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Abstract. Minimal integral representations are defined for gene- 
ral stochastic processes and completely characterized for stable proces- 
ses (symmetric and asymmetric) In the stable case, minimal represen- 
tations are described by rigid subsets of the I?-spaces which are inves- 
tigated here in detail. Exploiting this relationship, various tests for the 
minimality of representations of stable processes are obtained and used 
to verify this property for many representations of processes of interest. 
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1. INTRODUCTION 

The notion of minimal representations of symmetric a-stable (SaS) proces- 
ses, introduced by Hardin [3], plays an important role in the study of station- 
ary SaS processes (see, e.g., 131, [5 ] ,  [?], [8], [Ill-[13]). This is due to the fact 
that the usual harmonizable representations are availabIe for only a small 
subclass of SaS processes but minimal representations always exist, and other 
representations of SuS processes can be obtained from the minimal ones. In 
addition, the notion of minimality is not limited to stationary processes. Mini- 
mal representations seem to be natural for the "spectral" analysis of stable 
processes. However, with an exception of a few simple cases, the minimality of 
representations for many SuS processes of interest has not been established 
because of the lack of workable tests for this property. A different problem is to 
place Hardin's notion in a general framework that can be used for the study of 
other infinitely divisible processes. The present paper deals with these problems. 

* Research supported by a grant from the National Science Foundation. 



In Section 2 we define minimal integral representations for general sto- 
chastic processes. It turns out that minimal representations of strictly stable or 
symmetric stable processes are characterized by the so-called rigid subsets of 
E-spaces, which are introduced and investigated in this paper. In Theorem 3.8 
of Section 3 we characterize rigid sets by a series of more or less easily verifiable 
conditions. We use this characterization in Section 4 to establish the rninimality 
of representations of many stable processes of interest. Section 5 contains 
an auxiliary material needed for the proof of Theorem 3.8. Finally, we would 
like to mention that our definition of minimality is slightly different from the 
primary definition of [3] (see also [4], p. 118). Due to this Ifitle change, we 
can get a clear functional analytic interpretation. Besides of treating the stable 
case in detail, this paper gives foundations for a study of minimal represen- 
tations of other processes, such as tempered stable ones, that will be considered 
in a separate work. 

2. MINIMAL INTEGRAL REPRESENTATIONS 
OF STOCHASTIC PROCESSES 

We begin with the following definitions. Let (a, P) and (a, P') be proba- 
bility spaces, and let X c 2 (D, P). A transformation V: X M Lo (Of, P f )  is said 
to be distribution preserving (d.p.) if,  for every n 2 1 and XI,  . . ., X,E X, 

where "A " means "equal in distribution". It is clear that any d.p. transform- 
ation V has the following properties: 

V is one-to-one. 

V has a unique extension to a linear d.p. transformation 

If X c E (a, P )  ( p  2 0), then V (X) c E (SZ', P') and V has a unique ex- 
tension to a linear isomorphism between the E-closures of lin(X) and 
lin (V (X)). 

Moreover, the composition of d.p. transformations is d.p. 
Let M: Y H Lo (Q', P') be a random measure, i.e., a countably additive 

set-function defined on a a-ring Y of subsets of some set S. Let L ( M )  be an 
appropriately defined linear space of stochastic integrals of the form 
I,(f) = 1, f d M ,  where f is a deterministic function on S.  We say that a sto- 
chastic process X = { X , ) ,  defined on (Q, P) has a representation in L(M)  if 
there exists a d.p. transformation 
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Thus we have the correspondence 

Such a d.p. transformation V is called an (integral) representation of X in L (M) .  
We now define a minimal representation. Let Af be a class of random measures 
(for example, independently scattered, infinitely divisible, symmetric stable, 
strictly stable, etc). 

D E ~ T I O N  2.1. Let M belong to some class of random measures A. 
A representation V of X in L ( M )  is said to be minimal in the class A if for any 
other representation V' of X in L(M'), where M' E &, there exists a unique d.p. 
transformation W : L (M) w L (M') such that V' = W 0 V 

In other words, by definition a minimal representation is a factor of any 
other representation in the class A, as illustrated below, with W being unique : 

PROPOSITION 2.2. Let V :  X w L ( M )  be a minimal representation of X in 
L (M) ,  where M E .A. 

(i) If V' is another minimal representation of X in L(M'), then 

in (2.3) is a d.p. bijection. 
(ii) Let U: X w X be a d.p.  bijection. Then V 0 U is also a minimal represen- 

tation of X in L(M) and there exists a unique d.p. bijection W, : L(M) w 
L ( M )  such that 

P r o  of. (i) The existence and uniqueness of W comes from Definition 2.1. 
We need to prove that W is a bijection. Since V' is also minimal, there exists 
a d.p. map W': L(M') w L ( M )  such that V = W' 0 Y'. Hence 

Putting Y' = Vand M' = M in the diagram (2.3), we see that it commutes when 
W equals W' 0 W or the identity id,(,,. By the uniqueness, W' 0 W = idL(,). 
Reversing the roles of V and V' we get W o W' = id,(,,,. Hence W is a bijection 
and W' = W-I .  

