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Abstract. Statistical version of the central limit theorem (CLT)
with random matrix normalization is established for random fields
with values in a space R* (k > 1). Dependence structure of the field
under consideration is described in terms of the covariance inequalities
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1. INTRODUCTION AND MAIN RESULTS

It is worthwhile to recall, as a motivation, the simple situation when
X,X,,X,,... are iid. random variables defined on a probability space
(Q, #,P) with EX =acR and varX =¢’cR,. Then the partial sums

S,=X,+ ... +X,, neN, are asymptotically normal, i.e.

(1.1) n~Y2(S,~na)>Y as n- oo,

D . . . .
where “>” stands for weak convergence of distributions of random variables

(vectors) and Y ~ N (0, ¢?). Clearly, if ¢ # 0, (1.1) can be written in the usual
form of the CLT:
S,—na p

>7Z as n— o,
s/n
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and Z ~ N (0, 1). Hence, in this case, for any sequence of random variables
6, > 0 such that 6, > o (ie. converges in probability as n — o), we conclude
(stipulating that a fraction equals O if its denominator is 0) that

S,—na
z L7z asn-oo.

1.2
(12) ™G

The relation (1.2) provides a possibility to construct an approximate
confidence interval for unknown mean value a using consistent statistics
Gp=6,(X1;:.., X,), neN. One usually employs the so-called" studentization,
namely, the empirical variance

1.3) 6a=n"1Y (X;—X,)?, neN,
i=1

where the empirical mean X, = n“z;;lX i

There are various generalizations of this approach. Note that for i.id. ran-
dom vectors the situation is more involved. Let now X, X,, X,, ... be iid.
random vectors with values in R* such that the inner product (v, X) is not a.s.
constant for each v belonging to the unit sphere §*~! in R* (one says, respec-
tively, that X is full). Assume that there exist matrices 4, and vectors b, (both
nonrandom) such that

Ay(S,—b)BNO, ) as n— o,

for S,=Y,_, X;, where I is the unit (kx k)-matrix. Then one writes X e
GDOAN (generalized domain of attraction of the normal law). The analytic
properties of GDOAN were studied in [20], [22] and [27]. In particular, if
X e GDOAN, then EX exists and A, can be taken symmetric, non-singular and
b, =nEX. For the vector-valued case set also X, = n‘lz:;lX ; and

Cn= (Xi—X_n)(Xi_X_n)*a nEN,

Q|-
™M=

i=1
where “«” stands for the transposition of a vector. Thus C,.is -the sample
covariance matrix of X, ..., X,, neN. If X is full, then, due to [22], C, is
non-singular on event D,, ne N, with P(D,) — 1 as n — co. Therefore, one can

introduce the statistics _
(1.4) T,=nY2C;42(S,—nEX), neN,

where C, 1/?(w) means the zero matrix if w¢D,.
In [23] and [27] it was established that if X e GDOAN, then

(1.5) TAN@O,) asn—oo.

Gineé et al. [19] proved the converse of this statement for real-valued random



Convergence rate in CLT 263

variables, i.e. for k = 1. In [18] the converse result was obtained for symmetric
random vectors X, X, X,, ... with values in R¥, k > 1.

For dependent random variables (or vectors in R¥) new difficulties arise
and statistics of other type than 6, (or C,) appear. We are going to study
a strictly stationary random field {X;; je Z?} with values in R* (k > 1), hav-
ing the dependence structure described by means of appropriate bounds for
[cov(f (X;, i), g(X;, jeJ)). Here I and J are disjoint finite subsets of Z? and
functions f: R* —» R and g: R*’! - R belong to certain classes of “test func-
tions”, whereas |I| stands for the cardinality of I. The aim of this paper is
twofold, to prévide for such fields an analogue of CLT with random matrix
normalization and to estimate the convergence rate to the normal law as well.
As far as we know, this is a first analysis of accuracy of normal approximation
in such a setting, even for k=1,

To clarify the dependence conditions we recall some basic concepts. In
1967 Esary, Proschan and Walkup [16] proposed the following

DeFmviTION 1. A family {Y;teT} of real-valued random variables is
called associated if, for arbitrary finite sets I, J « T and any coordinate-
wise nondecreasing bounded functions f: RMl — R and g: RV - R, it follows
that

(1.6) cov(f(X,, sel), g(X,, ted)) =0

The notation f(X,, sel) means that one can use f(X;), where X; is
any vector obtained by ordering a collection of random variables {Xj;
sel}.

Evidently, one can assume that I = J in (1.6) (considering instead of I and
J the set U J). There are various modifications of this definition. For instance,
Newman [25] introduced the notion of positive association (PA) imposing in
(1.6) the complementary condition I nJ = @. If, following Joag-Dev and Pro-
schan [21], we suppose that, for any finite disjoint I, J = T and any functions
f, g belonging to the class BL (BL stands for the collection of all bounded
Lipschitz functions), the inequality (1.6) holds with oppos1te sign, then it leads
to the so-called negative association (NA). S—_—

There are a number of important examples of PA or NA random systems.
The main sources of interest here are percolation theory, statistical physics,
mathematical statistics and reliability theory. One can refer to the pioneering
papers by Harris, Lehmann, Fortuin, Kasteleyn and Ginibre; see also the book
[10] and references therein.

