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TOWARDS A GENERAL DOB&MEYER 
DECOMPOSITION THEOREM 

Abstract. Both the DoobMeyer and Graversen-Rao decomposi- 
tion theorems can be proved following an approach based on predic- 
table compensators of discretizations and weak-l1 technique, which 
was developed by K. M. Rao. It is shown that any decomposition 
obtaincd by Rao's method gives predictability 01 compensators 
without additional assumptions (like submartingality in the original 
DoobMeyer theorem or finite energy in the Graversen-Rao theorem). 
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In his seminal papers [Ill and 1121, Meyer proved that any submartin- 
gale belonging to so-called class (D) admits a unique decomposition into a sum 
of a uniformly integrable martingale and a "natural" (nowadays: "predictable") 
integrable increasing process. More than twenty years later, Graversen and 
Rao E3] obtained a Doob-Meyer type decomposition for processes "with finite 
energy", in general without uniqueness. While the original Doob-Meyer theo- 
rem was motivated by needs of potential theory, and only later found interest- 
ing probabilistic applications (vide: stochastic integration), the latter result was 
used in analysis of Markov processes [3] and quite recently proved to be 
a useful tool in investigations of the structure of Dirichlet processes and their 
extensions [I]. 

Both the Doob-Meyer and Graversen-Rao theorems can be proved fol- 
lowing an approach based on predictable compensators of discretizations and 
weak-L1 technique, which was developed by Rao [14]. In the present paper we 
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show that any decomposition obtained by Rao's method leads to predictable 
compensators without additional assumptions (like submartingality in the 
original Doob-Meyer theorem or finite energy in the Graversen-Rao theo- 
rem). 

The idea of the proof is in a sense similar to that from the paper [8] and is 
based on the celebrated Kornlos theorem [lo]. The details are however much 
subtle and require other advanced tools, like limit theorems for stochastic 
integrals and tightness in so-called S-topology introduced in [7]. 

- 

2. THE RESULT 

Let ,@= (a, F, (~ ) t , lo .Tl ,  P)  be a stochastic basis, satisfying the "usual" 
conditions, i.e, the filtration {Ft) is right-continuous and F0 contains all P-null 
sets of FF By convention, we set 4r, = 9? The family of stopping times with 
values in [0, l f j* = [ O ,  T]u{+co) and with respect to the filtration 
{%)tE,,,Tl, will be denoted by 5 

Let {X,),,Io4Tl be a stochastic process on (a, 9, P), adapted to {%)tEio,rl 
(i.e. for each t E [ O ,  TI, Xt is @t-measurable) and progressively measurable. We 
say that X is of class (D) if the family of random variables {X,; ~€9) is 
uniformly integrable (by definition X+, = 0). 

We say that X has cadlag (or regular) trajectories if its P-almost all. trajec- 
tories are right-continuous and have limits from the left on [0, TI. 

For definitions of predictability, martingales etc. we refer to standard text- 
books (e.g. PI, ~41, PI, ~ 9 1  or ~131). 

Let 0, = (0 = t", < t", t; < . . . < ti,, = T ) ,  n = 1, 2, . .., be condensing 
partitions of [0, TI with 

max - t o  as n+ cu. 
ldkdk, 

By "discretizations" {X:},,,n of {X,)tEIo,,l we mean the processes defined by 

If random variables {Xt),Io,,l are integrable, we can associate with any 
discretization Xn its "predictable compensator" 
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Notice that A: is St;- ,-measurable for ti < t < G, and so the processes An 
are predictable in a very intuitive manner, both in the discrete and continuous 
case. It is also clear that for each  EN the discrete-time process {M:),,,n 
given by 

Mr = Xt -A; ,  t ~ t ? , ,  

is a martingale with respect to the discrete filtration 
THEOREM 1 .  Let {Xt)tEIO,Tl be a cddllig process of class (D)  with respect to 

the stochastic basis B. I f f o r  some condensing sequence the corresponding 
random variables {A+)nEN are uniformly integrable, then one can Jinda unformly 
integrable martingale {Mt),,Io,T1 and a predictable integrable cddldg process 

of class ID) such that we have the decomposition 

An immediate consequence of predictability of {A,)  is contained in the 
following 

COROLLARY 2. If X, = MI+A:, t~ LO, TI, is unother decomposition with 
properties described in Theorem 1, then N ,  = A, -A:,  t E [ O ,  TI, is a uniformly 
integrable continuous martingale. 

