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Abstract. For the second derivative, an analogue of the classical 
Taylor's formula i s  considered on a suitable function space. The sum of 
the "Taylor series" represents the Gauss semigroup. This may be useful 
in describing the trajectories of some functions under the action of the 
Gauss semigroup. 
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It is well known that the second derivative is the infinitesimal generator of 
a semigroup of operators in L,(- co, a), 1 < p < m, given by the formula 

(1) ( T f ) ( ~ ) = j f ( x + ~ ) ~ t ( d w ) ,  t > 0 ,  
R 

where 

More exactly, the generator A  of (1) is of the form 

with D (A) = { f E L,: f' is absolutely continuous and f 'I E Lp (- ~1;) , 00)). 

For A = dZ/dx2,  let us write formally 

We construct a function space F, on which a C,-semigroup (etA, t >, 0) 
closely related to ( 1 )  can be defined via formula (3). 
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Let us fix a sequence O < t, r co. For f  E C", we set 

(4) 
I l f  1 1 ;  = I f  (w)l ytm (dw) = I l f  l I ~ ~ ( ~ , y , , ) r  = 2, . . 

R 

We put 

So with serninonns (4) is a FrCchet space, i.e. metric complete and locally 
convex. We omit a standard proof of completeness. Evidently, To embraces all 
polynomials. We define the space X by putting 

9" = [Polynomials],,, 

the closure of polynomials with respect to serninorms (4). 

THEOREM. Let A = d2/dx2 and let f  EX. For t 2 0 we set 

Then (etA, t 2 0 )  is a Co-semigroup of continuous operators acting in 3. More- 
over, 

y,  being the Gaussian measure given by (2). 

Before starting the proof of the Theorem we continue with a few remarks. 
Clearly, our theorem states that the Gauss semigroup acts on 5Y as 

a Co-semigroup of ordinary exponential operators. The exponential formulae 
(5) and (6) can be treated as an analogue for the second derivative of the 
classical Taylor's formula. 

For an analytic function J the condition If (k) (0)llik = o (k1I2) implies f E X 
Indeed, it is enough to estimate the series 

having in mind that the (2k)-th moment of y, equals ( (2k)! /k!)  tk, and using the 
Stirling formula. 

The equality 
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is the raison d'e"tpe of the space X. Calculating or estimating the Gaussian 
integrals (1) for f E 3, we can take advantage of the simplicity of "Taylor's 
series" (5). Let us consider some examples. 

I. Let ty] denote the integral part d y. For any complex number a, the 
function 

m X" , (x) = C a"'" - 
,,=o n! 

is the "eigenfunction" for (7;) in the sense that (7; f,) ( x )  = era f ,  (x) for all E 3 0. - 
This follows immediately from the equalities 

m f (Zk+v) (0) [TI = [i] -I- k and f (2k' (x) = 2 x V .  
,,=,, Y! 

11. For the Bessel function 

we set I, ( x )  = J, ( J x ) .  In particular, 

Clearly, I ,  E X for p > 0. The integral (7; I,) (x) = 1"" I ,  (x + w) y, (dw) can be 
expressed in terms of I,,, k = 0 ,  1 ,  . . . Namely, 

(there is no singularity at x = 0). Indeed, 

Thus we have 

and consequently we get (*). 

111. Obviously, for f E %, the function v (t, x) = (T, f) ( x )  is a solution of 
the initial value problem for the heat equation and even more. Namely, we 
have 

akv a2kv 
at! - axzk' k = I ,  2, . . ., 
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and 
ak 
- v [ O , x ) =  f ( 2 k ) ( ~ ) ,  k = 0 , 1 ,  ... 
atk 

Proof  of the Theorem. For a monomial f(w) = wk, let us put 

f 1 for k = 0, 
for k odd, 

IClt ((wk)) = $t (4 = 

For a polynomial 

we set 

An elementary though laborious argument leads to the formula 

m ( X 7 ( 2 k )  

etA (xn) = C - tk = +t [(x + w)"] . 
k = O  k! 

