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Ever since the pioneering applied work by Mandelbrot [13], and Montroll 
and Scher 1161, Lkvy stable processes enjoyed great popularity as a flexible 
modeling tool in the natural and economic sciences. However, their elegant 
scaling properties, which made them analytically pleasing, were also a problem 
when people tried to fit them to real data; the scaling could not be maintained 
at all scales, and the thick tail behavior was often impossible to verify rigor- 
ously. The remedy proposed first by Mantegna and Stanley [14], and others, 
was to keep the local behavior of the distributions Lkvy stable-like but to trun- 
cate the tails. Different schemes for the truncation and their parametrization 
were proposed and discussed in the physical literature (see, e.g., [28], and 1191, 
for a partial history of these efforts). All of those schemes suffered, however, from 
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the lack of invariance under linear transformations for the distributions classes 
introduced, a property that LBvy stable distributions enjoyed. Such was the 
state of affairs until publication of Rosiiski's papers [19]-[20] where a formal 
and elegant definition of the class of tempered stable distributions and processes 
was proposed. The latter did have invariance under the linear transformations 
as one of their most important structural properties. 

The class of tempered stable distributions has an infite-dimensional pa- 
rametrization by a family of measures, which makes their fitting to real data 
a difficult task. For this reason, we embark in this paper on a fairly pedestrian 
project of developing a series of parametric models that fit into the general 
framework of tempered distributions but for which parametric statistical es- 
timation procedures can be realistically developed. The eniphasis is on ob- 
taining explicit analytic formulas and on explicit calculations. Once those dis- 
tributional models are developed, it is natural to study the corresponding Gvy 
processes and, more physically attractive, the corresponding Ornstein-Uhlen- 
bek processes. 

The paper begins, in Section 2, with brief preliminaries on infinitely divisi- 
ble distributions in Rd, and the subclass of self-decomposable distributions 
which were originally developed, among others, by Urbanik, see [29]-[31]. 
Here, the role of the cumulants and the cumulant functions, which will be 
paramount throughout the paper, is first explained. 

Section 3 begins with the basic definitions of tempered stable distributions 
and introduces the concept of the Rosiriski measure (R-measure). A subsection 
on fundamental properties of tempered stable distributions follows. The section 
ends with a discussion of the relation of this class, in one- and two-dimensional 
settings, to the previously studied smoothly truncated Levy distributions. It is 
Section 4 where we introduce and discuss several low dimensional parametric 
tempering schemes using a variety of special functions: gamma, inverse Gaus- 
sian, fractional exponential, 1/3-stable and Bessel. 

Finally, in Section 5 we turn to the multivariate tempered stable Orn- 
stein-Uhlenbeck processes, their background driving Levy processes (BDLP), 
and their stationary versions, An appendix on the multiple cumulant technique, 
not commonly seen in the literature, concludes the paper. 

2. PRELIMINARIES 

Let us begin with a random variable X having an infinitely divisible dis- 
tribution P on Rd, with a generating triple (Z, M, b), and the characteristic 
function given by 

q(y) = exp(-i(y, Zy)+i ( b ,  y)+ j (ei(Y~X)-l -i(y, x) l , (x ) )~(dx)) ,  
Rd 
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where Z is a d x d covariance matrix, b E Rd, D = (X : llxll 6 1). and M is a LBvy 
measure on lZd, satisfying 

M ( { O } ) = O  and J(11~11~r\I)M(dx)<m. 
R d 

Furthermore, throughout this paper, we are going to assume that 

for some rn 2 1. This condition is equivalent (see Sato [21], Theorem 25.3) to 
the condition 

If, additionally, 

then we can rewrite the characteristic function q { y )  in the centered form (cf., 
r211, P- 39) 

where c j  is the jth order cumulant of the random variable X, that is, the 
"moment" of order j of the Gvy measure M ,  and and T stand for the 
Kronecker product and the transpose, respectively. Recall that if A is an m x n 
matrix, and B is a p x q matrix, then the Kronecker product A@B is the 
mp x nq block matrix 

If m 2 1, then cl  is the center of the measure P; i fm 2 2, then c2 is the vector of 
the variances of X. Note that c1 and c, are not uniquely determined by the 
LCvy measure M unless the distribution P has no Gaussian component (Z = 0) 
and is centered (c, = 0). 

The distribution P is said to be self-decomposable if,.for every y > 1, there 
exists a probability measure P, on Rd such that 
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where cp, is the characteristic function of P,. A self-decomposable distribution 
P is necessarily idnitely divisible and, for any y > 1, the measure P ,  is a unique- 
ly  determined infinitely divisible measure. An infinitely divisible distribution 
P is self-decomposable if and only if its Lkvy measure M is of the form 

where Sd-I is the unit sphere in Rd, u(du) is a finite measure on Sd-l, and k,(r) 
is decreasing in r, and measurable in u. In particular, for d = 1, _the characteris- 
tic function of a self-decomposable measure is of the form 

where E 2 0, b E R, and k (x) is a nonnegative function, increasing on (- oo , 0), 
decreasing on (0,  m), and such that 

see [29], [31], [30], [21], p. 109. 

3. TEMPERED STABLE DIS'I'RIBUTIQNS 

3.1. Basic definitions. A Gaussian-free (Z: = O), self-decomposable proba- 
bility distribution is said to be tempered a-stable if, in the polar representa- 
tion (4) of its Lkvy measure M, the function 

k, (r) = k  (r  1 u) r -" ,  

where a E (O,2), and k ( -  I u) is a completely monotone function with k(0 f 4 u) = I 
and k(m I U )  = 0. In other words, the Lkvy measure of a tempered a-stable 
distribution is of the form 

where u(du) is a finite measure on the unit sphere Sd- l .  The parameter a is 
called the index, and the function k  - the tempering function. 

