. 

Interestingly, the phenomenon of exponential explosion does not depend on 
the smoothness properties of the underlying fields. 

Exponential explosion of the dficulty in approximation problems that 
include dimension parameter is well known as "dimensionality curse" or "in- 
tractability"; see e.g. [13]. Therefore, we essentially add a new probabilis.tic 
problem to the list of intractable ones. 

2. APPROXIMATION IN FIXED DIMENSION 

2.1. Main objects a d  results. We consider a random field X (t), t E [0, lid, 
given by 

where ( v ~ ) ~ , ,  is an orthonormal system in L, 10, 11 and 5, are non-correlated 
random variables with zero mean and unit variance. Therefore X is a rather 
typical field of so-called tensor product-type. Under the assumption 

its sample paths belong to L, [0, l ld  almost surely. Actually we assume more, 
namely 

(2.3) ( i ) , u i ( 1 0 g ) ~  as i+ao 

for some p > 0, r > 1/2 and q # -r. For the sake of simplicity of exposition we 
exclude the cases r = 1/2, q < - 1/2 and r > 1/2, q = - r  that satisfy (2.2) and 
can be investigated in the same way but lead to different and a bit more 
complicated formulas; cf. Example 3 in [4]. Recall that, for example, the Wie- 
ner-Chentsov's Brownian sheet belongs to the class (2.1) with r = 1, q = 0. 
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The covariance operator of X has the system of eigenvalues 

We approximate X with the finite sum of series (2.1) corresponding to n maxi- 
mal eigenvalues. Let us denote this sum by X,. It is well known (see, for 
example, [ I ] ,  [ 5 ]  or [9]) that X ,  provides the minimal average quadratic error 
among all h e a r  approximations to X having rank n. 

Consider the average and probabilistic approximation cardinality (com- 
plexity) defined as follows: - 

Let ci  = q/r. The form of the results turns out to be ~ i ~ c a n t l y  different 
for a <  -1 and a >  - 1 .  

We first study the behavior of average approximation cardinality. 

THEOREM 2.1. Under the assumption (2.3) we have 

where 

and 

while 

for a > - 1 ,  
~ d = t ; Z d l y  for a <  -1 ,  

( d - 1 ) + d a  for a >  - 1 ,  
a for o l <  - 1 ,  

m 

S = A (i)'Ir and & = 
r (a  + lId 

i = l  r (d (a + 1 ) ) .  

Remark. In the simplest case, a = q = 0, we have P = d - 1,  Bd = 

pd/(d - l)!' and we obtain 

Furthermore, in the case of Brownian sheet we have r = 1, p = 1/n, and this 
leads to 

These formulas were obtained in [ i l l .  



100 M. A. Lifvhits and E. V. Tulvakova 

Now we describe the behavior of probabilistic approximation cardinality 
in fixed dimension. Tn this setting we assume that our non-correlated random 
variabfes t, are Gaussian (hence independent). 

I t  turns out that two regimes are possible in the behavior of probabilistic 
approximation cardinality. If 6 is decreasing slowly to zero (or not decreasing 
at all), then nPr(&, dp d )  behaves like naVg(E, 4, i.e, it does not depend on 6. On 
the other hand, when S is decreasing to zero quickly, then the behavior of 
nPr(&, 8, d)  depends on both parameters. 

TIEOREM 2.2. For Gaussian uariables (&), under the assum_ption (2.3) we 
have two cases. 

(a) If E + 0 and lj" we let 6 = d ( E )  E (0, 1/21 vary in such a way that 

then 

(b) If 6 6 0 and if we let E = E(~)E(O,  1/2) vary in such a way that 

then 

Bd ,/m log (llog S~/E') 
(2.14) npr(c,6,d).-( ) ( 2r ) a s 6 - 0  

with Bd and /? given in (2.8). 

Remarks.  1. A slightly weaker form of Theorem 2.2 was obtained in 11 11. 