Bulinski and Shabanovich [8] proved that if EX? < oo, te T, then either
of PA and NA properties implies, for any bounded Lipschitz functions
f: RS R and g: RV > R (finite I, J =« T, InJ = @), that

(L7 |eov(f(X,, sel), g(X,, teJ))| < Lip(f)Lip(g) . Y. lcov (X,, X)),

sel teJ
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where

i
Lip(f) = sup {|f )=/ GWlIx—ylls},  lIxlly = Zl xnl, xR

xX#y
Thus it is natural to introduce the next

DEFINITION 2. A random field {X;; je Z%} with values in R* is called
(BL, 0)-dependent if there exists a sequence 8 = (0,),en such that 8, N 0, r - o,
and for arbitrary finite disjoint I, J = Z? and any bounded Lipschitz functions
SR SR, g: R%I 5 R it follows that

(1.8) |00V (f(Xi, iel),g(X;, je J))I < Lip (f) Lip (g) (] A 1) Oaiseiz,ay»
where

dist(I, J) = inf {|li—j||; ieI,jeJ} and ||t|| = max |[t,| for teR".
1€msd

Obviously, any family of independent random vectors automatically satis-
fies (1.8) with any choice of a sequence (0,)en-

For stochastic processes (d = 1) this definition can be found in [15], for
random fields in papers [5], [12] and [14]. Note that for PA or NA random
field {X;; je Z%} inequality (1.7) enables us to use as 0, the classical Cox—Grim-
mett coefficient

(1.9 u, = sup Y lcov(X,, X)I, reN,

seZd teZd,||s—t| =r
provided that u; < co. One can prove (see [10]) that, for a wide-sense station-
ary random field {X;; je Z%} with values in R¥, the (BL, 6)-dependence condi-
tion implies the following relations: '

(1.10) Org= ) lcov(Xo,, X;gl <o, r,g=1,..,k
jeZ4d

We mention in passing that there exist other possibilities to choose the “test
functions” f and g and other factors than |I| A |J| in (1.8); see, .g,, [1] and [15].

Now we return to the self-normalization problem. Peligrad and Shao [26]
proposed two choices of statistics &, for mixing stochastic proceesses. Bulinski
and Vronski [13] introduced for the associated random field a family of statis-
tics comprising two above-mentioned choices. The vector-valued random fields
and the corresponding (random) matrix normalization were studied in [6]. The
problem of using self-normalization for the real-valued mixing random field is
discussed in [7] in the context of radiobiology. In particular, one can employ
the present stochastic model to describe the dependent “functional subunits”
for irradiated organs or tissues.

For a finite set U < Z“ let us define

0U ={seU: inf |s—t|| =1}.
teZA\U
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DerFINITION 3. A sequence of finite sets U, = Z¢ (neN) is called regularly
growing (to infinity) if |U,] - oo and |6U,|/|U,| » 0 as n— co.

This notion is a discrete analogue of the concept of a family of sets in R?
growing in the van Hove sense.

Set S(U,) = Z.EU" X;, U, c Z% |U,| < oo, ne N. We shall use the following
extension of the classical Newman’s theorem.

TuEOREM 1 (Bulinski and Shashkin [10]). Let X = {X;; je Z%} be a strict-
ly stationary (BL, 0)-dependent random field with values in R*. Then, for any
sequence of regularly growing sets U, = Z%, neN, it follows that

(1.11) |U,,|"1/2(S(U,,)-—|U,,| EX0)9>N(0, O as n-o oo,

where C is the matrix with elements |

(1.12) Crg= 2. cov(Xo, Xjg), T.q=1,..., k.
jezd

If C is non-singular, then (1.11) amounts to
(1.13) (Ul C)"Y2(S(U)—|UEXo) > N(©, ) as n— co.

Thus, if there is a sequence of statistical estimates C, = C(U,) = (é,_q(U,,))f,Fl
for C, such that for any r,q=1, ...,k

(114) é‘r,q(Un) i,’cr,q as n— o0,

then by virtue of (1.13) and (1.14) we obtain

(115  T,:=(UIC) 2 (S(U)-IUJEX0) B N©O,I) as n— oo,
We will consider the following statistics. For j = (j;,...,j)eU < Z¢
(1 <|U| < ), b=b(U)=(by,...,b)eN* and r, g =1, ..., k, set

KJ(b) = {tEZd: |jm'—tm| < bm, m= 1, oy d}, Q] = QJ(U, b) = UhKJ(b),

and o

Lo (5,0) S,O(5Q) SO ...
(116 G.(U) |U|,§,'Q"(|Q,-| Ui )( 0] U] )

For real-valued associated random fields (k = 1) such estimates were intro-
duced in [13] and for vector-valued (k > 1) quasi-associated random fields
these estimates appeared in [6]. In the mentioned papers the condition
by =b,=...=b; was used (ie. K;(b) were the cubes). Now we consider
a more general situation and set (b) = b, b, ... b,.