(ii) Let V' be a representation of X in L(MJ), M E & .  Consider another 
representation of X in L (M')  given by V' o U -  ' : X w L(Mr). Since V is mini- 
mal, there exists unique W: L(M) H L(M1) such that V'o Up' = W o V on X .  



Thus, V' = W 0 (V 0 U), and V 0 U is minimal. Applying part (i) to V and V o U 
we conclude the proof. 

Because of the essential uniqueness of L ( M )  given by Proposition 2.2 (i), 
L ( M )  can be called the second linear extension of X (the first one is L(X) := 
lin (X)). 

Intuitively, a minimal representation is the best fit of a noise M to the 
process X. When X is a zero-mean Gaussian process, then 

L(X),2 = LIM), - 

where M is an independently scattered Gaussian random measure. This fact 
does not extend to symmetric or-stable processes and the best one can have in 
general is - 

- 
L (XI,, L (MI, 

where p < u and M is an independently scattered symmetric a-stable random 
measure (see ExampIes 4.4 and 4.5). The minimal representation connects both 
sides of this inclusion in such a way that spectral analysis of X can be carried 
on L(M).  The latter space is isomorphic to an @-space of deterministic func- 
tions, which greatly facilitates analysis of stable processes. 

Definition 2.1 applies to any classes of processes and random measures, 
real, complex or vector valued. Therefore, the pattern of analysis of stable 
processes can be carried over to other processes once the existence of minimal 
representations is established. 

3. RIGID SUBSETS OF B-SPACES 

In this section we summarize and develop certain aspects of the theory of 
isometrics on subspaces of E-spaces that are pertinent to the study of represen- 
tations of stable processes. We begin by recalling the Banach-Lamperti theo- 
rem (see [6] ,  Theorem 3.1, and [I], p. 178) in the point-transformation form. 
This form is available in view of Sikorski's theorem ( [15 ] ,  Theorem 32.5) and 
under the assumption that the considered measure spaces are Borel. Through- 
out this section p and v will denote a-finite measures on Borel spaces (S, as) 
and (T, B,), respectively. 

THEOREM 3.1 (Banach-Lamperti). Let U :  E ( S ,  p) H E(T, v) be a linear 
isometry, where p # 2. Then there exist maps # : T H S and h :  TI-+ R (or C in 
the case of complex LP-spaces) such that 

and 

(3.2) dp = ((hlP dv) o 6 - . 





EXAMPLE 3.3. Let S be the unit interval with Lebesgue measure, and let 
F = (I,). Let T = {yo) be a one-point space with the probability measure. 
Consider an isometry U: F c ,  L1 ( T )  given by U1, = 1,. Then there is no func- 
tion 4 : T c* S such that (3.1) holds jbr every f in the equivalence class of 1,. 

The existence of point-transformation forms for (3.4) was studied in [9]. 
The first step in obtaining such forms is to consider linear isometries defined on 
collections of functions, not on the equivalence classes. To make this distinc- 
tion explicit, we will denote by P a collection of p-integrable functions and by 
F the corresponding equivalence class. Let G ( F ) ~  be the LY-chsure of lin(P), 
the linear space generated by F. A function f * E L ( F ) ,  is said to have full 
support in- F if 

(3-5) supp (f *) = supp ( F )  mod-p. 

Such a function f * always exists ([2], Lemma 3.4). Consider the following 
condition: there exists a countably generated a-field d such that 

where the bar on the right-hand side denotes the operation of completion in 
Bs and f * E (F), is a function of full support in I; (arbitrary but fixed). (If' 
f * ( x )  = 0, then (f/f *) ( x )  : = 8, the infinity point of the one-point compactifica- 
tion of R (or C).) In applications, condition (CD) is not restrictive (see Lem- 
ma 4.10 below), but permits to avoid pathological cases as in Example 3.3. 

The following theorem combines Theorems 4.1 and 4.3 in [9 ] .  

THEOREM 3.4. Let U, : F H E ( T ,  V )  be a linear isometry, where F c 
I! ( S ,  p) satisfies (CC) and p tf 22. Then there exist maps # : T H S and h : T w R 
(or C, respectively) such that 

(3.6) U o f = h . f o $  f o r e v e r y f ~ F  
and 

(3.7) If *Ip dp = I f  *Ip (IhIp dv,,) 0 #- on d. 

Conversely, if (3.7) holds, then (3.6) dejnes an isometry on F.  

The following property will play a crucial role in the study of minimal 
representations of stable processes. 

DEFINITION 3.5. Let p E (0, ao ), A set F c E (S, p) is said to be rigid if, for 
every space E (T, v) and for every linear isometry U, : F H E (T, v), there exists 
a unique linear isometry U :  LP ( S ,  p)  c, LP (T, v) such that U = U, on F. 

We immediately notice that if F is rigid in E ( S ,  p), then 

(3.8) supp (F)  = S p-a.e. 