Obviously, the case of constant k(r I u) corresponds to the classical a-stable 
distribution. The above concept of the tempered stable distribution is due to 
Rosinski [19]-[20], who made essential use of the fact that the tempering 
function k can be represented as the Laplace transform 
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where Q (dsl u) is a u-measurable family of probability measures on R , .  
The a-weighted superposition of the measures Q (ds 1 u) defines a finite mea- 
sure 

on Rd. The formula 

defines a measure, equivalent to the measure Q which, in turn, can be expressed 
in terms of the measure R as follows: 

Measures Q and R have been demonstrated (see Rosiriski 1191, [20]) to be 
of importance for different applications, with Q being particularly useful for the 
simulation of the tempered stable random variables. We shall refer to R as the 
Rosiriski measure, or R-measure, for short. An R-measure R, together with 
a constant b, uniquely determines, via (41, a tempered a-stable measure. The 
class of all tempered a-stable measures (or, loosely speaking, related random 
variables) will be denoted by TS,(R, b). 

3.2. Properties of tempered stable distributions. We begin this subsection by 
listing the fundamental properties of TS, (R, b). 

(i) The mmulant function representation. The cumulant function xx (that 
is, the logarithm of the characteristic function) of a random variable X with 
a tempered stable distribution in TSa(R, b) is uniquely given (see [I91 for 
details) by the formula 

where 

r(-a)[(l-iry-11, O < a < l ,  
(91 (1 - ir) Iog (1 - ir) + ir, m=1, 

( - 1 - i - 1  1 < ol < 2. 

(ii) Moments. A random variable X E TS, (R, b) has always finite mo- 
ments of order m < a. If m > a, then the moment assumption (1) can be expres- 
sed in terms of the R-measure as follows: 
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if and only if 

If the support of R is a bounded set, then some exponential moments are also 
finite. 

(iii) Invariance of TSa(R, b) under independent summation. If random 
variables X and Y are independent, and such that X E TS,(R1, bl) and Y E  
TSa (Rz, bz), then 

X + Y E T S , ( R ~  +R2, bl-tb2). 
- 

(iv) Invariance of TS, ( R ,  b)  under linear transformations. If X E TS, (R, b), 
and V is an m x d matrix, then 

where R, (B) = R V-I  (B) = R (x 1 Vx E B), and bV = Vb. 

The above invariance property can be extended to linear functionals of the 
tempered stable L6vy processes as follows: Let Z,, t 2 0, be a Lkvy process 
with 2, E TS, (Rz, 01, and 

T 

x = J s(s) dZS, 
0 

with a fixed z > 0, and a continuous (matrix-valued) function g(s). Then the 
cumulant function of X, 

where 

Thus (see, e.g., [12], [9]) the characteristic function of the linear functional 
X can be written in the form 

so that the cumulant function K, of X can be rewritten as follows: 



(v) Gamma-like limit, for a+ 0. For each r # 0, and u 4 0, the limit of the 
cumulant function $,(r) in (9) is easily calculated: 

lim $a (I-)  = - log (1 - ir). 
a-'O 

So, if a family R, of R-measures converges weakly to an R-measure Rx, as 
u + 0, then the function 

XX(Y) = - j log(l--i<y, x))Rx(dx) 
R: - 

is the cumulant function of a random variable X. If d = 1 and we choose 
a fixed R > 0, and the family of R-measures R, = il" adliA, where 6 is the Dirac 
measure, then the corresponding limiting distribution (of X). is the gamma 
distribution. Thus the definition of the class TS, can be extended meaningfully 
to a = 0. 

(vi) Simulations. Rosinski [19] gives a series representation for random 
variables with distributions in TS,(R, b) based on i.i.d. sequences of uniform, 
exponential and Q-distributed random variables. This series representation 
permits a convenient simulation of tempered stable LBvy processes and related 
Omstein-Uhlenbeck processes. 

(vii) Cumulants. The cumulants of order greater than one of a tempered 
stable distribution can be calculated purely in terms of its R-measure R; those 
of order one depend on the drift b as well. 

LEMMA 1 .  Suppose that the R-measure R satisfies the moment condition 

for an m 2 1, in case of 0 < a < 1 ,  and for an m 2 2, when 1 ,< a < 2. Then the 
mth order cumulant of the tempered stable random variable X - TS,(R, b) is 
given by 

(14) 
where 

P r o  of. First, note that the function t,ba has the following series expan- 
sion: 

m 

= 1 ( e u x - l - i r ~ ) ~ - a - l e - x d ~  
0 
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which, for a = 1, is understood as the limit for a L 1. The cumulant function 
, 

KX has the form 

- - where p,,. is the jth moment of R, i.e. 

Hence, the jth order cumulant c j  of the random variable X is given by the 
formula 

c j  = ~ U - ~ ) C I R , @ ~ ;  

see the Appendix, and also [27], for the definition of the multiple moments 
P R , @ ~ '  

The case of rn = 1 is special. It is possible to find a random variable 
X - TS,(R, b) with a finite first moment, but such that p,,, = m (see Sec- 
tions 4.4 and 4.5). This fact explains why the condition (13) is stronger than the 
condition (10). 