Here is the statistical version of the CLT.

THEOREM 2. Let the conditions of Theorem 1 be satisfied. Then for
any sequence of nonrandom vectors b,=(b,,,..., b,))€N? neN, such
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that
(b |0U
[ Ul

the relation (1.14) holds. If, moreover, the matrix C is non-singular, then (1.15) is
valid.

1.17) b, :=minb,; » o, -0 asn- o,

To estimate the convergence rate in the CLT with random normalization
we impose the following additional conditions:

10 Un~=- {(an,laran.l'i'ln,l] X ... x(an.da an,d+ln,d]}nzds ’Wher-e an,meza
I,meN for neN, m=1,...,d.

2° Dy:=supjezE ||X,||s < oo for some s> 2.

3 X is a (BL, 6)-dependent random field satisfying (1. 8) with 0, = O (r™%),
as r — o0, for some 1 such that

(1.18) A > dy(s).

In (1.18), s is taken the same as in 2° and

(s—1)/(s—2), 2<s<4,

1.19) Y =< B=VaC/s+1)2, 4<s<i,
(s—l)\/(s 27 —3—s*+65—11 )
3s—12 > 8> 1

to ~ 2.1413 being the maximal root of the equation £*+2t*—7t—4 =0.
As shown in [11], under conditions 1°-3° we have

(1.20) EISUP*° < co U172

for some positive & and ¢, depending only on d, s, D, and A

Remark 1. Itis not difficult to provide an explicit formula for 6. Name-
1y, a closer inspection of the proof in [11] gives -

. e e
4,

2
t09

5, 2<s
(1.21) 8=+ s—2—./s, 4<s
2(s—2—/s—2*-3), s>13,

<
<

where & = & (4, d, s) = min {5, 8,} €(0, s—2] for se(2, 4] and
8, =%«Af+8(s 2)A/d—8(s—1)"*~4,), 4, =1-s+2//d,

by = Ay—(A3—4(s=2)(Ad—1)""?, 4, =5-3+2M/d.

L




Convergence rate in CLT 267

Note that, for fixed d and s, & (4, d, s) >s5—2 as A — 0.

THEOREM 3. Assume that the conditions of Theorem 1 are satisfied and,
moreover, 1°-3° hold. Set a = 2+4/6 with 6 taken from (1.20). Then

(122) ”é‘r.q(U'n)_cr.q”L1 = O(In_“):
where 1, 1= min; l,; and

{d/l/(a(/l+d)) for A+1<a and d<a,
(1.23) p=

A2A+1) for A+1>a and d > a,
dif(@+d)A+d) for i+1>aand d<a.-

Remark 2. The case A+1 < a and d > a is impossible. If both these
inequalities take place, then a—1 > 1 > dy/(s) > d > a, which is wrong.
Next we can establish an estimate of the convergence rate in (1.15).

TurEOREM 4. Let the conditions of Theorem 3 be satisfied. Suppose that
se(2, 3] in 2° and also A > ds/(s—2) in 3°. Moreover, assume that |U,| = O (I¥)
with d < M < 2d(s—1)/(s—2). Then

(1.24) sup |P(T,e B)—P(ZeB)| = 0(,),

Be¥€r

where €, is the class of bounded convex sets in R¥, Z is a standard normal vector
in R*, u is defined in (1.23),

. {2 v} » M (A(s—2)—ds)
T=min<=yU, =, and v= .
5773 2A+d(s+1+24(s—1))

COROLLARY 1. Let U,, ne N, be finite subsets of Z° growing like cubes, i.e.
M = d (the Fischer type growth condition). If s =3 and d > 6, then, for the
exponent T in (1.24), it follows that ©— d/(6(1+2d)) as A — co.

2. PROOFS

Proof of Theorem 2. We modify the proof of Theorem in [6]. First of all
note that the estimates (¢, (U,,))f,Fl, introduced in (1.16), and elements of the
matrix C are invariant under the transformation X;— X;—EX,, je U,. Con-
sequently, without loss of generality we can assume that EX, = 0eR*. For
a real-valued random variable ¢ let ||é||.: denote its norm in the space
I} = I} (Q, #, P). We shall show that, for any r,q=1, ..., k,

2.1) & U5 ¢, asn—oo.

Clearly, (2.1) yields (1.14). For each pair of r, g =1, ..., k we have the corre-
sponding bound of the form

"ér.q (t]n)_'cr.q”L1 < Il (Un)+12 (Un)+13 (Un)’
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where
I (U) = |éo (U =10, 1 ZU 1017 5,(@) S Q).