Indeed, if p (S\supp (6) > 0, then the identity operator Uo f = f, f E F, has 
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two different extensions: one of them is the identity on @ (S, p) and the other is 
given by 

ug = (2~s",,,,,-l)g, g € L P ( S ,  p). 

Hence (3.8) holds when F is rigid. 
Our goal is to characterize rigid collections of functions F .  First we ob- 

serve from Theorem 3.4 (or from the set-transformation form for Uo given 
in [2]) the following. 

COROLLARY 3.6. Suppose that supp (F)  = S and s (,f/f * : f E F )  = Bs 
mod-y. Then F is rigid. 

Proof .  Indeed, under these assumptions (CG) holds with d = 3, and 
I f  * I P  can be canceled on both sides of (3.7). Consequently, (3.7j becomes (3.2), 
so that, by  heo or em 3.1, (3.6) gives a formula for an isometry on the whole 
E(S, PI. 

We will now define another property of F which is often easier to verify 
than the rigidity. 

DEFINITION 3.7. Let F c Lo ( S ,  p), and let $ : S w S be a measurable map. 
We say that F is $-quasi-invariant if there exists a measurable function 
k : SF-+ R\{O} ( k :  S I+ C\{O) in the complex case) such that 

(3-9) f o $ = k . f p-a.e, for every f E F 

The quasi-invariance becomes the usual $-invariance when k = 1. The 
latter holds, in particular, when I,EF or, more generally, when F contains 
a sequence of indicators of sets ascending to S. Every F is (quasi-) invariant 
with respect to ids, the identity map on S. Recall that tl, is said to be nonsin- 
gular if p 0 $-l is absolutely continuous with respect to p. 

Now we will give the main result of this section. 

THEOREM 3.8. Let F c E ( S ,  p), where p #  22, and let supp (F) = S mod-p. 
Then the following are equivalent: 

(i) F is rigid in E(S,  p). 
(ii) If F is $-quasi-invariant with respect to some null-preserving Bore1 

isomorphism $ : S H S with $ o $ = id,, then $ = ids mod-p. 
(iii) If F is $-quasi-invariant with respect to some nonsingular $: S H S ,  

then I) = ids mod-p. 

(iv) s { f / g  : f ,  g E F )  = Bs mod-p. 

(v) There exists an f * ~ l i n  (I;), with supp (f *) = S mod-y such that 

c r { f / f * :  f EF) = B s  mod-p. 

Ivi) o {fig : f, g ~ l i n  (Flu) = gs. 

9 - PAMS 26.1 



(vii) T h e  exkt a sequence {f,) c F and an f * E lin (F), with supp(f *) = S 

mod-p such that the map 

is one-lo-one p-a.e. 

(viii) There exist sequences {f,, g,} c lin(FjLp such that the map 

- 

is one-to-one p-n.e. 

Proof: We will first show (i) - (ii) = (iv) e- (v) - (i). Then we will estab- 
lish (v) * (vii) = (viii) - (vi) * (iii) (v). 

(i) * (ii). Let f * be a function of full support in F (see (3.5)); by (3.8) we 
may assume that 

(3.10) supp(f *) = S .  

Suppose that F is $-quasi-invariant, where $ is specified in (ii). Then, for every 
f fF, 
(3.11) f/f * = (f/f *I O 9 ~-a . e .  

Let dp, : = I f  *IP dp,  and let 

Consider the map U o  : F ++ E(S,  v) given by 

Uo is a linear isometry because, for every fi , . . . , f, E P and f : = ai fi, we 
have 

by (3.11). Since F is rigid, there is an isometry U : E ( S ,  p) U)H E ( S ,  V) extending 
U,. We have Ug = h - g 0 4 and dp = ((hiP dv) 0 #-I, by the Banach-Lamperti 
theorem (Theorem 3.1). Since Uf * = 1, 

Now notice that Y is $-invariant because = idS. Hence 

is also an isometry, U1 : E (S, p) I+ LP (S, v). Since, for every f E F, 
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by (3.1 I), and B is rigid, we get U = U1, which yields 

Then, for every A E B ~ ,  

which implies 
dp = I f*] -Pd(p*~$- l ) .  - 

This ensures that Vi : E(S, p) ++ LP(S, p,), defined by Vl g = (grlf *) (#), is an 
isometry. Since also V2 : LP (S, p) I+ LP (S, p8), given by V2 g = g/f *, is .an iso- 
metry and V2 coincides with Vl on F, we get 4 = ids. This in conjunction with 
(3.12) yields @ = ids, which proves (ii). 

(ii) 3 (iv). Suppose that (iv) does not hold. Then, by Proposition 5.1, ap- 
plied to the case X = S, Y = R u (8 )  (Y = Cu {a> in the complex case), and 
r = { f l g  : f, g E F ) ,  there exists a null-preserving isomorphism @ : S w S such 
that $ # ids (mod-p), II/ 0 $ = idg and 

for every f, g E F. This gives 

By the nonsingularity of 9, (3.14) holds for g = f * (given by (3.10)) and all 
f €I;. Thus (3.9) holds with k = f * ($)lf* and as above, which contradicts (ii). 