3.3.1-D Smoothly Truncated LBvy Distributions. One of the early examples 
of TS, processes were the l-D Truncated LCvy Flights introduced by Manteg- 
na and Stanley [I41 as a model for random phenomena which exhibit at small 
scales properties similar to those of self-similar Lkvy processes, but have dis- 
tributions which at Iarge scales have cutoffs and thus have finite moments of 
any order. Koponen [lo], building on Mantegna and Stanley's ideas, defined 
the Smoothly Truncated LCvy Flights (STLF) which stressed the advantage of 
a nice analytic form. Independently, the same family of distributions was de- 
scribed earlier by Hougaard [8] in the context of a biological application. In 
this section, we discuss these special examples in the context of general tem- 
pered stable distributions. 

The l-D unit 'sphere' is the two-point set So = {f I), and Kopo- 
nen's Smoothly Truncated G u y  Distribution (STLD, (a,  p,, A)) is defined as 
a tempered a-stable distribution with the tempering function (see Subsec- 
tion 3.1) 

and the measure 

a ( I - l > ) = a ~ , ,  a({l))=ap,, 
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where a, p,, p, 7 0, p ,  + p 2  = 1 .  In this case, the polar representation (5) takes 
the form 

The measures Q and R (see (6) and (71, respectively) are given by the formulas 

Q = .up1 6-A+ap2 6A and R = P a ( p l  d - l , ~ + p ~  dl,>), 
respectively, where SK denotes the Dirac measure at A. In other words, 

The cumulant function rc,  of X (see (8)) is then given by 

with the function $, defined in (9). Thus, for m 2 2, the cumulants themselves 
are 

For a fixed A > 0, as a + 0, the distribution STLD, tends to the gamma 
distribution r ( a ,  A). Indeed, for 0 < a < 1, the Laplace transform dA of 
STLDa(a,  0, A) is 

(a) = exp (aAar(- a) [(I + u/;l)" - I]), 
and 

( A  +uy-na  
= exp (- alog (1 + u/L)) = (1 + u/A)-", 

a+O . 01 - 
by the I'Hospital rule. - .  

It is an interesting observation that, for 0 < a < 1, the smooth truncation 
of the stable cumulant function results also in the smooth truncation of the 
stable probability density itself. More precisely, if f (x )  is the density function of 
a one-sided a-stable distribution, then gn ( x )  = f (x )  e-'Ix1 is the density function 
of some Smoothly Truncated Levy Distribution and, vice versa, if gA(x)  is 
the density function of a Smoothly Truncated Ltvy Distribution, then 
f (x )  = g ,  (x )  eqx1 is an a-stable density function. Moreover, there is a one-to- 
one correspondence between the a-stable distributions and the I-equivalence 
classes of Smoothly Truncated LCvy Distributions. The connection is given by 
a linear transformation of the variable of the cumulant functions. 
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For example, the density function for the one-sided 1/2-stable distribution 
is the Inverse Gaussian p.d.f. (see [25])  

with the cumulant function (see Sato [21], p. 13) 

The corresponding density of the Smoothly Truncated L6vy Distribution 
(a = 1/21 is 

~ x ~ ( - c ~ / ( ~ x ) - ~ x + c , , / % ) ,  x>.O, 
~ n ( x )  = c 

x312 JG 
and it has the cumulant function 

~ A ( Y )  = - c f i C J F - d l ,  
which, after substitution c = 2a A, gives the representation (15) with a = 1/2. 

Fractional and multiscaling properties of STLD, have been described in 
[28]. In particular, we have shown that, for a one-sided distribution in 
STLD, (a, 0, A), moments of any positive order Q (including fractional) have the 
asyrnptotics 

min (@/a, 1) log a + c, as a -+ 0, 

@log a + c2 as a+co  

For the symmetric distribution in STLD,(a, 1/2, A), 

The above-quoted asymptotic results establish the multiscaling properties of 
the STLDs and the related Smoothly Truncated Lkvy Flights. - 

3.4. 2-El Smoothly Truncated L6vy Distributions .a vz 

Discrete tempering. Let X = (XI, X,) be a tempered stable random varia- 
ble in R2. Here, the unit 'sphere' S consists of the vectors u, = (u,, u,) = 
(cos 9, sin 9) and, for fixed elements us, , us2, . . . , as, E S and constants 
Al,  A2, . .., dl > 0, we define a Smoothly Truncated Lkvy Distribution on It2, 
with index a, via the tempering function 

k(rIu)=exp(-ljr) for u=us,, j =  1, 2, ..., I ,  

and zero otherwise, and a discrete measure 
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where a, pj  > 0, and C p j  = 1. The measure Q (see (6)) is then 

I and R-measure (see (7)) 

The cumulant function IC,  (see (8)) has now the representation ~- . 

I 

KX(.YI, ~ 2 )  = a C P ~ $ ~ ( C Y I  ~~~$~+YzsingjI /nj)+i{Y, b )  
j=  1 

with the cumulants 
1 

Cum,," (XI, Xz) = a r  (m + n - a?) C 2;- m-4 pj (cos Sj)"(sin gj)" 
j=  1 

Remark 1. A 1-D projection of X, given by the formula Y = v,X1+ 
v2 X,, can be viewed as a Generalized Smoothly Truncated LBvy Distribution 
on 8. Its cumulant function is of the form 

where 9; = aj-arc tan(v2/v,), and v = J v ~ .  A particular case may be ob- 
tained by matching constants v j  to cos (LJj),  and constants J j ,  to obtain a cumu- 
lant function of the form 

with the cumulants 

Continuous tempering. Let X = (XI, X,) be a tempered stable random 
variable on R2, and ~ ( d 9 )  = g ($)d9 be a finite measure on [O,  27~). Define the 
tempering function k by the formula 

where I ( 8 )  > 0 and r > 0. Now, the polar representation (5) of . has the form 
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and hence 
Q (ds 1 9) = &(,,- 