2.2) L) =G|t II_ZU 10172 (S-(Q5) S¢(2)—ES,(27) S, (@),..
I3(U):= |G~ ZU 10,171 ES, () S4(@) —cry)-

I. To estimate I, observe that due to the wide-sense stationarity of a field
{X;; je 2%} we have (see (1.10)), for a finite Q =2 and r=1,..., k,

2.3) ES?(Q) < X (X leov(Xo, X)) = 10l o,

ieQ jeZd
Hence, by the Canchy-Schwarz inequality,
@4  EISQ)S,(U) < @rr00alQAIUN2,  ra=1, ..k
Using (2.4) one can show that

2.5) I, (U) <G EIS, (Un) S, ()l . 194

JjeUn

+HUI™2 Y (EIS,(Q5) Se (Ul +ES, (Un) S (2))])

JjeUn
< (04,049 {|Ko (Bl 1Unf ™1 +2 Ko (B)| 2 [U,| =112}
because Z 1@l < 1U,| [Ko(by)l. Since

Ko (bn)| = H (2b,:+1) < 3°<by,

i=1
from (1.17) we conclude that I, (U,) -0 as n— co.
II. To estimate I, let us introduce, for ¢ > 0, two auxiliary functions

(2.6) hy =sign(x)min {|x|, ¢}, h;(x)=x—h;(x), xeR.

For a finite nonempty set Q = Z4 put S,(Q) = S,(Q)//IQl, r =1, ..., k. .
Note that x = h; (x)+h,(x) for all xeR. Therefore,

2.7) I,(U,) < Z 1£™(U,),
where =t

28 13U,
= U 2 1y (5 (Q)) i (54 (2))— E iy (S (Q)) B (S (@) .-

JjeUn
For beZ? neN, let us introduce

n(b) = U Qj(Um b)

jedUn
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Set T,:= T,®”, neN, with b, satisfying (1.17). Then we have
29) ISP UY+ITVUY+IS?(U)
< 2|Un|_1 Z (Elhl (gr(Qj)) hz(gq(Qjm

Jjeln
+E |k (5,(Q)) by (S, ()| +E |hz (5, @)k, (S @)
< 2(E |1y (5 (Ko (b)) 2 (S, ( 5, (Ko (B.)) b1 (5, (Ko(bn)))|
+E|hy (S, (Ko (b)) 12 (5, (Ko(b,)))|+3|T||U| L (Grp 0d™?)-.

To obtain this bound we considered separately the summands with
j€ U\T, (then |Qj = |Kq (b,)| and there are no more than |U,| such terms) and
j€T,. For the latter we used the property |h,(x)| < |x|forall xeR,p = 1, 2, and
applied (2.4). Namely,

E|h, (5,(27) b (S4(2))| < EIS.(2) 5, (2)] < (0r, 0,9

To estimate the first, second and third terms on the right-hand side of (2.9)
we use the Cauchy-Schwarz inequality and the property h, (x) < |x| for |x| > ¢,
h,(x) = 0 for |x] < c¢. For example, the first term is bounded in the following
way.:

_ 1/2
E s (S, (Ko (b)) 1z (So (Ko (B))| < (0v.- E (5% (Ko (B) I{|S, (Ko (B)] > c})) ™

Thus we establish that I$? (U,)+ 1% (U,)+1$?(U,) is bounded by
2100 4(0,. E(S2(Ko (b)) I {|5,(Ko (Bn)| > }))
+2 (000 (52 (Ko ()L {5, (Ko B2)] = ¢})) "~ +6I Tl Ui ™2 (01 00,02

Now we use the following elementary result.

LEMMA 1 (see, e.g., [3], [6]). Let X = {X;; je Z°} be a wide-sense station-
ary random field with values in R* such that (1.10) holds. Then for any sequence
of regularly growing sets U, = Z° neN,

211) - . U *VarS(U)—-»C as n— o, e

where Var S(U,) is the covariance matrix of S (U,) and the matrix C was defined
in (1.12). The relation (2.11) means the elementwise convergence of matrices.

In view of (2.11) we have varS?(Ko (b, ))-—»c,, as n— oo, for each
r=1,...,k
Furthermore, by Theorem 1,
S?(Ko (b)) > Z? as n— oo,

where Z, ~ N(0, ¢, ,), so we may infer from Theorem 5.4 of [2] the uniform
integrability of a family {S?(Ko(b,)}az: for each r=1,..., k. Using the
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inequality
d
Tl < [] @basi+1)|0U
i=1

and the condition (2.4) we see that, for any & > 0, there exists ¢ = c(¢g) (whence
the functions h; and h,) such that, for all n large enough,

B2 U+ 18D U+ 182 (U) < &
Following [6] we can use the representation
U, xU,={(, t): j, teU,} |
= {(j, 1): te K;(3b,)} U {(j, t): t¢K;(3D,)} =: M, UM,.
Due to the Lyapunov inequality we see that

(I(l 1) (U’l)) (El n+22 n)

fsz2
where .
Zin= Z ICOV (h1 (‘S—'r (Qj)) hy (gq(Qj))J hy (gr (Qr)) hy (gq (Q:)))l, i=1,2.
(.t)eM;
Now note that if a random variable é is such that |&] < 2, then |[cov (¢, n)| <
2¢2 E || Obviously, |k, (x) A, (¥)| < ¢ for all x, yeR. Thus, according to (2.4),
(212)  Z;,<22 Y Er(5.(2)) 51 (S(2))