(iv) a (v). Obvious. 
(v) * ti). This is given in Corollary 3.6. 
(v) - (vii). It follows from Proposition 5.2 below. 
(vii) - (viii). Obvious. 
(viii)a(vi). It follows from Proposition 5.2 below. 
(vi) * (iii). Suppose that (3.9) holds for some nonsingular $. Hence (3.14) 

holds for every f, g ~lin(F).  Thus (3.13) holds for such f and g, which gives 
ll/ = ids, by Proposition 5.1. 

(iii) - (v). Use the same arguments as in (ii) *(iv). 
The proof of theorem is complete. H 

Following the proof of Theorem 1.1 in [3J one can show that every subset 
of an E-space is isometric to a set satisfying condition (vi) of Theorem 3.8 
(see also [9], Section 4). In view of Theorem 3.8 we have the following inter- 
pretation of that result. 

F~OPOS~TION 3.9. Let F c E ( S ,  p), 0 < p < ao. Then there exist a rigid 
subset of some space LP (f, fi  and a linear isometry U :  E($, ,il) H E (S, p)  
such that UF = F.  



4. MINIMAL REPRESENTATIONS OF STABLE PROCESSES 

4.1. Symmetric stable processes. Let d = &",mote the class of indepen- 
dently scattered symmetric a-stable (ScrS) random measures. If M E  &S,, then 
the space L (Ad), which is defined as the closure of stochastic integrals 1, (f3 of 
simple functions f : S H R  in some (any) E(O,  P )  (0 < p < a), is isomorphic to 
the E ( S ,  p)-space (p is the control measure of M). Specifically, we have 

(4.1) E exp ( i l M  (f 1) = exp (- l If l a  dtt) 
S - 

for every f EL"(S, p). For these facts, further details and proofs, we refer the 
reader to [14]. We will also consider, as a separate case, complex-valued SaS 
random measures and stochastic processes; in this case the symmetry means 
the rotational invariance. It is well known that every SaS process X = (Xt ) rET 
separable in probability has a representation 

with Ad E Mi and J; E L" ( S ,  p). Put F = (,f,],,,. Let X I  I+ I,# (f;') be any other 
representation of X with M' E 4: and J;'E L" (S, p'). Then (4.2) implies that 

is a linear isometry, Uo : F w E(S', p'). Conversely, if (4.3) is a linear isometry, 
then X, I-, I,, (ft3 is a representation of X. Using these facts and Definition 2.1 
it is easy to verify the following. 

P ~ o w s r r ~ o ~  4.1, Let X be an Sols process. Then the following are equiv- 
alent: 

(i) The representation (4.2) is minimal in the class A:. 

(ii) is rigid in E ( S ,  p). 

Combining this proposition with Remarks 3.2 (a) we obtain the following 
corollary which makes precise the statement that other representations of 
stable processes share the properties of the minimal ones. 

COROLLARY 4.2. Under the above notation, assume that (4.2) is mini- 
mal. Suppose that another representation X,t-+lM,(ft ' )  has the property 
supp { f,' : t E T) = S mod-p'. Then, for euery t E 

where #: S' + S,  h :  S' + R\{O) (C\(O), respectively) are measurable, and y - 
p'o$-l.  

We will now apply Theorem 3.8 to describe minimal representations of 
some SaS processes together with their first and second linear extensions (see 
Section 2). We will start with the simplest case of the SaS LCvy motion. 
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EXAMPLE 4.3. SaS Livy motion. 

where A4 has control Lebesgue measure. Clearly, this is a minimal represen- 
tation by (iv) of Theorem 3.8. Here L(X) = L(M).  

EXAMPLE 4.4. Let fo7 fi E @ ( S ,  p), fO # 0, and let fi/fo : S H R be 
one-to-one a.e. Then Xi := iM(A) ,  i = 1, 2, is given by its minimal represen- 
tation. The first linear extension of X, - 

is a two-dimensional space. The second linear extension is the whole space 
L(M),  which can be infinite dimensional. Notice that L(X)  does not contain 
any pair of independent noa-zero random variables, unless S is consisting of 
two atoms. 

EXAMPLE 4.5. Stationary sequence. Let S = LO, 11' and for s = (s,, s2)  E S 

(f,),,, is a bilateral Rademacher sequence. Using binary expansions of s1 and 
s,  we verify that the map S H ( . .  ., f-I (s)/fo (s),  1 ,  f-, (s)/f, (s), . . .) is one-to- 
one p-a.e., where p is the Lebesgue measure on S. Hence 

is a stationary SctS sequence and this representation is minimal. We have 

which is a much smaller space than L(n/l). 

