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1. INTRODUCTION AND MAIN RESULTS 

It is worthwhile to recall, as a motivation, the simple situation when 
X, XI,  X 2 ,  ... are i.i.d. random variables defined on a probability space 
(52,9, P) with EX = a€ R and var X = G~ E R+ . Then the partial sums 
S, = XI + . .: +X,, n EN, are asymptotically normal, i.e. I- - 

where "3" stands for weak convergence of distributions of random variables 
(vectors) and Y -- N ( 0 ,  a2). Clearly, if a # 0, (1.1) can be written in the usual 
form of the CLT: 

* The work is partially supported by INTAS grant 03-51-5018. 
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and Z - N(0, 1). Hence, in this case, for any sequence of random variables 
6, 3 O such that d, 5 o (i.e. converges in probability as n + a), we conclude 
(stipulating that a fraction equals 0 if its denominator is 0) that 

The relation (1.2) provides a possibility to construct an approximate 
confidence interval for unknown mean value a using consistent statistics 
8n = en (Xl . . ., X,), n EM. One usually employs the so-called- studentization, 
namely, the empirical variance 

where the empirical mean X, = n- x!= I X i .  
There are various generalizations of this approach. Note that for i.i.d. ran- 

dom vectors the situation is more involved. Let now X, XI, X,, . . . be i.i.d. 
random vectors with values in Rk such that the inner product (v ,  X) is not a.s. 
constant for each v belonging to the unit sphere S k - l  in Rk (one says, respec- 
tively, that X is full). Assume that there exist matrices A, and vectors b, (both 
nonrandom) such that 

for S ,  = x=l Xi, where I is the unit (k x k)-matrix. Then one writes X E  
GDOAN (generalized domain of attraction of the normal law). The analytic 
properties of GDOAN were studied in [20], [22] and [27]. In particular, if 
X E GDOAN, then EX exists and A, can be taken symmetric, non-singular and 
b, = n EX. For the vector-valued case set also 8, = n-I z;=, Xi and 

where "*" stands for the transposition of a vector. Thus 17, is the sample 
covariance matrix of XI ,  . . ., X,,  EN. If X is full, then, due to [22], Cn is 
non-singular on event D,, n EN, with P (D,) + 1 as n -+ CO. Therefore, one can 
introduce the statistics 

where Cil/'(co) means the zero matrix if w$D,. 
In [23] and [27] it was established that if XEGDOAN, then 

Gine et al. [19] proved the converse of this statement for real-valued random 
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variables, i.e. for k = 1. In [IS] the converse result was obtained for symmetric 
random vectors X, XI, X,, ... with values in Rk, k 3 1. 

For dependent random variables (or vectors in Hek) new difficulties arise 
and statistics of other type than 6,, (or Cn) appear. We are going to study 
a strictly stationary random field {XI; j€Zd}  with values in Rk (k 2 I), hav- 
ing the dependence structure described by means of appropriate bounds for 
Icov(f (Xi, i ~ l ) ,  g(Xj, j~ J ) ) I .  Here I and J are disjoint finite subsets of Zd and 
functions f :  Itk1'[ + R and g: 1RkIJI + R belong to certain classes of "test func- 
tions", whereas 111 stands for the cardinality of I. The aim of this paper is 
twofold, to provide for such fields an analogue of CLT with random matrix 
normalization and to estimate the convergence rate to the normal law as well. 
As far as we know, this is a first analysis of accuracy of normal approximation 
in such a setting, even for k = 1. 

To clarify the dependence conditions we recall some basic concepts. In 
1967 Esary, Proschan and Walkup [16] proposed the following 

DWIMTION I. A family {x; t E T )  of real-valued random variables is 
called associated if, for arbitrary finite sets I ,  J c T and any coordinate- 
wise nondecreasing bounded functions f :  RI'I + R and g : dJl + R, it follows 
that 

The notation f (X,, SEI) means that one can use f (z,), where 2, is 
any vector obtained by ordering a collection of random variables {X,; 
s E I ] .  

Evidently, one can assume that I = J in (1.6) (considering instead of I and 
J the set IuJ). There are various modifications of this definition. For instance, 
Newman [25] introduced the notion of positive association (PA) imposing in 
(1.6) the complementary condition In  J = a. If, following Joag-Dev and Pro- 
schan [21], we suppose that, for any finite disjoint I ,  J c T and any functions 
f, g belonging to the class BL (BL stands for the collection of all bounded 
Lipschitz functions), the inequality (1.6) holds with opposite sign, _then it leads 
to the s o - d e d  negative association (NA). I>- 

There are a number of important examples of PA or NA random systems. 
The main sources of interest here are percolation theory, statistical physics, 
mathematical statistics and reliability theory. One can refer to the pioneering 
papers by Harris, Lehmann, Fortuin, Kasteleyn and Ginibre; see also the book 
[lo] and references therein. 