It is clear that if we can attribute to {A , )  some additional properties (e.g, it 
is nondecreasing or has finite variation or zero quadratic variation.. .), then the 
martingale N in Corollary 2 must be zero and we obtain the uniqueness of the 
decomposition. In less standard cases this idea has been exploited in [3] (for 
Markov processes) and [I] (for weak Dirichlet processes). 

One may ask what are the processes with "exploding" sequences of com- 
pensators, i.e. with {A",), not uniformly integrable. A variety of such proces- 
ses can be constructed using the idea of self-cancellation of jumps, as in the 
following example. 

EXAMPLE 3. Let { r , ) ,  be a Rademacher sequence (i.i.d. with P(r ,  = 1) 
= P(r ,  = - 1 )  = 1/2). Let {t ,} , ,  be a (deterministic) sequence of times de- 
creasing to 0. Define 

1 

and consider the natural filtration generated by X .  Notice that X has regular 
trajectories, is adapted and bounded, hence of class (D). 

We shall prove that X does not admit any decomposition of the form 
X ,  = M,+A, ,  where M is a uniformly integrable martingale and A is a predic- 
table, integrable cddlig process. On the contrary, suppose we are given such 
a representation. Then we have 
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Using the facts that AM, has null conditional expectation with respect to 
%,,- and AA,, is PI,--measurable, we obtain 

In particular, with probability one 

which is impossible, since the quadratic variation of a martingale is finite. 

3. A REMARK ON THE GRAVERSEN-RAO THEOREM 

Following [3] we say that X is a process of finite energy if along with 
a condensing sequence of partitions 

sup E [ (x,, - x,, < + co. 
t?EB,, 

Of course, if X is of finite energy, IXtI2 is integrable for every t < T and 
Cs ,, AX: is integrable, where AX, = X, -I,-. It is also easy to see that any 
process with finite energy satisfies one of the main assumptions of our Theo- 
rem 1: the sequence (A?} is bounded in I?, hence uniformly integrable. 

Further, it is not difficult to show that for each E > 0 there exists a stop- 
ping time z, such that P(z, < T) < E and 

E sup 1X,,,t12 < + co. 
t ~ [ o , T l  

This property gives some kind of localization in class (D), but in general we do 
not know whether processes with finite energy form a subclass of class (D) 
processes. 

Thus we are not able to show that the Graversen-Rao decomposition 
theorem is contained in our Theorem 1. Moreover, we have no examples 
showing that it is necessary to complete the assumptions of the Graversen-Rao 
theorem (e.g. by considering processes of class (D)). 

What we want to stress is the fact that in the sketch of the proof given in 
[3] one can find convergence of quantities like 

where Ct is an increasing integrable, possibly unbounded process. Corresponding 
limits are taken for granted, without paying any attention to details. 

In the next section we rigorously perform similar computations and we 
find the class (D) property unavoidable. 
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4. PROOF OF THEOREM 1 

We will work with notation introduced in Section 2. 
By the uniform integrability of {A;)  we can find a subsequence {A?) 

convergent weakly in C to some random variable ol. This gives us the desired 
decomposition 

X, = M , + A , ,  

where M, = E ( X T  - a I Ft) is a uniformly integrable martingale (we take 
a cddlig version of this process) and A, = X , - M ,  is a cadlag process. 

The essential novelty is contained in the proof of predictability of the 
process ( A , ) ,  where we apply the Koml6s theorem [lo] in a similar way as it 
was done in [g], in the proof of the classical DoobMeyer decomposition 
theorem, and then explore some properties of so-called S-topology introduced 
in [7]. 