EXAMPLE 4.6. Moving averages. We will show that the representation 

is minimal. Here M has control Lebesgue measure. We will verify condition (iii) 
of Theorem 3.8 with I; = { f , ) , , d ,  f ,-(s) = f ( t+s ) .  Suppose that there exists 
a nonsingular I,!I : Rd w Rd such that for each t E Rd 

f (t  + t,h (3)) = k (s)  f (t + S )  for a.a. s E Rd 

By Fubini's theorem and invariance of the Lebesgue measure, for a.a. ssRd 

f (u+i,h(s)-s) = k(s )  f (u) for a.a. u € R d .  



This in conjunction with f €L"(Rd) yields $(s)-s = 0, which was to be 
shown. 

EXAMPLE 4.7. Takenaka ra~ldom field. An (a, H)-Takenaka random field 
X is defined by 

(4.4) xt := M ( a  = j X ,  ( X  d ) ,  ~ E R ~ ,  
B d X  R+ 

where 

K : =  {(x, r): ~~x~~ < ~ } A { ( x ,  r): ~ ~ x - t ~ ~  < r), - 
and M is an Sols random measure on Rd x R ,  with control measure 

p(dx, dr) = raH-d- l  dxdr, 

HE(O, l /a)  (see [14], Chapter 8.4). We will show that (4.4) is a minimal re- 
presentation. To this end we will check condition (iii) of Theorem 3.8. Suppose 
that there exists a nonsingular $ : Rd x R+ H Rd x R+ such that, for each t E Rd, 

(4.5) 1 ( x  , ) = k ( x  r) 1 x r) for p-a.a. (x, r), 

where (x', r') = $(x, r). By Fubini's theorem, for p-a.a. (x, r), (4.5) holds for a.a. 
t~ R', However, for fixed (x, r), the function 

has only two possible forms: either it is the indicator of a closed ball with 
center x and radius r (if llxll > r) or it is the indicator of the complement of such 
a ball (if llxll < r). This yields k(x, r) = 1 in (4.5) and identifies x' = x and r' = r. 
Thus 3 (x, r) = (x, r) p-a.e., proving the minimality of (4.4). 

EXAMPLE 4.8. Harmonizable process. Here we consider 

where T= Z or R and 2 = [0, 2 4  or R, respectively. M is a rotationally 
invariant complex-valued random measure with a finite control measure p. 
Since trigonometric polynomials are dense in iY(Fd, p), the minimality of (4.6) 
is obvious. In this case we also have L(XJ = L(M). 

EXAMPLE 4.9. Real part of a hamonizable process. If X is given by (4.6), 
then its real part %X can be represented as 

(4.7) %X,wk; '  5 cos(s+t-w)Z(ds, dw), 
[0,2n) x f d  

where Z is a real-valued SaS random measure on [0, 2x) x fd with control 
measure LebBp, and 

2x 

ka = ( { (cos s(" ds)"" 
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(see [12]). This, however, is not a minimal representation. Indeed, we have here 

Define 
s+x ,  W) if SELO, x), 

w) if SE[X, 274. 

Then f,($(s, .w)) = -f,(s, w), contradicting (ii) of Theorem 3.8. 
We will find a minimal representation for (4.7) in the case T= W. To this 

end we need to assume that ~((0)) = 0. Then there exists a hyper- 
plane H = H ,  = (x E Rd: x .a  = 0}, llalj = 1, such that p(H) = 0. Put H +  : = 
(x :  x . a  > 0) and "fold" the measure y. Formally, let v := p o  $-l, where 4 :  
Rd\H I+ H +  is given by t$ (x) : = sign (x a) x. Let N be an SaS random measure 
on [0, n) x Rd with control measure LebBv. We have 

which implies that 

is also a representation of %X. We will show that (4.8) is minimal. To this end 
choose a dense sequence { t j ) € R d  and consider the map 

cos(s+t,-w) cos(s+t2-w) 
((0, n/2)u(x/2, x H +  3(s, w)++ ( m s s  COS S 

, ...). 

We will verify condition (vii) of Theorem 3.8. Suppose that, for some (s,, w,), 
(s2, w2) E ((0, u(d2 ,n) )  x H + ,  we have 

cos(s, +tj.wl) - cos(s,+tj. w,) - for all j. 
COS Sl COS SZ 

By continuity we get 

(4.9) cos (sl + t - wl) cos sz = cos (sz + t - wz) cos sl for a1  t E Rd. 

Taking partial derivatives in (4.9) with respect to t and then setting t = 0 we 
obtain 

W: sin s1 cos s2 = W: sin s2 cos sl , 
(w!)' cos s1 cos s2 = ( 4 ) 2  cos s2 cos s1 , k = 1, . . ., d ,  



where wi = (w:, . . ., wf), i = 1, 2. From the second equation in (4.10) we get 
W; = f d2 for each k. Since wi # 0, we infer from (4.10) that tan sl = 

I tans,. Hence s, = s, or s, = x - sz. In the first case, (4.10) yields w, = w,, 
which gives the required conclusion, in the second case, (4.10) gives wl = - w,. 
But the latter is impossible since both w17 w2 E H + ,  and this completes the 
proof of minimality in (4.8). 