Uit)eM 1

Z (0',.,,. a.q;q)llz S 2 3d cz (a'r,r aq,q)lfz |K0 (bn)l |Un|:
UstleMy
because for a fixed j (there are |U,| positions for j) there exist no more than
39|Ky(b,)| variants to choose .
By the definition of (BL, f)-dependence we have

(2.13) 2on < Z Lip (le,l) Lip (f|Qel) 124 A 1) edist(Qj,Qg),

(jst)eM 2

where o -
Pty oees Xam) = Iy (M2 X1+ ... +X )by (M2 Xpr 1+ ... +X20)), mMEN

It is easy to verify that Lip(fjg,) = ¢/\/I@,l (this is an immediate corollary to
the Lemma in [4]). A sequence (0,),ey is nonincreasing and 6, — 0 as r — co.
Moreover, b, < dist(Q;, Q,) for (j, )e M,, which implies the inequality
Bdist(Q;,Q:) < an. Therefore,

22 n 4 gb |Q1| A 'Qtl
2.14 —== K " c26,,—0 - 00.
9 wEsT |20n§M;(\/IQ, \/IQ) s

The last inequality is true as (aAb)/(\/E \/_ ) <1 for any positive a and b.
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In view of (2.12)(2.14) and the condition (1.17), we have

|KO (bn)l

1/2
(2.15) 1‘21'”(U,,)<c<2-3d(a,,,aq,q)1/2( T )+abn) -0 as n— .

Thus, we come to the relation I,(U,)— 0 as n— co.
III. To estimate I;(U,) let us note that

U~ Y 19517 ES(Q) 5,(Q)

=107 3 1047 ES Q) S, @)+ X 107 ES:(2)5,(2)
JjeUn\Tn jeTw

__IG\T 1 ) _

- IUnI |K0 (bn)l E S" (KO (bn)) S‘I (KO (bn)) -+ | Unl jEZT“ IQJl ! E Sr (QJ) Sq (QJ)

By Lemma 1 we obtain
(216) |KO (bn)l “'E Sr (KO (bn)) Sq (KO (bn)) —Crq as n— 0.

According to (1.17) we have |U,|"|T;| -0 and |U,|"|U\T,| = 1 as n— oo.
The inequality |Q;~* E|S,(Q;) S;(Q))| < (.., 0,9 (which is analogous to
(2.4)) implies that I3(U,)—0 as n— co. The proof is complete. =

Proof of Theorem 3. For i=1, ..., d and some a&(0, 1), introduce the
sequences (b, ).y Of positive integers b, ;:= [I2"1,;], neN. Thus, for b, =
(Bu,1» - - > bya), we have |Kq(b,) = O (12~ V|U,|) as n — oo. Moreover, |0U,| =
o(; YU, and |T;| = O (12~ 1|U,}). We shall estimate I,(U,), r = 1, 2, 3, defined
in (2.2).

I. The inequality (2.5) yields
(2.17) 1,(U) < O(Ko (B, M2 |U,| = 12) = 0 (1ie~112),

II. To estimate I, (U,) we use (2.10) and (2.15). For any random variable
¢ and positive numbers A, 6 we have

AE@I{E > AY <ERR*. -

P

Therefore, taking into account (1.20) we obtain

2+
1S,(Ko (b,) ) <coc?.

E(gg (KO (bn))1{|‘§q (KO (bﬂ))| 2 C}) < c—& E( |KO (bn)|1+6/2

Choosing ¢ = c(l,) = O (I¥) for some B > 0, we derive the bound
218)  (E(S (Ko B I{ISu(Ko(B2)| > }))

The last summand in (2.10) can be estimated in the following way:

(219) 6 |7;|| IUn' -1 (o'r,r O.q,q)ll2 =0 (lﬁ_ 1)-

< cil?em2 = 0 (1792,
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Applying (2.15) we conclude that
I8 (U,) = 0@+~ 97%) 4 0 @8~2),
Consequently,
Iz (Un) =0 (L'—Bzi/z + l:_ 1 4 I£+d(zz— 1)/2 + lﬁ—lmﬂ)-

III. Now consider I (U,). Having fixed some ye(0, 1), we can represent the
set Z"\K,(b,) as the union of the following disjoint sets:

Vi = {jeZ\Ko (b,): dist (j, Ko(by)) < b3},
Vo = {jeZ"\K, (b,): dist(j, Ko (b,)) > bl}.
Thus one can write C
1Ko (B,)I~* ES, (Ko (bn)) So(Ko(Ba))—Cra| = Ko B ™' X 3 EXi X

teKo(bn) j¢Ko(bn)

=:J1at 20
where
(2.20) Jen= IKO(bn)|_I( Z Z EXi,er,ql’ r=1,2.
ieKo(bn) jeVr
For any j,e Vi, |ZieK0a_n)EX,,X ioal < 0,4 Hence we have
221 J1a=0(Vi|IKo(B)|"Y) =0 (B3~ ") = O(HO™Y).