Putting 8, = arc t an (~ ) ,  we obtain the measures Q and R in the form 

- 
The cumulant function now is 

with cumulants 
2x 

Curn,,,(Xl, X2) = r ( m + n - a )  j A(~)"-"-"(COS 9Im(sin 9)"g(9)d3. 
0 

Remark  2. The l-D projection Y = vl XI + v2 X2 discussed in Remark 1, 
with v = d m ,  gjves in the continuous case the cumulant function 

2x v cos (9. - 9') 
= ~11(9)PL+.( 0 Y )  8 ($1 d3, 

where 9 ' ~  [0, 2n] and v > 0 are fixed, with the cumulants 
2 x  

Cumm(Y) = r ( m - a )  j 1,(9.)"-m(vcos(9-9'))mg(9.)d9. 
0 

4. TEMPERING VIA SPECIAL FUNCTIONS - 

The Smoothly Truncated Lkvy Distributions were defined in the previous 
section through an exponential tempering functions which, in turn, determined 
the measures Q and R via the formula (7). In this section we will produce several 
other examples of tempering via special functions such as gamma, Bessel, a- 
stable density, etc. These models will approximate the stable distribution with 
different speeds and will have different probabilistic properties expressed by the 
behavior of their cumulants. All of the models will depend on parameter(s) A; as 
the parameter goes to 0, the model converges to the Lkvy stable distribution; 
some interesting new probability distributions arise in the process as well. 

In the following we consider only a one-sided ( p ,  = 0) measure a on the 
unit ball So = ( - 1, 1). The two-sided measure can be handled as in the case of 
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Smoothly Truncated Ltvy Distribution described in Subsection 3.3: the two- 
sided measure is given by the formula 

d I - l ) ) = a P l ,  d { l ) ) = a P z ,  

where a, pl, p2 > 4 p1 + p Z  = 1, while the tempering does not depend on the 
direction, i.e. k(r 1 f 1) = k(r). Subsection 3.4 gives also a general method for 
extending the results of this section to a family of more flexible models. 

4.11. Mixd tempering. In this subsection we consider a truncated tem- 
pering scheme which permits control of the closeness to the a-stable distribu- 
tion through two parameters Al  and I , .  So, Iet the tempering function k (r) be 

Then k(r) is the Laplace transform of the function 

so that, in view of (61, the Q-measure takes the form 

and the It-measure (see (7)) is given by the formula 

sign (x) 

R+ 

Since the density p of the R-measure 

is zero outside of a finite interval, all the moments, and the moment generating 
function, exist (see [19]-[20]). The cumulants c, are then calculated from the 
Ltvy measure M, and, for m > a, we have 

m 

= ATfi j p-a- (1/A2 + r)-Ig exp (-Al r)dr 
0 

= r ( m - - ~ ) ~ ~ - ~ U ( r n - a ,  m-a+1-B, hl/A,), 
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where U is the Kummer function of the second kind, also known as the con- 
fluent hypergeometric function of the second kind ,F1 (see [18], 2.3.6.9). Natu- 
rally, if A, tends to zero, then c, is close to the cumulant of Lkvy Flights since 

4.2. Gamma temperireg. In this subsection the exponential, smoothly trun- 
cated tempering is replaced by a slower-decaying gamma tempering. So, let the 
tempering function k(r) be 

Then Q(ds1y)  is the gamma distribution with the Laplace transform 

It is straightforward to check that the measures Q and R (see (6) and (7), 
respectively) are given by the formulas 

xa- " 
Q ( d x )  = I,,,- Jar@) 

exp(-x/A) dx, 

and 

exp (- x/A) dx 

The density of the R-measure, with 0 < P+a, is thus 

and is the reciprocal (or inverse) of the r-density. The moments of order 
m < B+ a of the R-measure exist, and 

with the cumulants of the form 
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4.3. Genera1 bverse Gaussian temperimg, The Generalized Inverse Gaus- 
sian (GIG) distribution has the density 

where Kh is the modzed Bessel function of the second kind with index h. 
Notice that after replacing the parameters a and b by the parameters ail  and 
Ib, respectively, the density takes the form 

where Kh is the modified Bessel function of the second kind, and the parameter 
A can now be used for tuning the TS, distribution close to the a-stable dis- 
tribution. Let h < 0; then the Laplace transform kjr )  of q (x) is well known (see 
Halgreen [7]): 

k( r )  = exp - 1 bg-h(2xb-ab)ln (: 
where 

d -  h (4 = 2 (n2 x [Jbl + Nil (&)I) - 

J ,  and Nh are Bessel functions (see [6], Chapter 8). Observe that, for fixed a, b, 
and h, the limit of k(r),  as A + 0, is equal to 1. The measure Q is concentrated 
on the half-line (0, a), and 

while the corresponding R-measure has the density p of the form 

(a/b)hi2 a- X - a - h - l  

= 2 ~ .  (@) 
exp ( - 3 [(a/A) x - + blx]) .  

The moments of the R-measure are 

(a jb)h/2 A - 
f x ~ - ~ - ~ - ~  

PR'n = 2Kh (.@) 43 
exp (-4 [(a/A) x-I + b lx ] )  dx 

(see 161, 3.471.9). In particular, if h = -1 and a = 1/2, then 

2 - PAMS 26.2 
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where - 

(see [6], 3.468). Similar results can be obtained for any integer h and a = 112 
or 3/2. 