Our last example contains sub-Gaussian and sub-stable processes. The 
fact that the natural representation of sub-stable processes is not minimal has 
been mentioned in [4], p. 122. We give here a simpler andmore general 
argument to that fact. 

EXAMPLE 4.10. Doubly symmetric Sots process. Let X be given by 

where F = (jJIE+ itself is a symmetric stochastic process on a probability space 
(S ,  p). As before, M is an SorS random measure on S with control measure p. 
We will call such processes doubly symmetric. The above representation is not 
minimal which can be easily seen from condition (iv) of Theorem 3.8. Indeed, 
assuming the minimality, we have 

for some t i ,  t2, . . . E T and B €gRrn. Since F - F,  we also have 

{ f *  = {(f,,/f*, JJf*, ... ) E B )  mod-p, 

which gives f * = 0 mod-p, a contradiction. 

4.2. Nonsymmetric case - strictly stable processes. Now we will consider 
the class Ma of independently scattered strictly a-stable random measures. 
Every random measure M E A, is characterized by two "parameters": its con- 
trol measure p on S and the skewness function b :  S + [- 1, 11. The space 
L(M),  which is defined as before as the closure of stochastic integrals I,(f) of 
simple functions f : S H R in some (any) E(W, P) (0 $ p < or), is isomorphic to 
the E(S, p)-space @ is the control measure of M). Specifically, we have 

(4.1 1) E exp ( iIM (f )) = exp ( - 1 If 1" dp + i tan (x u/2) j' f ("> pdp) 
S S 

for every f EE (S, p) (see [14]). Here x(") : = sign (x) 1x1". It  is well known that 
every strictly stable process X = {X,),,, separable in probability has a repre- 
sentation 

for some random measure M with skewness function jl = 1, and f , ~  
E (S, p) (see, e.g., [14]). To obtain minimal integral representations we need to 
consider representations of strictly stable process X described by the pairs 



- 
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(F, p}, where F = {A), ,  c L" ( S ,  p) and /I: S w [- 1, 11. The restriction to 
p = 1 will not work. 

LEMMA 4.11. Consider representation (4.12) with an arbitrary pair ( F ,  P). 
LRt U o  : Pie La (Sr ,  p') be a linear isometry. Then there exists a ,function 
/It: S I-+ [- 1 ,  11 such that 

is a: representation of X, where M' is a strictly a-stable random measure with 
skewness function #I' and control measure p'. - 

Proof .  In view of (4.1 1) and our assumption on U o ,  we need to show that 

for some function p': S'I+[-1, 1) and all a , ,  ..., ~ , E W ,  t , ,  ..., ~ , E T  
Choose a sequence (An) c F dense in L" and modify the set P replacing 

each J; by the pointwise limit of some subsequence from (,fin). Denote the 
modified set also by F .  This modification, of each f, on a null set, does not alter 
our assumptions. Let f * be as in (3.5). Then condition (CG) of Section 3 holds 
with 

.d= g{Jn/f*: n f N )  

and, by Theorem 3.4, U,, is of the form (3.6). Without loss of generality we may 
also assume that supp (F) = S and that 1 1  f *[IL. = 1 .  Let Ed denote the con- 
ditional expectation given d with respect to the probability measure I f  *Iu dp  
on (S, gs). Define 

Po : = sign (f *) Ed [p  sign (f *)] 

and let 
p :=  sign(h}poo4. 

By (3.6) the left-hand side of (4.14) equals 

<a> 

= (C %+) Ed s * * (using (3.1)) 

which completes the proof. a 
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THEOREM 4.12. Let X be a strictly stable process whose representation 
(4.12) is determined by a pair ( P ,  8). Then the following are equivalent: 

(i) (4.12) is minimal in the class k,. 
(ii) F is rigid in E(S,  p). 

Proof .  Assume (i). By Proposition 3.9 there exists a rigid set F' c 
L"(S', $1 and a linear isometry V :  L" (S', p') I+ E (S, p) such that VF' = F. Let 
Uo : F w E (S, p') be the inverse to V on F. By Lemma 4.1 1 there exists 
a representation 

where M'E A, is a random measure on Sf. From the definition of rninirnality 
and (4.12) there exists a linear isometry U: E(S,  p) c, L" (S', p'), corresponding 
to a d.p. transformation from L ( M )  into L(M1), such that Uf = Uo f for every 
f E F. Now we see that UV: E (S', y') H L" (S', p') is the identity on the rigid set 
F', implying UV is the identity on I?@', p'). Hence V is onto and the rigidity of 
F follows from such a property of F'. 

Assume (ii). Consider another representation X, H IM, (ftl) of X, where M' 
is a strictly stable random measure on S' with skewness function 8' and con- 
trol measure p', and f: E L" (27, p'). Then (4.12) implies that U ,  f, : = fl' is 
a linear isometry from P into E ( S ,  p') satisfying (4.14). Since F is rigid, U, has 
a unique extension U: @ (S, p ) ) ~  E(S', y'), which, by Theorem 3.1, is of the 
form 

Ug = h . g o 4 ,  g€E(S,  p). 