By the definition of (BL, 6)-dependence there exists a constant ¢; > 0 such
that, for any R > 0, the following inequality is valid:

Y. cov(Xo,, Xjn)| <ciR7H
il ZR

and therefore
(2.22) Jom < 1Ko (Ba)l ™1 Ko (Ba)l c1 (B2) ™% = O (I; ).

Clearly, the optimally chosen y satisfies the equation oc(y—l) —ocyl, ie.
y = 1/(A+1). Due to (2.20){2.22) we obtain the bound

(2.23)  |IKo (Ba) " ES, (Ko (bn) So(Ko (b)) —Crg| = O (7 °H4*Y) a5 n— 0.
Taking into account (2.19) we conclude that
I3 (Up) = O (511 <46+ 1),

Combining all bounds for I, (U,), r = 1, 2, 3, ne N, we see that (1.22) holds
when
p= max ha, p)

ae(0,1),>0




Convergence rate in CLT 273

with
. 0 d d A A
(224) h(d, ,B)=mm{ﬁ5, 1—“, E—az—ﬂ,id—ﬂ, d‘m}
Obviously, [|&,,,(Un)—c,gll.t =0 as n— oo, if > 0. So we need « and
p satisfying the conditions

d A
O<a<l, pg>0, g_“5_3>0’ 5a—ﬁ>0.
Thus o and B-should belong to the triangle in R? cut by the lines
d d A
ﬁ_ob ﬁ_ihmiﬁ B_Ea

Consequently, p = max {y,, u,}, where
pr=max{h(a, f): 0 <a<d/d+41),0< f <ai/2},
Yz = max {h(a, f):dfd+1) <a<1,0<f <d(l—a)2}.
Then elementary but tedious calculations lead to the final statement (1.23).

Proof of Theorem 4. We begin with an algebraic lemma for nonrandom
matrices being of independent interest. For any (k x k)-matrix W and vector
xeR* we use the operator norm

Wl = (IW]l, = max 2 Wyl

corresponding to the norm

llxll = l|xll, = max [x,},
m=1 k

and also the so-called spectral norm

[1W]), = max {ﬁ : A is an eigenvalue of W* W}

corresponding to the norm |lx|l, =/}, _, xZ.

LemMa 2. Let T = (t,)%;=1 be a symmetric matrix and C = (c; ;= be
a symmetric positive-definite matrix. Set

1 _1—|I=iCll,
max;=y,. .. {3, (cojl+ 1)} 22

Let A satisfy 0 < A <min {1, t, Ap;,}, Where Ay, is the minimal eigenvalue of
the matrix C. Then T is non-singular and the inequality ||T—C|| < A implies

(2.25) A=

IT~2-C~ 17| < 4:‘3/2"% Cll.
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Proof. We divide the proof into several steps.
1) By the definition of A, we have, for any i=1, ..., k,

(2.26) 1= /'L max {Z (el +1)} = 4 Z (el +1) > 2 Z leg -

Therefore, for each i we get 0 < AZ Jeil < 1—=2]ci;|. All the diagonal ele-
ments of symmetric pos1t1ve—deﬁn1te matrlx C are positive, so for any i we
obtain Z ;i | < 1—A4c;;. It means that I—AC is the matrix with diagonal
dommatlon and due to the theorem by Gershgorin (see, e.g., [24], p. 192)
I-3C>0. As C>0, we have I—(I-AC)>0, ie. I>I—AC. Thus
0 < I—AC < I. Consequently, all the eigenvalues of I —AC belong to the inter-
val (0, 1). Therefore, |JI-AC|| <1 and ¢t >0 (see (2.25)).

2) By assumptions, for any i=1, ..., k we get

k k
Y ltj—cifd < max Yt ;—c ) = T—Cl| < 4.
i=1 i=1 kj=1

Hence, for any i and j we have [t;;|—lc;;| < |t;;—c¢il < 4, and so
(227) ti,j < Iti,jl < {C.'JI"‘A.

As A <1 we conclude that, for every i=1,...,k,

1= /1 max {Z (e + 1)} > 4 E (lei, 1+ 4).
Thus, we get
(2.28) 1—A(ci|+4) > 4 é (I, 5|+ 4).
j*i
In view of (2.27) and (2.28) we obtain the following inequalities:
; |At; ;| < A ; (leij +4) < 1=A(cizl +4) < 1= At,,
i j#i

Therefore I—AT is a matrix with diagonal domination, and consequently
I-AT > 0.

3) A matrix (T —C) is symmetric, so Gershgorin’s theorem implies (see,
e.g., [24), p. 192) that

(2.29) T — Cll < IT—Cl.

4) Let us show that T > 0. It suffices to verify that, for any vector x such
that ||x||, = 1, the inequality (T'x, x) > O holds. Let ey, ..., ¢ be an orthonor-
mal system of eigenvectors for the matrix C, and 4, ..., 4; be the correspon-
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ding eigenvalues. Then one can write x = o; e; + ... +o e, and
(2.30) Cx,x)=0af i+ ...+ 0f 4 = Amin |1%]]2 = Ammin-
By the Cauchy-Schwarz inequality and (2.29) we see that
(T —O) %, x)| < (T —C)xll, IIxll2 < IT—Cll2 |IxII3
=[IT-Cll; <IT-C|| < 4.