2. For fixed 6 the result (2.12) was obtained by S. Kwapiefi long ago (see 
[lo], Theorem 5.4.3, p. 339). Our theorem thus shows the limits of the validity 
for this effect when 6 + 0 is allowed. In part (a) we do not assume 6 -+ 0; the 
case 6 = const is therefore included. 

3. The case when E is fixed and 6 -+ 0 was considered in [lo], Theo- 
rem 5.4.2, p. 337. It is a special case of part (b). 

4. It is easy to see from the proof that one can replace 1/2 with any other 
fixed number in (0, 1). 

5. In the critical case, i.e. when 

llog &l'fl 
llog 61'- l j2 x -, 

& 
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our method yields a bilateral asymptotic estimate (but not the equivalence) 

6. An interesting set of tractability problems arises when one considers 
tensor products of '"weighted" processes, see e.g. [12]. 

2.2. More abstract version. Actually the results of Theorems 2.1 and 2.2 are 
valid in a more "abstract" setting. Let H be a Hilbert space, ( yJk  be an 
orthonormal system in H, and (Ck) a sequence of non-correlated raniom varia- 
bles with zero mean and unit variance. Let (A,) be a non-increasing sequence of 
positive numbers satisfying 

for some B > 0, r > 112, E R. Consider a random vector X E H defined by 

Define the approximation error 

and introduce the approximation cardinality 

naVg (E, X) : = inf ( r z :  Ed: < E') 

and 
nPr(&,6,X):=inf(n: P{A,>E) <6) .  

Our "abstracty' version is as follows. 

THEOREM 2.3. I t  is true that: 
(a) The behavior of navg (E, X) is described by formula (2.7) with Bd = 3. 
(b) If the variables (13 are Gaussian, then the behavior of nPr(g, 6, X )  is, in 

the cases (2.11) and (2.13), exactly the same as in (2.12) and (2.14), respectively, 
with B, = B. 

This theorem does not need a special proof, since the proofs of Theo- 
rems 2.1 and 2.2 use, starting from a certain point indicated below, only the 
representation (2.15). 

2.3. Proofs 

2.3.1. Proof  of Theorem 2.1. This proof is based on the following 
elementary result. 
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LEMMA 2.4. Let the eigenvalues 1; be defined by (2.4) and let Nd(c)  be the 
eigenvalue distribution, i.e. the number of solutions to the inequality 

1; 3 E ,  k € I V d .  

Then 

with fi  from (2.9) and 
d a - ( d - l )  p d / r  fi @ a > - 1 ,  - 

f i r  0: < - 1 .  

Similar results can be found e.g. in Csaki [3], Li [ti], Papageorgiou and 
Wasilkowski [8] (for q = 0) and especially in Karol' et al. [4] for even a more 
general case than we need here. 

An inversion of N ,  is defined as follows. Let ($, n E N )  be the decreasing 
rearrangement of the array (A:, k E Nd).  By inverting (2.16) we find 

(2.17) - CC,2'(2r)2rfl nWzr (log n)2'p = 3: n-2'(log nIZrp as n -+ m. 

From now on, we can forget about tensor structure of the set of eigen- 
values. The only property we use is (2.17). This is why Theorem 2.3 is proved 
simultaneously with other results. 

By summing up the terms of (2.17)' we have 

By the definition of average cardinality we have 

and the result of Theorem 2.1 now follows from (2.18), since 

2.3.2. P roo f  of Theorem 2.2. Let A = A,,, = f k ~  Nd:  3, < A). Consider 
the approximation error 

d where I ,  are defined in (2.4) and qk( t )  = n,=, rp,, (tl). We represent A, as a su- 
premum of a centered Gaussian random function which permits to establish 
important concentration properties of its distribution. Indeed, 
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Let us find the maximal variance of Y. By using the orthogonality of q, and 
independence of {, we have 

Obviously, this bound is attained and we have the equality 

cr: = z+l -x 
By using (2.17) we get 

(2.20) 0,' - Bi n-2r  (log n)"P. 

The folIowing inequalities are welI-known consequences of the isoperimet- 
ric properties and convexity of Gaussian measures; see e.g. [2] and [7]. 