To complete the proof we need to show that U corresponds to a d.p. transfor- 
mation from L ( M )  into L(Mf) .  This amounts to proving that 

(4.1 5) J (~g )<">  B'dp' = j g("> Bdp for every g E E (S, y) . 
S' S 

Let 
81 (4 = E[yhl=ap.) {[sign (hll8' I 4 = s) 

be the conditional "expectation" with respect to the measure lhla dp' (defined by 
means of the Riesz theorem) given # = s. From (4.15) we infer that the equation 
in (4.14) holds for all f ~lin(lF),,; taking such f and a fixed f * of full support 
in P we get 

J [U (f * + f)]("> /I'dpt = J (f * 0 4 + f 0 d)(") sign (h) 81 lhla dp' 
S' S' 

where the last equality follows by (3.2). Hence 

I ( f * + f ) < " > P 1 d y = J ( f * + f ) ' " > B d p  for every f~lin(F),,, 
S S 



Minimal integral representations of stable processes 137 

which yields 

i (1 + $ya' @I - D) (f *I<") dp = o for every f E lin (n,.. 
This equality implies 8, = P p-a.e, by an extension of Rudin's theorem proved 
in [lo]. Hence we get 

and a verification of (4.15) is easy. Indeed, using (3.2) we have 

for every g~ @ ( S ,  p). T h s  completes the proof. r 

The following corollary shows the consistency between the notions of 
minimality studied in this section. 

COROLLARY 4.13. A minimal representation of an SaS process in the class 
Ma is also minimal in A,. I f  X,I+I,(J;) is minimal in A?, and X is an SaS 
process, then B = 0. 

Proof.  In both classes the minimality is equivalent to the rigidity of F. 
The second claim follows from (4.16) and the fact that 4 is a null-preserving 
isomorphism when acting between two rigid sets. rn 

In view of Theorem 4.12, examples of minimal representations for strictly 
stable processes can be obtained trivially from our previous examples by 
changing SaS random measures to strictly stable ones. 

Remark  4.14. Characterizations of minimal representations of stable 
process obtained in this paper can be easily carried over to multidimensional 
strictly stable process (see [5], Section 2). 

5. AUXILIARY RESULTS USED IN THE PROOF OF THEOREM 3.8 

PROPOSITION 5.1. Let ( X ,  p) be a measure Borel space and let r be a set of 
measurable functions f : X w X where Y is a Bore1 space. If a (r) # ax mod-p, 
then there exists a null-preserving Borel isomorphism $: X H X  such that 
$ # id, mod-p, fi 0 ~ = idx, and 

(5.1) f o $ = f p-a.e., for every f E r. 
Conversely, if (5.1) holds for some nonsingular map fi: X I -  X which is dzfferent 
from the identity (mod-p), then a(r)  # B, mod-p. 

Proof .  Since X and Y are Borel spaces, there is a countable set T o  c r 
which is dense in r in the topology of convergence in p. Thus cr(T,) = o(T) 
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mod-p and it suffices to establish (5.1) only for f E T o  (the nonsingularity of $ is 
crucial here). Let To  = (J,),,,.,,, N o  r= M; define F : X H Y N o  by 

Then a(r) = F-l(SYyw,) mod-p. This shows that, by changing (Y, a,) to 
(YNo,  9ilYNO), one reduces the proof to the case when r consists of only one 
function. Thus, from now on, we assume that r = { f )  and a(r)  = f (Wy). 

Sufficiency. Let K,,  n 2 1, be a sequence of sets separating points of 
X and generating gx. Since - 

{x:: $ ( x ) # x )  c UK,n$-lK; ,  
n 

there is an n such that p (K, n $ - I  Kc,) > 0. Let A = K, n tb- K',; we claim 
that A $ f -' (ay) mod+. Indeed, suppose p (A n f - ' Bc) = 0 for some BE 29,. 
Using A n  A = O and (3.21, we get 

Thus, by the nonsingularity of I), p ( A c n  f -' 3) > 0, which proves that 
,u(AA f B) > 0 for every B E S B ~ .  

Necessity.  The idea of this proof is simple. Since f - (By) # B,, the 
partition { f (y) : y E Y )  contains sufficiently many sets consisting of more 
than just one point. On each such set one can define an isomorphism different 
from the identity. Then a function $ is obtained by pasting together such 
isomorphisms. Now we will give details of this argument. 

Witbout loss of generality we may assume that p is a probability measure. 
Let ,u (- I f = y) be a family of regular conditional probabilities on X such that 

for every A EW,, B € g y ,  where v = p o  f - I .  Let 

be the decomposition into the discrete (pd) and continuous (p,) parts; p (y) + 
4 (Y) = 1, p (Y), q (Y) 3 0; the measurability of p [y), q (Y) ,  p d  f. I f = Y), and 
,u(- I f  = y) follows by standard arguments. Denote by DY the set of atoms of 
pd(.I f = y) when p ( y )  > 0, and DY := lij when p ( y )  = 0. 