Thus ((T—-C)x, x) > — A. Taking into account the last 1nequa11ty, (2.30) and
the condition 4 < A,,;, we have P

(Tx, x) = (T—C)x, x)+(Cx, X) > Agin— A4 > 0.
Then T >0 and I—-(I—AT)> 0, ie. I > I—AT. We obtain

(2.31) 0<I-AT <.
5) We have (see, e.g., [17], v. 2, p. 523), for |x| < 1,
i 2m—1)!!
—_yx) 12 m = (___.
(1 x) - ,,Z'o amx L] am - (2"1.)"

Now the inequality 0 < I—AC < I and (2.31) yield
T-12_ C 1/2 _ 11/2(1 (I ﬂ.T)) 1/2 /11/2(1 (I AC)) 1/2

s3]

= 12( Y, an[d— ATy —(I—ACy")).

m=0
Note that, for any (k x k)-matrices W; and W,,
W — W3l < m|[Wy = Woll (1WAl v (W)™,

where av b = max {a, b}, meN. Using this inequality we have

IT=42=C™ 2, = 212 L anll(T—ATY"~ (A~ ACYl])

m=0

<MY ammAl|T ~Clly (M — ATl v [~ AC]|) 1)
m=0

<BPIT=Cll( Y awm(I—AC|2+A4)""Y),

m=0
since
M —AT|lz = [I—AC+AHC—T)|l, < [H—-AC|l,+AIC—TIl,

S —AC) |, +A|C—TJ| < |H—AC||,+ 4.
Now 4 <t implies that
[[{—ACll,+ 44 < I —AC]|,+ At < 1.

5 — PAMS 262




. where-A(k) is a positive factor depending on k only.
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Setting y := || - AC]|,+ At, we obtain

Y aum(I—AC|z+ A" < ¥ apmym?

m=0 m=0

=(Z any™y ==y, =3(1-)) "> = 32972

because, by (2.25), 1—y =1—|I—AC||;— At = 2At— it = At. Hence, we get
IT=12—C 2], < 3732 T~ Cll.

It is easily seen that, for any (k x k)-matrix W, k~/2||W|| < ||W|},. So,
using (2.29) we conclude that the desired statement is established.

M

0

Now we shall apply Lemma 2 to a matrix T = (¢;)f;=, with random
elements ¢; ;.

COROLLARY 2. If, for almost every weQ, T satisfies the assumptions of
Lemma 2, then an event {||T—C|| < A} entails an event

{HT‘”Z—C‘”ZH < 41:-3/2. A}.

Thus,

P(IIT‘”Z—C‘”ZII > */Tzrw) <P(IT~Cll > 4).

Returning to the proof of Theorem 4, we shall employ the following ele-
mentary proposition (using the same notation as in Theorem 4).

LemMMA 3 (Bulinski and Shashkin [9]). Let & and 1 be random vectors with
values in R*. Then, for any &> 0,

sup |P((+neB)—P(ZeB) < sup|P((eB)—P(ZeB)|+P(Inll > ¢) + A(k)e,
Be¥x Be¥y

PR

Applying Lemma 3 for
E=(CIG) 28U, n=(C7"2=C ") U™ 28U, &=g, =125

we obtain
232 sup|P((C.IU))"2S(U,)e B)—P(Ze B)|
Be¥s

< sup |P((CIU,))~"Y2S(U,)e B)—P(Z < B)|

Be¥x

+P(IC 12 =CT ) U2 S (U > &)+ AK)e.
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The second summand in (2.32) can be estimated in the following manner:
233)  P(IC; 2 =C™ )T~ 25, > &)
S PUCT 2 =C Y [[{U 2 Soll > & IC5 2 —=C 12| > £37)
+PUIC 2= CT P UL T2 Sl > &, IG5 12— C™ 12| < 372)
S PUCT 2 =C72) = &)+ P(I[U =2 S,ll > &5 /2.

Since ¢, — 0 as n— oo, we deduce that, for all n large enough,_
0< ikt3fzs,?/2 < min {1, t, Amin}>

where ¢t and A, were defined in (2.25).
Thus Corollary 3, the Chebyshev inequality and Theorem 3 imply that

A A 2
PUIC, 12 —C™12 2 &2%) < P(IIC,.—CII > ﬁta’z 8,?/2)

-1
< (% 2 e?:ﬂ) EIIC,—Cll = 6% 0 (%) = 01 1),

The second summand on the right-hand side of (2.33) has the following
upper bound:

k k '
Y P(UITY28:(U,) > &, 1) < &, Y var(|U,| "2 Si(U,)) = O (&) = O (I, 25),
i=1

i=1
where we used (2.3) and the choice of &,. Therefore,
(234 P(ICr 2 —C ) |U 725, > &)+ A(K) & = O (7 25).