FACT 2.5. Let Y (t), t E be a bounded centered Gaussian random function. 
IRt US  write uZ = s~p~,-j-EY ~ t ) ~ ,  S = SUPlE= Y (t), and let m be a median for S .  
Then m < ES and for any r > 0 we have 

{ + r  and P { S < r n - ~ r } < & ( r ) ,  

where &(r)  is the tail of the standard normal distribution jknction. 
It follows immediately from these inequalities that ES < rn + a and 

ES2 -(ES)' < E (S  - m)' < a2 .  Hence 

We will also need a trivia1 estimate 

(2.22) P (sup I Y (t)l 2 ar) 2 2& (r).  
IET 

Now we turn back to A,. We know from (2.18) that 

Ed; - Bi nl-zr (log 11)~"8/(2r - 1) as n + oo . 

By comparing this with (2.20), we have 0: w n-I Ed: = ~ ( E A ; ) .  Let m, denote 
a median of A,.  By the last observation and (2.21), we have 

(2.23) m, - (EAi)1/2  - Bd n1I2 - r  (log n)'@ (2r- 1)-'I2. 

We are now ready to show that if 6 is not very small, then nPr (E, 6,  d )  behaves 
like navg (E ,  d), i.e, it does not depend on 6. Namely, let E + 0 and let 6 ~ ( 0 ,  1/2) 
vary in such a way that 

E 
(log 6('- - + 0. 

Ilog &Ir@ 
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Consider first arbitrary n = n ( E ]  such that 

n x naVB(&, d)  z 

Then by (223) we have m, - (EA,Z)lt2 FZ E and, using (2.20) and (2.24) at the last 
step, we get 

JET - - &r/(r- 1/21 llog E l  -rfliz(r- 1/21 

= (E llog &)-'# llog 61'- 1 112(r- 112) & = 0 (6). 

Now specify n more thoroughly by fixing a small h > 0 and taking 
n - (1 + h)nWE(e, d), Then m,.- (1 + h)li2--'&, and by (2.25) we eventually have 

Therefore, 

m . + a . J m  c a, 

and the contraction inequality in Fact 2.5 yields 

P(A. > E )  S P ( A . $ n t . + a . , / m )  < & ( d m )  s 6. 

Thus 
nPr(&, 6, d) < n - (1 +h)nnVg(c, d). 

On the other hand, taking n - (1 - h) naVg(&, 6) we obtain mn - (1 - ~I ) ' /~ - 'E  > E, 

so that eventually for any S < 1/2 

P(A, 2 e) 2 P(A, $ m,) = 3  > 6. 

Consequently, 

nPr(&, 6, d) > n - (1-h)naVg(&, d). 

It follows from our lower and upper bounds that 

nPr (E, 6,  d) 
lim = 1, 
E+O naVg(€, d) 

as claimed in part (a) of the theorem. 
Proving part (b), we will work under the assumption 

E 
ll0gS1'-~/~- --, 00. 

llog EI'fi 
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Let us first choose n = n ( ~ ,  6) so that 

Using the asymptotic expression for a, in (2.20), we get 

s - u- llzr (y)P, w h e r ~  = 
8 

2 llog 61 B,2 ' 

We slightly change n by fixing a small h > 0 and taking n* - (1 fh)n. Then, 
obviously, 

Next, we will derive from (2.27) that 

(2.29) m,, < E .  

Indeed, by straight comparison of (2.20) and (2.23) one observes that 
(Zr-  l ) / Z r  mn z an llog ~ , l f l / ~ .  

Under the assumption (2.27) it is true that 

and we have 
(2r - 1)/2r 

mn* g n *  llog a, * 18J2 ' $Zr- llog p2 % s. 

It follows from (2.28) and (2.29) that for small E 

E > m., + o n +  J ' .  
Hence, by the contraction inequality in Fact 2.5, 

P(A,+  3 ~ ) d P ( d , _  > m . + + a , +  Jm)< &21log61) $6 .  