Just as in the paper [S] ,  we can find a further subsequence Ink,) such that 
as N + m  

(3) 
1 

ki BP;! = - AT + CI = AT a.s. and in L1. 
N ,= 1 

It follows that, as N + a, 

1 
M,--  C M?+O a.s. and in fi, 

N,= l  

where M T  = X T - A T  and M", = F A " ,  X T - A ; .  
Next let us consider natural interpolations {i@;}tE[o,Tl of the discrete-time 

martingales (M:),,,, to a uniformly integrable martingale with respect to the 
full filtration {Ft)tEIO,u. In other words, 

E M ) ,  ~ E [ O ,  T I .  

It is a routine computation to verify that we have a decomposition 

= -  ~ E [ O , T ] ,  

where 

p O = X o ,  R = E ( X , ; : J ~  if t i - l < t < t i ,  k = 1 , 2  ,..., k,, 

The processes 2 are adapted to the filtration {f i ) tEIO,Tl  and their trajec- 
tories are left continuous, hence they are predictable by the very definition of the 
predictable a-field. 



148 A. Jakubowski  

Notice that for t €0, 

and, in particular, 
P T = M " T  ,==A$. 

We have also 

LEMMA 4. The sequence {A"") is un$oreIy of class (D), i.e. the family (2: 
n E N, T E F)  is ungorrnly integrable. 

- 
P r o  of. By the very defdtion, 

Since z is a stopping time, the event (t:-, < .t < t;f] belongs to %:. If we define 

then en (z) is a stopping time with respect to the discrete filtration (StjtEBn, and 

By the discrete Doob-Meyer decomposition, A:,(,, = X,,l,, - &,(,,, where X is 
of class (D) and {M")  is a sequence of discrete time martingales with uniformly 
integrable terminal values M", XX, - A", H 

Set 
1 "  $y = - j @ ; k l ,  

N , = l  

and observe that (4) implies uniform in probability convergence of martingales 
RN to the martingale M: 

Fix a stopping time z E 5 Since { @ I N E N  is uniformly integrable, we obtain 
from the above that 

(7) @ + M ,  in E .  
In what follows we shall suppress the subscript kt in the subsequence nk,. 

With pn (t) defined by (5) we have X: = E(X,.(,, I &) and we can rewrite (7) in 
the form 
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As m tends to infinity, em (t) L .I., and by the right continuity of {X,), we 
have X,,(,, + X ,  a.s. Since {X,] is of class (D), the latter convergence holds also 
in z, hence 

E(X,,,, -X,j e) + 0 in I.?. 

Finally we see that for any stopping time z 

This fact allows us to deduce a further remarkable property of t b  sequence 
{Xm>. 

LEMMA ~ . - F o I  euch stopping time z E F, A"onuerges to A, weakljl in L? . 
P r o  of. Fix z  E .F and suppose that for some bounded random variable 

Z and along with some subsequence (m,} 

Due to the "subsequence property" of the Komlos theorem, the relation (3) 
remains unchanged if we replace the subsequence (nk,) with its subsequence 
{rn,). Consequently also (6) and (8) hold, and hence 

This is in contradiction to (9). ra 

Notice that 3 ' s  are 3$--measurable, and so by (8) the same property 
belongs to A,. We have thus checked one of the two conditions equivalent to 
the predictability of a cidlag process (see e.g. f4], Theorem 4.33). The other 
condition requires that A, = A,- as. on {z < + a) for every totally inaccessi- 
ble stopping time. We may and do assume that A, 2 A,- as. or A, d A,- ass. 
on z  < + co (otherwise set e.g. G = (A ,  A , - )  E 9,; then z' = TI,+(+ a) I ,  
is totally inaccessible and satisfies A,, 2 A,.-). 

Let (C,)  be a continuous nonnegative increasing process such that the 
process { I ( z  < t)- C,},,,,,, is a uniformly integrable martingale of zero mean. 
Since z  is totally inaccessible, P(z  = 0)  = 0 and we have C, = 0 a.s. 