First we suppose that v { y : q f y) > 0) > 0. Put 

By the above assumption X must have the cardinality continuum. By Kura- 
towski's isomorphism theorem, there exists a Bore1 isomorphism I : X t, [0, 11. 
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For every Y E  Yo, consider a distribution function 

Notice that a map xwF( ' I (x )~y) ,  considered as a random variable on the 
probability space (X, a,, p,(.] f = yj), has a uniform distribution on [ O ,  11 
(YE Yo). Let 

C Y : = { X E X , :  F ( I ( x ) I , ~ = ~ ) G I / ~ ) ,  ~ E Y ~ .  

Define 
A o : = f - ' Y o n { x ~ ~ : x ~ C ~ ~ x ~ a n d x $ D f ( X ) )  - 

and 
-Al := f Y o n { x ~ X :  X + C . ~ ( ~ )  and x$Df("' j .  

It is easy to verify that ,u(AD) = p ( A , )  0. Moreover, if 

then v (Yo\ Yl) = 0. Both A. and A, h'ave the cardinality continuum because the 
conditional measures are continuous. Applying again Kuratowski's isomor- 
phism theorem we find Borel isomorphisms .Ti: A i w  [0, 11, i = 0, 1. Let 

be the conditional distribution function of Ji given f = y. Define $: 
A o x  Y 1 w A 1  by 

where G;' (t ] y) = inf ( u :  Gi(u I y) > t). Then the continuity of the conditional 
measures implies that, for each y E Yl , the map q5 (., y) : A. H A, preserves 
pc (Ai n( - )  I f = y), and # (x, y) is jointly measurable. Put 

We will show that $, : A, H A1 is invertible p-a.e. and p-preserving. Indeed, let 

$ o ( ~ ) : = t ( % f ( ~ ) ) ,  x ~ A 1 ,  
where 

<(x, Y) := J ~ ~ O G ; ~  C G ~ ( J , ( X ) I Y )  I YI, X E A I ,  Y E  yl. 
Then 



by the continuity of the conditional distributions. Similarly we show that 

Hence there exist A: c A; with A: = Ai p-a.e., i = 0 ,  1, such that @o : Ah H A; is 
one-to-one and onto. Now, if B c A;, then 

which proves that $, is p-preserving; thus $o and $cl are nonsingular. Define 

$I~(X) f o r x ~ A b ,  
f o r x ~ A ; ,  
elsewhere. 

Since Ab and A; are disjoint sets of positive measure, p {x : $(x) # x) > 0. 
Finally, (5.1) follows from the fact that the conditional measures are concen- 
trated on the sets { f = y} and that = @ p-a.e. on A', . This ends the proof 
under the assumption v (y: q(y) > 0) > 0. 

Now we assume the opposite, i.e., 

P (' I f = Y) = ~d I f = Y )  
First we suppose that 

where h : Y H X is measurable and such that f (h  ( y)) = y for every y E Y.  We 
will show that this cannot be the case. Indeed, for every A E B ~  we have 

which shows that f -'(ay) = BX mod-p, contradicting the assumption of the 
proposition. Thus 

~d (* 1 f = Y )  = a(y) &,, (.I + b (Y) (-) + c (y) A ( -  1 f = y) v-a.e., 

where h, k : Y H X are measurable, f (h  ( y)) = f (k ( y)) = y, and h (y) # k (y) for 
every Y E  E Here a(y), b(y), cCy) 2 0 are such that 

and I ( -  1 f = y) is a measurable family of discrete probability measures such 
that, for each y E I: A((h (y), k(y)) I f = y) = 0. Define 

otherwise, 
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and 

$ 1  = 4 ,  f ) ¶  
X E X .  

Since $ ( $ ( x ) )  = x for every XEX, $ is one-to-one and onto, and = $. 
Furthermore, (5.1) holds trivially and 

It remains to verify that $ and are nonsinguIar. Let A E ~ ~ .  Since 

and 

using (5.2) we infer that p ($- A) = 0 if and only if p (A) = 0. This completes 
the proof of the proposition. EI 

PROPOSITION 5.2. Under the assumptions of Proposition 5.1, CT (r) = ax 
mod-p if and only $ there exists ar sequence (f,) c r and a p-null set Xo such 
that the map 

x ( f  1 ( X I ¶  f 2  Cx) 3 - .) 
is one-to-one on X\Xo. 

Proof.  Exactly as in the proof of Proposition 5.1, we reduce the problem 
to the case of r consisting of one function, say r = {f). 

Suppose that CT (f) = ax mod-p. Choose a sequence {K,) c gX separat- 
ing points of X. By our assumption, for every n, there exists 3, E By such that 

~ ( f  -'(B,)aKn) = 0. 

Then f is one-to-one on X\X,, where X, = U n  f (B,JAK,  is a p-null set. 
The converse follows by Kuratowski's isomorphism theorem. H 
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