Bulinski and Shabanovich [8] proved that if EX: < co, t E then either 
of PA and NA properties implies, for any bounded Lipschitz functions 
f : R l X l + R  and ~ : R I ~ I + R  (finite I ,  Jc T, I n J = B ) ,  that 
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where 

Thus it is natural to introduce the next 

DEFTNITION 2. A random field ( X j ;  ~ E Z ~ )  with values in Rk is called 
(BL, 8)-dependent if there exists a sequence 0 = (Or),, such that 0, I 0, r + oo, 
and for arbitrary finite disjoint I, J c zd and any bounded Lipschitz functions 
f: Rklxl + R, g : JfklJI + R it follows that - 

where 

dist(I ,J)=inf{Il i -j l l ; i~I,j~J) and Iltll= max ltml for t € R d .  
lGm<d 

Obviously, any family of independent random vectors automatically satis- 
fies (1.8) with any choice of a sequence (Or),,,. 

For stochastic processes (d = 1) this definition can be found in [IS], for 
random fields in papers [S], [12] and [14]. Mote that for PA or NA random 
field (Xi; j~ Zd) inequality (1.7) enables us to use as 8, the classical Cox-Grim- 
mett coefficient 

provided that u1 < oo. One can prove (see [lo]) that, for a wide-sense station- 
ary random field (Xj; j € Z d )  with values in Rk, the (BL, 0)-dependence condi- 
tion implies the following relations: 

We mention in passing that there exist other possibilities to choose the "test 
functionsn f and g and other factors than 111 A IJ1 in (1.8); see, e.g., [l] and [15]. 

Now we return to the self-normalization problem. Peligrad and Shao [26] 
proposed two choices of statistics &,, for mixing stochastic processes. Bulinski 
and Vronski [13] introduced for the associated random field a family of statis- 
tics comprising two above-mentioned choices. The vector-valued random fields 
and the corresponding (random) matrix normalization were studied in [6]. The 
problem of using self-normalization for the real-valued mixing random field is 
discussed in [7] in the context of radiobiology. In particular, one can employ 
the present stochastic model to describe the dependent "functional subunits" 
for irradiated organs or tissues. 

For a finite set U c Zd let US define 
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DEF~NITION 3. A sequence of finite sets Un c Zd  ( n ~ 1 V )  is called regularly 
growing (to infinity) if leJ.1- .o and 18 U,l/l U,l 4 0 as n 4 a. 

This notion is a discrete analogue of the concept of a family of sets in R~ 
growing in the van Hove sense. 

Set S (U,) = C. Un X j ,  U, c Zd, 1 Unl < co, n E N. We shall use the fdlowing 
extension of the cGssical Newman's theorem. 

THEOREM 1 (Bulinski and Shashkin [lo]). Let X = { X j ;  j € Z d )  be a strict- 
ly stationary (BL,  8)-dependent random field with values in Rk. Then, for any 
sequence of regularly growing sets U, c Ed, n E N, it follows t h a  . 

where C is the matrix with elements 

If C is non-singular, then (1.11) amounts to 

Thus, if there is a sequence of statistical estimates = e (U.) = (2r,(~n))F,,=l 
for C, such that for any r,  q = 1, . . ., k 

(1.14) 6.q ml) k,, as n+ CQ, 

then by virtue of (1.13) and (1.14) we obtain 

We will consider the following statistics. For j = (j,, . . ., jd) E U c Zd 
(1 GIUI < a), b =  b(U)=(bl  ,..., bd)€Nd and r , q =  1, ..., k ,  set 

Kjtb) = { t € Z d :  Ij,--t,l < b,, m = 1, ..., d) ,  Qj  = Qj(U, b) = U n K j ( b ) ,  

and 

For red-valued associated random fields (k = 1) such estimates were intro- 
duced in [13] and for vector-valued (k 3 1) quasi-associated random fields 
these estimates appeared in [6]. In the mentioned papers the condition 
b, = b, = .. . = bd was used (i.e. Kj (b )  were the cubes). Now we consider 
a more general situation and set (b) = b1 b, . . . b,. 

Here is the statistical version of the CLT. 

THEOREM 2. Let the conditions of Theorem 1 be satisfied. Then for 
any sequence of nonrandom vectors 6, = (bntl, . . ., bnBd) E Nd, n E N,  such 
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that 

the relation (1.14) holds. If, moreover, the matrix C is non-singular, then (1.15) is 
valid. 

To estimate the convergence rate in the CLT with random normalization 
we impose the following additional conditions: 

1" Un-= {(a,,~, %,I +1,,11 x . . . x (%.dl %,d+ lfi,dl) nZd7 where an,,EZ, 
I,,,EM for  EM, m =  1, ..., d .  