Fix K > 0 and define stopping times 

Notice that by continuity of C and Co = 0 a.s. we have q ,  > 0 as.  
We shall prove that 

At first we shall ensure uniform integrability of the integrals. 
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LEMMA 6. Let {D,),Io,Tl be a bounded increasing adapted continuous pro- 
cess, Do = 0 a.s. and let (Bf),,, be a fclnzily of ccddldg or caglad processes which 
m e  uniformly of class (D). Then the family of integrals {J: B: dD.JkI is unijorm- 
ly  integrable. 

Proof: We may assume that D,, 6 1. Let 8 :  R' -r R' be a convex in- 
creasing function such that @(u)/u + + cn as u -+ + co and 

sup E@ (]BII) < + co. 
i ,z  

Consider stopping times (tj , , ,  : k = 1, 2, . . ., n, n E N )  defined fm D by (10) and 
observe that 

T 
Since as. jo B ; ~ D .  = limn,, EL=, 3ik, - D  ,,,- ), the proof is complete. BU 

In fact, we have proved uniform integrability of the larger family: 

COROLLARY 7. The following family 

is ungorrnly integrable. 

Let us return to the proof of (11). Assume for brevity that KEN. Suppose 
that for some 6 > 0 and along with some subsequence (m') 

We have, by Corollary 7, 
T K-n  

E f A, dCt A ,K = lim 2 AVk/kln (CVk/n - CqI, - 1 ,/n) 

0 " - ) C o k = l  

On the other hand, by Lemma 5 for fixed  EN, k < K a n  we have 

It follows that one can find a subsequence rnh -+ co of {m') such that 
T K.n  

E J A t d C t  A,, = nm C ~,~(c,,.-c,,~- I),?, 1 
0 n + m k = l  
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where n,(B) is the discretization of the process 3 at random times 
0 < qlin G qt,, < . . . < qK < T We shall prove that along the subse- 
quence {m;)  

Given (131, this will contradict (12). 
In view of Corollary 7 it is enough to prove that for an arbitrary se- 

quence (m,) 
T T - 

SAT" JC,, ,, - 1 T C , ( ~ ~ ) ,  dn,, (C), 4 0 in probability. 
0 0 

Let An be the ciidlig version of the process 3. ~ b v i o ~ s l ~ ,  we have 

We have also for k > 0 

and so 

We were thus able to reduce the problem to the convergence 
T 

J AT_" d (C,  , ,, - 7 ~ ,  (C),) + 0 in probability. 
0 

We are going to apply results of [6]. In this context we need to recall the 
notion of S-tightness, i.e. uniform tightness in so-called S-topology on the 
Skorokhod space D([O, TI : R1) introduced in [7] (see Proposition 3.1 there). 

Let (X") be a family of stochastic processes with cidlhg trajectories on 
[0, TI. For a cadlag function x E D ([0, 11 : R1) denote by Nf: ( x )  the number of 
up-crossings given levels a < 6, a,  b E R1, on the interval [O, TI. Set also 
llxllrn = SUPtsro,T1 [x(t)l. The family (Xu) is said to be S-tight if the family 
{IIXullm) is bounded in probability and for each pair a < b of reds the family 
{N,b(Xu)) is bounded in probability. 

LEMMA 8. The famiiy (2) is S-tight. 

Proof .  Any trajectory of X" can be obtained by change of time of the 
corresponding trajectory of An (this change of time is related to the discretiza- 
tion 8, and it eliminates the value 0 taken by An on [O, G)), Hence we have 
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To prove S-tightness of the f d y  {An) we observe first that due to the discrete 
nature of processes An it is sufficient to compute the quantities IIAnII, and 
Nt(An)  over the finite set 8,. Further, on 0, we have A: = X:- Mf,  where {Xn) 
is a restriction of the cidliig process X and Mn is a martingale with respect to 
the discrete filtration (&),n, Since 

we obtain S-tightness of ( M R )  by standard martingale inequalities. And 
S-tightness of the family {Xn) of discretizations of a cidlig-process is ob- 
vious. Ea 

Given-S-tightness of the sequence (;I"} we are completely in the frame- 
work considered in [6]. We cannot however simply apply Theorem 3.11 of [7] 
and then Theorem 1 of [6] ,  for we do not control the convergence of 3 = A:;. 
Instead we can use Theorem 7 d [6] which states that any limit in distribution 
of our sequence of stochastic integrals is again a stochastic integral with respect 
to the limit of the sequence Ct ,  ,, - n,(C),, which is 0. We have proved (1 1). 