Since $,(k)  is the k-th moment of the Gaussian measure y,, we get immediately 

for any polynomial J: 
Let f E X and let (P,) be a sequence of polynomials tending to f in I (i.e. 

in seminorms (4)). Since the shift T,: f (w) + f (w + x) is continuous in L? (R, y,), 
t > 0,  we get in particular 

where the convergence is almost uniform on R. 
Let t > 0, 1x1 < n, m > t. For E > 0  we find so such that IIPs-f l l , , ,  < E for 

s 2 so. Then we have 

a0 

< C max 1 f (2k) ( x )  - ( $ 1  - < E for s $ a. 
k = O  IxIGn 
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Let us remark that, for f E%, s > 0, n = 1, 2, . . ., A = d 2 / d x Z ,  

(9) An(e" f )  = gA(A' f ) .  

Indeed, let 

Since I l f l l n , ,  < CO, for n, m =  1, 2,  ... 
nN (x )  -+ (x) almost uniformly on R. - 

Moreover, IIAk f IJ,,, < CO, SO we also have 

An a, (x) = aN (An f )  (x) + e" (An f )  

and, consequently, we get 

We are going to prove that f E 2E implies esA f E 3, s > 0. Let f E 3. It means 
that I l  f l ln , ,  < m, 1 1  f 11; < rn and there is a sequence of polynomials, say (P,), 
such that 

IIPs-flln,m 4 0 and IIPa-f l l f  + 0 as s + CO. 

We have to show the same for e"f 
Since Ak (e"A f )  = esA Akf; we get 

= f 2 (T) m* SN-L max 1 ( ~  
N = O  N' k = O  1x1 < n  

" (s+m)" = c -  maxI(ANf)(x)lGIlfIln,m+mo<~ (here m o > s ) .  
N = O  N! / X I $ "  

Moreover, since the formula (6) follows easily from the classical facts and the 
definition of the seminorms (41, we can write 
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Now, take Q,  = esA P, (n = 1, 2, . . .). We shall show that Q, + e"f in T, 
We have 

since I l  f- P.11: -) 0 as n + m for each m = 1, 2, . . . 
Moreover, 

- 

m m mkSv 

< C C - - max I(Pr -f ) (x)('(~ + v ) ) l  
k = o v - o  k! V !  IxI<~I 

" (s+pny" =x- max ItPp -f)czN~(x)l = IIPr-f I l n , m + r n o  + 0 (here mo 2 s). 
N = O  N !  Ix lan  

Thus the operators esA act from 5 to I. Moreover, for s, t > 0, f E %, we have 

(since the convergence of the above series is absolute with respect to all semi- 
norms II.Iln,m and II*IIz)= 

Consequently, we have 

for any s, t 2 0  and ~ E S .  
By (11) and (12), the operators e": X -+ 3 are continuous in 57. It remains 

to show the continuity of the semigroup (e", s 2 0). 
Let us note that, for a, rn = l , 2 ,  ..., 

lietA f -flln,nl -, 0 as t -) O + .  

Indeed, 

" (t+ m)" 
= C ---- " mk 

maxI(ANf)(x)l-x-maxI(Ahf)(x)l+O as t j 0 .  
N = O  N !  IxI$n k = o  k !  1x1s" 
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To show that lietA f-f 1 1 ;  4 0 let us first remark that, for every m and 
f, -, 0 in 5, IlerAf,ll: + 0 as s + a, uniformly with respect to 0 < t < 1. In fact, 

with t,, > t,+ 1 and some C > 0. 
For any polynomial P, 

Indeed, since 
A. 

((dA P)  ( x )  - F (r))' = 4 (x) sk 
k = l  

for some polynomials ck(x) ,  we get 

Let f  E X and let Pk be polynomials such that IIPk- f  11: + 0 as k -+ m 
(rn = 1,2 ,  . . .). Assuming 0 < s < 1, we have 

Let E > 0. We find a ko such that 

l l f - P k o l l z  < &/3, sup IlesA(f-Pko)ll$ < ~ / 3  
O d s S 1  

and, finally, 

lleSA Pko- Pkoll < 4 3  for s < so. 

Thus f-f 112 < E for s < so, so lie" f-f  1 1 ;  + 0 (s -+ 0). 
In a standard way we show the continuity of (e", s > 0) at any point 

so > 0, which completes the proof of the Theorem. H 
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