4.4. Fmctiond errponentia1. The function 

is the Laplace transform of the fractional exponential function q(x ) .  The 
moments up to the order a+#l exist. In particular, for j3 = 1/2, we have 

Q (dx) = 4 (x) dx with q (x) = erfc (Jag 

where erfc is the complementary error function (see [lfl). In this case, the 
R-measure is of the form 

with the density 

The verification of the existence of cumulants (moments) of order rn < or + 1/2 is 
here straightforward since, for large x, we have the asymPfotics x m  . 

(see [6] ,  8.254). For small x, 
r 

so that, if a > 112, then the measure R is not finite. The condition (13) is fulfilled 
only in some cases so that some assumptions have to be made before formula 
(14) can be used to calculate the cumulants. 
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Thus, for 1/2 < a < 1, the first order cumulant (the expectation) 

C 1  = 
2xAa-1 

sin (2x [I-  a])' 

and, for 3/2 < a < 2, the second order cumulant (the variance) 

c2 = 
2n1a-2 

sin (2x [2 - a])' 

Of course,-one can try to calcuZate the cumulants directly from the Levy 
measure M, but the basic formula 

works only for a < rn < a+  1/2 (since assumption (3) is not satisfied), although 
we know that c, exists for all m < a+ 1/2. 

4.5. l/htable tempering. Another example of the tempering function for' 
which explicit calculations are possible is the case when q(x) is the density of 
the one-sided 1/3-stable distribution, that is 

where Kl13 ( x )  is the modified Bessel function of the second kind with order 1/3 
(see Subsection 4.3). Its Laplace transform is 

k (r) = exp (- (lr)lI3). 

In this context the R-measure and its density are easily determined as 

The R-measure is finite if a < 1/3, since its density p ( x )  
around zero. Under the assumption 2m -2a+ 1/3 > - 1 (see [I], 11.4.22), the 
cumulants are then calculated as moments of the R-measure: 
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jla-m 3 1 / 2 - 3 a + 3 m  
- - 

2x 

The assum*tion implies that a - m < 1/3, so a must be less than 1/3 for evalua- 
tion of the )(LR,*$ 0 6 na < max(0, u- 1/3). 

For the cumuiants of an arbitrary integer order in we have the for- 
mula 

= 3jla-mr(3 [rn-a]), 

unless a < 4/3. If a > 4/3, the first cumulant (rn = 1) can be calculated directly 
from the Gvy measure: 

so that, for all integers m, 

c, = 3jla-* r (3 [m - a]). 

This is the case when (3) is satisfied but (10) is not. 

4.6. Bessel tempering. The function 
- 

is the Laplace transform k(r )  of the Bessel density 

where A,  j3, q are positive and I, is the modified Bessel function of the first kind 
(see [5 ] ,  Chapter XIII, Section 3'). The corresponding R-measure takes the 

See also http://mathworldwoIfram.com/M~difiedBesselF~ctionoftheFirst~nd.htd 
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form 

- - ;l-l-dzj-r1/2,-B j' ~ ~ ( ~ ) ~ - a - r l l 2 - 2  
R+ 

exp ( - l i ~ n x l )  1, (2 J ~ I  d x .  

- 
The limiting behavior of I, is known ([I], 9.6.7 and 9.7.1) as 

/ ( + 1) if x is d l ,  

8/& if x is large. 

Hence the moments of order rta < a+ 3q/2 + 1 exist and the corresponding 
cumulants can be calculated by formula (14) (see [6], 6.643.2, for the expression 
in terms of the confluent hypergeometric functions). 

The well-known connection between self-decomposable distribution and 
Omstein-Uhlenbeck processes is described in, e.g., [21j and 1321. Here, we 
consider the stationary Ornstein-Uhlenbeck process X, given by the usual 
moving average 

t 

XI = e- ' ( t -s )dZs ,  
-m 

where y > 0, and Zt is usually called the Background Driving G v y  Process 
(BDLP) for X,; see Kwapien and Woyczynski [ll] for an exposition of the 
theory of stochastic integrals with respect to the general Ltvy processes and 
semimartingales. 

In this case the cumulant function KX, of X, is expressed in terms - of the 
cumulant function Q, of 2, as follows: 

a .  

t 

(16) xXt ( y )  = J ~c,, (e-Yit-* y )  ds. 
- m  

Throughout this section we shall assume that the second-order moments of 
2, (and XJ exist and that the processes are centered. 

To study the finite-dimensional distributions and higher order spectra of 
X, assume 

E 1Z1Irn < XI, 
and write 

C Z , ~  = Cum, (ZI). 
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Then X, is stationary of order m, i.e., for each t,  hl, .. ., h,- , ,  

The Fourier transform of the cumulants gives the mt%rder spectrum S, of X,. 
In our case, S,,, exists and is given by 

where om = zy;' wj (see [4] and 1261). In particular, if nz = 2; then the spec- 
trum is 

Notice that 

and conclude that the covariance function of X, is 

Cx(h) = Cov (X,, Xt+,) = e-ylhl 
Var (2 1 )  

2~ . 
In general, the symmetry of the cumulant implies that the support of the 
Cum(Xo, Xhi, .. ., XhmT1) is the set (0 < hi < h2 < .. . < h,-,), which directly 
leads to the resuIt 

where O<hl < h 2  < ... < hma,-l. 
The finite-dimensional distributions of the stationary Omstein-Uhlenbeck 

process X ,  are also determined by the BDLP process Zt and by y. Indeed, the 
joint cumulant function of - 

is given by 

where 0 < hl < h2 < ... <hm-,, Ahj = hj+l-hj, and 
h 

I (h) = e - ~ " d z , .  
0 
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The cumulant functions of Xo and I (Ahj) are obtained from the general for- 
mula (12). Hence 

The easy consequence of this formula is that the distribution of X, and y deter- 
mine the finite-dimensional distributions of X,. The basic example here is the 
Gaussian Omstein-Uhlenbeck process: If either XI or Zt is Gawsian, then 
both LBvy measures M x  and ME are zero, b = 0, and 

All higher order cumulants are zero. 