If (11) is established, the rest of the proof is straightforward. We have 

T 

= E j A, dC, ,,, (for C  is continuous) 
0 

T 

= lim E ~ A Y ~ C , , , ~ ~  
m+m 0 

(by (11)) 

T 

= lim ~ J J y d l ( z d  t r \ ~ K ) =  lim E ~ F I ( T  < v K )  
m - r m  0 m-r m 

= EAT 1 (z < q K )  (by Lemma 5). 

We have assumed that A, 2 A,- or A, d A,-,  so we obtain 

Since C, is integrable, P ( q K  < T )  + 0 as K + CO. Hence A, = A,- a.s. and the 
theorem follows. 

REFERENCES 

[l] F. Coquet, A. Jakubowski, J. Mkmin and L. Slomiliski, Natural decomposition of 
processes and weak Dirichlet processes, in: SPminaire de Probabilitb X X X I X ,  M .  ~ m e r ~  and 
M. Yor (Eds.), Lecture Notes in Math. No 1874, Springer 2006, pp. 81-116. 



A general Doob-Meyer decomposition theorem 

[2] C. Del lacher ie  and P. A. Meyer, Probabilitis et potentiel, Vols. 1 4 ,  Hermann, Paris 
197S1987. 

[3] S. E. Graversen  and M. Rao, Quadratic varicrr~nr~i and energy, Nagoya Math. J. 100 (19851, 
pp. 163-180. 

[4] Sh. He, J. Wang  and J. Yan, Sernimartingule Theory and Stochastic Calculus, Science Press 
and CRC Press, Beijing and Boca Raton 1992. 

[5] J. Jacod, Cakul stochastique et prob12mes de martingales, Lecture Notes in Math. No 714, 
Springer, 1979. 

[6] A. Ja  ku bo w s ki, Convergence in variuus topologies jor stochastic integrals driven by semi- 
martingules, Ann. Probab. 24 (19961, pp. 2141-2153. 

[7] A. Jaku bo  w s ki ,  A non-Skorohod topology on the Skorohod space, Electron. J. Probab. 2 (4) 
- 

(1997), 21 pp. 
[XI A. J a k u  bo  w s ki, An almost sure approximation for the predictable process in the Doob- 

Meyer decomposition theorem, in: Shinuire de Probabilitis X X X W I I ,  M. Bmery, M. Ledoux 
and M. Yor -@CIS.), Lecture Notes in Math. No 1857, Springer, 2005, pp. 158164. 

[9] 0. Kal len  ber g, Foundations of Modern Probability, Springer, 1997. 
[lo] J. Komlbs, A generalization of a problem of Steinhaus, Acta Math. Acid. Sci. Hungar. 18 

(19671, p ~ .  217-229. 
[ I l l  P. A. Meyer, A decomposition theorem for supermartingales, Illinois J .  Math. 6 (1962), pp. 

193-205. 
1121 P. A. M e  y er, Decomposition of supermartingales. The uniqueness theorem, Illinois J .  Math. 

7 (19633, pp. 1-17. 
[13] P. P r  o t t  er, Stochastic Integration and Di@elferential Equations, Springer, 1990. 
[14] K. M. Rao, On decomposition theorems of Mryer, Math. Scand. 24 (1969), pp. 66 78. 

Nicolaus Copernicus University 
Faculty of Mathematics and Computer Science 
ul. Chopina 12/18, 87-100 Toru6, Poland 
adjakubo@mat.uni.torun.pl 

Received on 25.6.2006 