Therefore, 

rapr(&, 6,  d)  ,< n+ - ( l + h ) ~ - l ~ ~ ~  

On the other hand, far small 6 it is true that E < (1 - h/2Y 5- and by 
(2.22) we have, for small 6, 
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Therefore. 

and we obtain part (b) of Theorem 2.2 by letting h 4 0. r 

3. APPROXIMATI(3N IN INCREASING DIMENSION 

3.1. Setting and results. In this section we study the approximation error of 
tensor product-type fields X(t), t E [O, lld, given by (2.1), when2 + m. We still 
assume that (2.2) holds. On the contrary, there is no need in regularity assump- 
tion (2.3). Let us stress that we cannot just take the asymptotic results in fixed 
dimension and then let d 4 m even on the heuristical level. This would lead to 
false conclusions. Our analysis is therefore independent of the results in the 
previous section. 

When dealing with approximation of a sequence of random fields, it is 
more natural to work with relative errors, thus taking into account the size of 
varying approximation target. Therefore, let us first calculate 

then define and evaluate the relative average approximation cardinality 

n"vg(~, d) : = inf (n: Ed: 6 E' Ad) 

and the relative probabilistic approximation cardinality 

P T ( c ,  6, d):=inf{n: PfA; > E ~ A ~ )  < 81, 

where A ,  is, as before, the norm of the error in approximation of X by the 
n-term partial sum from (2.1). We will show that for any fixed E the cardinality 
AaVg(&, d) is increasing exponentially in d, but even before stating our result we 
must explain our approach to the problem. Of course, we have a representation 
of cardinality via the ordered eigenvalues: 

and the problem boils down to a study of deterministic arrays (A,, k € N d )  and 
inverting their decreasing rearrangements (Q. To a great surprise, the proper- 
ties of these objects can be properly understood in the language of a simple 
auxiliary probabilistic construction. Namely, let us introduce a sequence of i.i.d. 
random variables (UJ, 1 = l , 2 ,  . . ., with the common distribution given by 

Iz (i)" 
P ( U ,  = -logl(i)) = - 

A '  
i = 1, 2, ... 

The role of this sequence is explained by the following lemma. 
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LEMMA 3.1. For any  EN and any 0 < a  < b, we have 

Proof. Let 

By the definition of (Ak), (Ul), and A, we have 

= .@ P ( ( ~ 1 ,  . . ., U 3  = (-log l(kl), . . ., -log i (kd)) for some k E A) 
d 

= A d P ( z  U1~(-logb,  -logal). rn 
1=1 

Combining Lemma 3.1 with Chebyshev's inequality we see that for any I d r R  a d  y y  O < a < b <  +m it is true that I 

and 

Ad 
(3.3) # { k € N d :  a < Ak < b) 2- - - Z P ( z  Ut~( - Iogb ,  -logal). 

b , = I  

In the following we assume that our basic sequence ( A ( i ) )  satisfies 

This condition is of course the same as EUT < oo and it is true for regular 
sequences (2.3). Let 

and 
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If (3.4) is satisfied, we have IMI < co and 0 < a2 < a. In the folIowing, the role 
of the explosion coefficient 

8 := Ae2" 
will be crucial. Let us immediately check that 8 > 1 except for the totally 
degenerate case when the number of strictly positive L(i)'s is zero or one (in 
other words, d = 1 when = 0). This degenerate case is excluded from the 
subsequent consideration. 

By concavity of the logarithmic function, we have 

cn A (i)" 1 (i)" 
-2M = 2 z logl(i)- = z l ~ g ( r l ( i ) ~ ) ~  

i =  1 A i = 1  

Hence log d = log A +  2M > 0, and we obtain d > 1. 

Now we can state the main result of this section. 

THEOREM 3,2. Under the assumption (3.4) we have for any E E (0, 1) 

logn"'g(&, 6)-dlogd 
lim 
d+ m 

= 24, 

where the quantize q = q ( ~ )  is chosen from the equation 

COROLLARY 3.3. Under the same assumption, for any EE(O, 1 )  we have 

log zvg (E, d) 
lim 

d 
= log 8. 

d+m 

Under further assumptions on (I(i)) one can prove that 

thus giving more than logarithmic behavior, but we are not going to provide 
further details here, 

Now we show that in a very large zone of parameters the probabilistic 
cardinality behaves in the same way as the average one. 