5.8. BDW for tempered stable TS,(R, b). From now onwards we con- 
centrate our attention on the Omstein-Uhlenbeck processes for which either X,, 
or its BDLP Z,, is a Gaussian-free, and centered tempered stable process. 

First, consider the case when XI is a TS, (R ,  0) process with the cumulant 
function 

ux(u) = j ~ Q ( < Y ¶  x > ) R x ( d x ) ,  
Rod 

where $, is given by (9). The general formula (17) makes it possible to express 
the cumulant function xZ of the BDLP in terms of measure R,. A similar result 
in terms of Uvy densities has been obtained in 131. 

LEMMA 2. Let X, be a TS,(R, 0) process with the cumulant function 

~ x ( Y )  = 1 $ a ( < ~ s  x>)Rx(dx), 
a6 

where $a is given by (9). Then, for any 0 < o! < 2, the cumulant function u, of 
the associated BDLP is given by the formula 

where 

Moreover, if the R-measure of X has a diflerentiable density px such that 
the aradient - 

a 
xpx (XI, - xpx (x) ,  . . . , 

8x2 

is continuous at zero, then the BDLP is a tempered stable process with 
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where the R-density pZ is given by 

(18) PZ (4 = - Y Tr t p x  (4 XI = -Y C ~ P X  (4 + CR PX (41 XI . 
In the one-dimensional case, d = 1, we have 

Proof. In the polar representation the G v y  measure of X is 
- 

and the Ldvy measure of the BDLP takes the form 

Now, the second term in the last integral 
m dr - 

v S d -  j 1 r(du) j l ~ ( n r ) a k ( r l u ) F  
0 

provides the representation (8). The representation of the first term containing 
ak (r 1 u)/dr needs some extra work. We have 

a k ( r I ~ )  * -- - - se-lS Q ( d s ]  u), 
ar O 

so that 

Proceeding in the footsteps of Rosiriski's result [19], we notice that, for 
O < u < l ,  

U J ~ ( ~ ) + $ ~ - ~  (r)  = i r r (1  - ~ ) ( 1  -irY-', 
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and, for 1 < a < 2, 

~ $ = ( r ) + 9 ~ - ~ ( r )  = i r ~ ( 1  - ~ ) [ ( l - i r Y - ~ - l ] .  

Hence, in both cases we obtain 

Note that the case a- 1 < 0 does not create any difficulties here. Let us put 

and observe that (,(s) has the limit zero at zero. Utilizing (8) we obtain the 
cumulant function 

In the one-dimensional case, d = 1, 

and splitting the domain of integration into (-a, 0) and (0, co), and inte- 
grating by parts, 

we obtain 

we see that the density p, of the R-measure of Z satisfies the equation 

Now, we prove the case d = 2; in the general case d > 2 the argument 
is almost the same, the only difference being that the factor rd-I has to be 
replaced by the Jacobian. So, we have 
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Fix a y # 0, and perform a rotation so that the first axis points in the direction 
of y, and change the integral to the polar coordinate system: 

41 2u 

= j J I I Y I I ~ ~ o s w -  ds p, (r cos o, r sin w )  rdrdw 
0 0 

- 
s= Ilgl/rcoam 

Integrating by parts we obtain 

" 2 * d S m ( l l ~ I I ~ ~ ~ ~ 4  -1 S p, (r cos W, r sin w) r2 drdw 
o o dr 
m 2 x  

= j j $lx(il yll r cos w) (r cos w, r sin w) 
o 0 

d d 
+rcoso-px(rcosw, rsinw)+rsinw-p,(rcosco, rsinw) rdrdw 

ax 1 8x2 I 
and (18) follows. 

If the R-density of X is differentiable, then the calculation of IC, is straight- 
forward; otherwise we have to use the formula (17). 

EXAMPLE 1. Let X be STLFlI2 (a,  0, A) with the cumulant function 

see Section 3.3. Then the cumulant function of the BDLP Z is 

IC, (u) = iayu (1 - i ~ / i ) - ~ / ~ .  

5.2. Stationary multivariate Omstei~Uhlenbeck process with tempered 
stable BDLP. Consider now a stationary Ornstein-Uhlenbeck process X, with 
parameter y and BDLP Z,,  where Z 1  E TSa (R,, 0). The cumdant function rc,, 
of the BDLP is given in terms of the R-measure: 
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see (9) for the definition of the function $,. For each t, the cumulant function of 
X, can be written in the form 

Now, formula-(11), and property (iii) in Subsection 3.2 imply - 

KX* (Y) = J $,(<Y> x>) Rx (ax) 
R; 

with the R-measure 

Hence X, is tempered stable. If d = 1, it follows that the It-density px(x) exists 
and 

(yx) - R Z  (Cx, 4), X > 0,  
P X ~ )  = 

( ~ I x l ) - l R z ( ( - ~ , x l ) ,  x < O .  