To estimate Supgeq, |P((CIU)"2S(U,)eB)—P(ZeB)| we apply the
result of [9]. To this end consider a standard partition of U, (see, e.g., [7] and
[9]) into “rooms” and “corridors”. Set p, := [I*] and ¢,:=[[£],0< B <a < 1.
Each edge (a,;, a,;+1,;] can be represented as a union of “large” and
“small” intervals having the length p,, qu Pu> ---» 9n> Pn» respectively, where
Pn < P < 3p,- We draw the hyperplanes, orthogonal to the corresponding i-th
edge, through the end points of these intervals. -

Let us enumerate the “big” blocks (with edges having the length p, or p,):
U(I?’, i=1,...,N,N= ]_—[:=1 [/ (Patdn)] = O(ln_adlUnl) = O(Irllu_ad)- Set I7n =
UA'}:‘ u®, U®=U\U, troduce %=Y ,X; (=0,...N), V=
Y-, VarY;,, V2=VarY,, and recall

THEOREM 5 (Bulinski and Shashkin [9]). Let the assumptions of Theo-
rem 3 be satisfied for s€(2, 3]. Then, for a nonrandom (k x k)-matrix A and any
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y€(0, yo(k)), we have
(2.35) sup|P(AS,eB)—P(ZeB)|

Be¥x
< b{y+y 2V MR 1T 0, +IUPE N[V P+ 1AV =TI + [ A IVEID},

where b is a constant, €, a class of bounded convex subsets of R*, and Z a stan-
dard Gaussian vector with values in R*.

Let us take A = |U,|~Y2C~ Y2 Set §, = Z.iEfn'nX ;- Now we shall examine
separately the summands on the right-hand side of (2.35). --

1) The bound for ||[AV;—I||. Note that

% “ var@)| VarSy V2| |2 %
2.36 C———| <||C—- + ——— o )
(2:36) 0, a1 e il Tl

Analogously to (2.23) one can show that
IC =10~ Var (S| = O (Im=xB-==38),

Introduce the matrices cov (Y, Y)):=(cov(Y,, Y},,))fJ:l, i,j=1,...,N.
We have

llcov (Y, V)l < kmax |cov (Y, Y )l = O(U"|6,) as n— oco.
r,l

Hence the second summand in (2.36) can be estimated as follows:
Var(S,) Vi

N N
=0, | Var ¥ ;- Y VarY)]|
i=1 i=1

Gl 10, i
- N " N
=10 ¥ cov(% B <ITITY Y lleov(¥, B
Li=1,i#j Li=1,i#]

= 0(|(7n|_1 N2 |UW) 9,,,,) =O0(Nb,,) = O(I'Iltl—admw)l

For the third summand in (2.36) we have

V12 _ V12 Vlz |U"\U~"| Var Yl' q O(IZ?— .
G 1o S 7l o S [oeee T

as |[Var Y||[/[lUY] < o0.
Thus, |IC—|U,|~! V|| < O ([p=#-=M=2d=8)
In view of Lemma 2 we conclude that

U 14—V = o -
n 1 IUnl—llz
2
s—\égt‘m C‘|I(/}| < O (fpmip =M= ad=ih),
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Consequently,

- ”V” Iﬁnlllz max{ff —a,M —ad —
AV, =1} < |U,|M?||A—Vy IHWW < O (JmextB~aM —ad=ap))
2) The bound for ||A]|?||V&|. We have

211U\
AYANNTA

3) The bound for [UVF N ||V, |F. Observe that |U,| = N|U"), and so

IAIZNVEN = 1T~ Y2 =212 [Vl = lC~ )12 =0(l™).

[UDEN [V = NG v 102 [UYFE N
< const N1~%2 |ytV)s/2

— O (l'('M—ad)(l —s[2)+ads/2) — 0 (l,l,ml —5/2) +ad(s— 1))-

i 4) Gathering the bounds obtained at steps 1), 2) and 3) we see that the
| coefficient of y~2 in (2.35) has the form

(237) 0 (ln_ Aﬂ) + 0 (I'Ilu'(l —58/2)+tad(s— 1)) + 0 (l'%max{ﬂ —a,M—ad— Aﬁ}) + 0 (l,’: —a)
—_ 0 (l'r'nnx{—),ﬁ,M(l —3/2)+ad(s— 1),2(M—ad—lﬁ).ﬂ—a})'
1 It is not difficult to see that for

‘e M(s/2+1+4+25—24) g = M(s/2+1+ds)

T 2A+d(s+1+24s—23) C 2A4+d(s+1+24s—24)

due to the conditions concerning 4 and M in Theorem 4 it follows that
0<M(s2—1)—ad(s—1)= 2(ocd-i—_?.@ﬂ.—M) =oa—f=v<ip.
Taking y = [;*3, in view of (2.35) aiid (2.37) we obtain
(2.38). ~ sup|P(CT2|U,|" V2 S.eB)—P(ZeB)|=0(,"?).

i
- .. Be¥x iaen -

Thus (2.34) and (2.38) imply (1.24). The proof is complete. =
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