THEOREM 3.4. Let E E (0,  1 )  be fixed and define q = q ( E )  as in (3.5). If we let 
S = S (4 E (0, 1/2) vary in such a way that 

lim llog 61 
= 0, 

gd exp (2g J;i) 
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then 

(3.7) 
logW ( E ,  a, d )  

lim d - log = 0. 
d + m  log iPVg ( E ,  d) 

We stress that the assumption (3.6) is extremely mild (the lower bound 
imposed on S is a double exponential). 

COROLLARY 3.5. Under the same ussumption, we have 

l o g P r ( ~ ,  6 ,  d) 
lim = 1. 
d+m logzvB(&, d)  - 

3.2. Proofs 

3.2.1. P r o  o f of T h eo r em 3.2. We start the proof of the upper ' bound 
by fixing a small h > 0 and setting 

[ = e x p ( - ( ~ d + ( ~ +  h)$)}. 

Apply the central limit theorem: 
d 

(3.8) d + m  lim P ( x  ; = I  L', > Md+(q+il)$)  = &(?) i e2. 

It follows now from (3.1) applied with a = 0 and b = 5 that for all d large 
enough 

On the other hand, let us set a = [ and b = + ao and apply (3.2). We get 

It follows from (3.9) and (3.10) that for all d large enough 

and we are done with the upper estimate. 
The lower bound will be obtained similarly. Take h > 0 and set 

As in (3.8), the central limit theorem yields 

It follows from (3.1), applied with a = 0 and b = c, that 
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The lower estimate for the number of "large" eigenvalues is just a bit more 
delicate. This time we set a = 5, b = cexp(h&) and apply (3.3). We get 

Therefore, for large d we have 

(3.13) # { k  E Nd:  ,Ik $ [] g dTd exp(2 ( q  - 3h) 3). 
I Combining (3.12) and (3.13) we see that 

Pg (e, d )  > dd eexp ((q- 3h) &), 

and we are also done with the lower estimate. H 

I 

3.2.2. Proof  of T h e  orem 3.4. We fix E E (0, 1) and choose the quantile 
q  = q ( E )  as in (3.5). Similarly, take < E and choose ql  from the equation 
@(q l /a )  = E:. Set h1 = q,-q > 0. 

I 

I 
I For each d we choose cd SO that 

# { k € N d :  ,Ik 2 Cd) = j iavg(~l ,  d) .  
I 

Recall that for a11 d  large enough we have 

iiavg ( E , ,  d)  > gd exp (2(q1 - hl)  J;i) = dd exp (24 J;i). 
We know from (3.2) that for any c > 0 

By setting i : = exp (- Md - q  ,,I@ we obtain 

#  EN": a k  2 [] < b d e x p ( 2 q J d ) .  
Hence 

id < C  = e ~ ~ ( - ~ d - ~ & ) .  

Next, we set 
dld' := 1 1  A k t k l I .  

k ~ N d : l k < [ a  

By the definitions of C, and n " v g ( ~ l ,  d) we know that E(A(d))2 6 Ad. There- 
fore, by the Gaussian contraction inequality in Fact 2.5 we have 
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It foIIows from the assumption (3.6) that 

hence for d large enough 

c j  IlogSI ,< (c- E,)' Ad 

and, finally, 

E ~ A ~ / ~ + [ ~ , / ~  s E A * ~ ~ .  

We have 

By the definition of cardinality, it means that n"Pr(&, 6,d) < r T g  (E,, d). Applying 
twice Theorem 3.2, we have, for d large, 

W r k ,  6, d)  < Svg(~,, d) G kexp(2(q l+h, ) f i )  

and the required upper bound follows, since h,  could be chosen arbitrarily 
small. 

The lower bound is even much easier since from (2.21) it folows that for 
6 < 1/2 we have n"Pr (6, 6 ,  a) 2 iPVg(~, d). 
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