Hence px(x) fulfils the equation 

d 
as long as p, is differentiable and - [xp, (x)] is continuous at zero. 

dx 

EXAMPIS 2. Let Z1 be an STLF with the R-measure 

Here (20) does not apply, and we use (11) instead. The R-measure of the 
stationary Omstein-Uhlenbeck process X, with parameter y is ..--. 

Hence the R-density of X, is 
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Below, we generalize the above result for a stationary multivariate Om- 
stein-Uhlenbeck process X,. Let X, be given by the stochastic differential 
equation system 

where Q is a real d x d matrix such that the real parts of all eigenvalues are 
positive ( Q E A +  (Ed)). Then it is well known {see 1221, [24], [23]) that there 
exists a stationary solution X, of the equation (211, which is given by 

- m  

with the cumulant function 
m 

(22) K X  Itl) = j l{zi ( ~ X P  (- sQ3 a) ds,  
0 

i.e. the cumulant function of X, is determined by that of Z1. This result should 
be compared with those of [2] as well. 

THEOREM 1. Suppose Z1 E TSa(RZ, 0); then the multivariate stationary Orn- 
stein-Uhlenbeck process X,, with matrix Q E A+ ( R ~ ) ,  and BDLP Z,, is tempered 
stable. The R-measure of X, is 

m 

Rx (3) = J R, (eQ") ds. 
0 

The cumulant function takes the form 

where qa{y, x, Q)  is given by the equation 

For each x ,  Y E R ~ , ,  q,(y, x, Q) fulfls the equation - - 

Moreover, if the R-measure of Z has density pz, and the di$erential equation 

has a solution px such that Vx [px(x)x]  is continuous at zero, then X, has 
R-density px. The cumulants of X ,  are given in terms of the cumulants of Z1 by 
the formula 

m 

Cum,&) = C (I@(k-1'@(Q3-1@I@("-k))Cum,~1), 
k = l  

as long as Cum, El) exists. 



Proof. Start with the equation (22) 

Let us set 

and apply the gradient operator 6: 

Now, let us differentiate $ , ( ~ ~ e - ~ " y )  with respect to s, 

and integrate, 

$ a ( ( ~ ,  xTexp(-sQ3 dsQTy = C&qa(y, 41 QTy, 

assuming QTu # 0. Let us consider 

= - j $R((Y¶ X))PX(Y)~Y. 
Rod 

Now we conclude that 

Note that the multivariate stationary Omstein-Uhlenbeck process XI is 
Q-decomposable; see Masuda [I51 for details. The cumdants for X, are (see 
the Appendix for the relevant definitions) 

exp ( - s Q 3  ds xR (dx). 
r = xTexp( - Qs)y 
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Putting y = 0 we obtain 
41 

EX, = 1 exp(-sQr)ds EZ, = (Q3-I €2,. 
0 

Now 

m 

= I I CO~P(-SQ'IX exp (- sQ3 xdsR (dx) 
B: 0 

Again, putting u = 0, we obtain 

since 
m 

[exp(-sQT)@exp(-sQ? ds = ( Q ? - ' @ I + I @ ( Q ~ - '  
0 

In the general case Cum,&) is then obtained by a standard induction. 

6. APPENDM. MULTIPLE CWMJJANTS 

Introduce the notation a/duT = K. The operator D$ is defined as 

which is a column vector of order md. We can also write D$ in terms of the 
Kronecker product: 
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If we repeat the differentiation Df twice, we obtain 

and, in general (assuming the existence of derivatives of order k), the kth deriva- 
tive is given by 

Let q ( y )  be the characteristic function of the random variable z. Then the 
multiple moment of order k is defined by 

and the multiple kt"-order cumulant is 

see [27] for details. Note that 

(23) -2 @I 3 Xz) = E - EX1) @ ( X 2  - EXZ)] = Vec Cov @, , XI). 

REFERENCES 

[I] M. Abramowi t z  and I. A. S tegun  (Eds.), Handbook of Mathematical Functions with For- 
mulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York 1992. Reprint of 
the 1972 edition. 

[2] 0. E. B arndorff-Nielsen, J. Pede r sen  and K. Sato,  Multivariate subordination, self- 
decomposability and stability, Adv. in Appl. Probab. 33 (1) (2001), pp. 160-187. 

D] 0. E. B a r n d  o rff-Niel se  n and N. S heph  a r  d, Non-Gaussian Omstein-Uhlenbeck-based 
models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 
(2) 2)2001), pp. 167-241. - - -  

[4] D. R Bri l l inger ,  Time Series; Data Analysis and Theory, Society for Industrial and Applied 
Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1981 edition. 

[5]  W. Feller ,  An Introduction of Probability Theory and its Application, Vol. 11, Wiley, New 
York-London 1966. 

[a I. S. G r a d s  h t e  yn  and I. M. R yzhik, Table of Integrals, Series, and Products, Academic 
Press Inc., San Diego, CA, sixth edition, 2000. Translated from the Russian. Translation edited 
and with a preface by Alan Jeffrey and Daniel Zwillinger. 

[A C. H a1 g r  een, Self-decomposability of the generalized inverse Gaussian and hyperbolic dis- 
tributions, Z. Wahrsch. Verw. Gebiete 47 (1) (1979), pp. 13-17. 

[S] P. H o ug  aard, Surviual models for heterogeneous populations derived from stable distributions, 
Biometrika 73 (2) (1986), pp. 387-396. 

[9] Z. J. J u r e  k and W. Vervaat ,  An integral representation for self-decomposable Banach space 
valued random variables, Z. Wahrsch. Verw. Gebiete 62 (2) (1983), pp. 247-262. 



Gy. Terdik and W. A. Woyczyriski 

[lo] I. Koponen, Analytic approach to the problem of conuePgence of truncated U v y  jlights 
towards the Gaussian stochastic process, Phys. Rev. E 52 (19951, pp. 1197-1199. 

[ill S. Kwapieli and W. A. Wo yczy liski, Random Series and Stochastic Integrals: Sinyle and 
Multiple, Birkhfiuser, Boston 1992. 

[12] E. Lukacs, A characterization of stable processes, J. Appl. Probab. 249 (1969), pp. 409-418. 
[13] B. B. Mandel bro  f Variables et processus stochastiques tie P a r e t ~ U v y  et la ripartition des 

rare nues. 1 et II,  C. R. Math. Acad. Sci. Paris 6 (1959), pp. 613415. 
[14] R. N. Mantegna and H. E. Stanley, Stochastic processes with ultraslow convergence to 

a Gaussian: The truncated Livy jlight, Phys. Rev. Lett. 73 (19941, pp. 2946-2949. 
[15] H. Masuda, On m~ltidimensional Ornstein-Uhlenbeck processes driven by a general LPvy 

process, Bernoulli 10 (1) (2004), p. 97-120. - 
[l6] E. W. ~ b n t r o l l  and H. Scher, Random walks on lrrttices. IT.: Continuous-time walks and 

influence of absorbing boundaries, J.  Statist. Phys. 10 (1973), pp. 101-135. 
[I71 A. Piry atinska, A. I. Saichev, and W. A. W o y  czy dski, Models of anomalous dtDsion: 

The subdt&ive case, Physica A: Statistical Physics 349 (2005), pp. 375424. 
[lSJ A. P. P rudn i  ko v, Y. A. Br y c h kov, and I. Maric hev, Integrals and Series, Vol. 1. Elemen- 

tary Functions, Gordon and Breach Science Publishers, New York 1986. Translated from the 
Russian and with a preface by N. M. Queen. 

1191 J. Rosinski, Tempering stable processes, Stochastic Process. Appl. (to appear). 
1201 J. Rosiriski, Tempered stable processes, in: 2nd MaPhySto U v y  Conference, MaPhySto, 

Aarhus, January 2002, p. 215. 
[21] K. Sato, U u y  Processes a d  Injhiteiy Diuisible Distributions, Cambridge Stud. Adv. Math., 

VoL 68, Cambridge University Press, Cambridge 1999. Translated from the 1990 Japanese 
orihal .  Revised by the author. 

[22] K, Sato  and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, in: Proba- 
bility Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Math. No 1021, 
Springer, Berlin 1983, pp. 541-551. 

[23] K. Sa t o  and M. Y amaza to, Operator-seIf-decomposable distributions as limit distributions of 
processes of Omstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1) (1984), pp. 73-100. 

[24] K. Sat o and M. Y amazat  o, Completely operator-selfdecomposable distributions and opera- 
tor-stable distributions, Nagoya Math. J.  97 (1985), pp. 71-94. 

[25] V. Sesh adri, The Inverse Gaussian Distribution: Statistical Theory and Applications, Lecture 
Notes in Statist, Vol. 137, Springer, New York 1999. 

[ 2 q  Gy. Terdik, Bilinear Stochastic Models and Related Problems of Nonlinear Time Series 
Analysis; A Frequency Domain Approach, Lecture Notes in Statist., Vol. 142, Springer, New 
York 1999. 

[27] Gy. Ter  dik, Higher order statistics and multivariate uector Hennite polynomials for nonlinear 
analysis of multidimensional time series, Teor. Veroyatnost. Mat. Statist (Teor. Imovirnost. ta 
Matem. Statyst.) 66 (2002), pp. 147-168. .*I=--- 

[28] Gy. Terdik, W. A. W o y czy 6s ki, and A. Pir  y a t ins ka, Fractional- and integer-order 
moments, and multiscaling for smoothly truncated U v y  flights, Phys. Lett. A, 348 (2006), 
p ~ .  94-109. 

[29] K. Urbanik,  Self-decomposable probability distributions on Rm, Zastos. Mat. 10 (1969), 
pp. 91-97. 

[30] K. Urbanik,  ,Guy's probability measures on Euclidean spaces, Studia Math. 44 (1972), pp. 
119-148. Collection of articles honoring the completion by Antoni Zygmund of 50 years of 
scientific activity, II. 

[31] K. Urbanik,  Operator-decomposable distributions on Euclidean spaces, in: Transactions of 
the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random 
Processes (Tech. Univ. Prague, Prague, 1971; dedicated to the memory of Antonin Sp&k), 
Academia, Prague, 1973, pp. 859-872. 



Rositiski measures 243 

[32] S. J. W olfe, On a continuous analogue of the stochastic difference equation X, = pX.- + B., 
Stochastic Process. Appl. 12 (3) (19821, pp. 301-312. 

Gyorgy Terdik Wojbor A. Woyczynski 
Department of Id. Techn. Department of Statistics 
University of Debrecen and Center for Stochastic and Chaotic Processes 
4010 Debrecen, Hungary in Science and Technology 
E-mail: terdikade1fin.unideb.h~ Case Western Reserve University 

Cleveland, OH 44106, U.S.A. 
E-mail: waw@case.edu 

- 

Received on 1.7.2006 

3 - PAMS 26.2 