2" D, : = supjEZd E lIXjllb < co for some s > 2. 
3" X is a (BL, @-dependent random field satisfying (1.8) with 8, = 0 ( r - 3 ,  

as r + ao, for some R such that 

In (1.18), s is taken the same as in 2", and 

I ( s -  I),/'--s2+6s-11 
l s > t ; ,  3s- 12 

to w 2.1413 being the maximal root of the equation t 3+2 t2 -7 t -4  = 0. 
As shown in [Ill ,  under conditions l0-3" we have 

for some positive 6 and c, depending only on d, s, D, and A. 

Re mark 1. It is not difficult to provide an explicit formula for 6. Name- 
ly; a closer inspection of the proof in [ l l ]  gives - - 

, r -  . 

where 6' = 6'(rl, d ,  s)  = min { d l ,  62) ~ ( 0 ,  S -  23 for s ~ ( 2 ~ 4 1  and 
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Note that, for fixed d and s, S '(A,d,s)+s-2 as R - o o .  

THEOREM 3. Assme  that the conditions of Theorem 1 are satisjed and, 
moreover, l"3" hoM. Set a = 2+4/S with S taken from (1.20). Then 

where En : = mini In,i and 

for A+l < a  and d d a,  
(1.23) for 2+1 3 a and d > a, 

f o r 1 + 1 2 a a n d d < a . -  

Remark 2. The case 1 + 1 < a and d > a is impossible. If both these 
inequalities take place, then a- 1 > 1 > d$ (s) > d > a, which i s  wrong. 

Next we can establish an estimate of the convergence rate in (1.15). 

THEOREM 4. k t  the conditions of Theorem 3 be satisjled. Suppose that 
s ~ ( 2 ,  31 in 2' and also A > ds/(s-2) in 3". Moreover, assetme that IU,I = 0 (EF) 
with d < M < 2d (s - l)/(s - 2). Then 

where %fk is the class of bounded convex sets in Rk, Z is a standard normal vector 
in Rk, p is defined in (1.23), 

COROLLARY 1. Let Un ,  n f  N, be finite subsets of Zd growing like cubes, i.e. 
M = d (the Fischer type growth condition). If s = 3 and d > 6,  then, for the 
exponent z in (1.24), it fol1ows that z + d/(6 (1 + 24) as f + m. 

2. PROOFS 

Proof of Theorem 2. We modify the proof of Theorem in [6j. First of all 
note that the estimates (z~,~(u~)$, ,=,  , introduced in (1.16), and elements of the 
matrix C are invariant under the transformation XjwXj- EX,, j~ Un. Con- 
sequently, without loss of generality we can assume that EXo = (D€Rk. For 
a real-valued random variable 5 let l l t t l L 1  denote its norm in the space 
fi = I? (Q, F, P). We shall show that, for any r, q = 1,  . .., k,  

Clearly, (2.1) yields (1.14). For each pair of r ,  q = 1, . . ., k we have the corre- 
sponding bound of the form 
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where 

1. To estimate I, observe that due to the wide-sense stationarity of a Eeld 
{;Ki; j E Zd) we have (see (1.10)), for a finite Q c zd and r =- 1 ,  ,. ., k, 

- .  

Hence, by the Cauchy-Schwarz inequality, 

Using (2.4) one can show that 

because z&un lQjl < IU.1 lKo ( a ! .  Since 
d 

IKo (bn)l = n (2bn.i + 1) G 3d <bn>, 
i = l  

from (1.17) we conclude that I, (U,) + 0 as n -, co. 

11. To estimate I, let us introduce, for c > 0, two auxiliary functions 

For a finite nonempty set Q c Zd put Sr(Q) = Sr (~)/m, r = 1, . . ., k. 
- Note that x = hl(x)+h,(x) for all X E R .  Therefore, 

I,e . 
2 

(2.7) I2(un)< @m'(uJ5 
p , m = l  

where 

:= Iun I - '  11 Z hP($ (a)) h, (sq (Qi))- Ehp ( & ( Q j ) ) k  (%(Qj))IIll. 

W n  

For b E Zd, n EN, let us introduce 

Zb' = u Qj(Un, b). 
*un 
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Set T, := Gbn1,  EN, with bn satisfying (1.17). Then we have 

To obtain this bound we considered separately the summands with 
j~ U,\T, (then lQjl = IKo (b,)l and there are no more than IU,I such terms) and 
j E T,. For the latter we used the property Ih, (x)l 6 1x1 for all x E R, p = 1, 2, and 
applied (2.4). Namely, 

E lhp (rr(Qj)) h m  (sq(Qj))l E lsr (Qj) 34 (QjIl (cr,r ~ q , q ) " ~ *  

To estimate the first, second and third terms on the right-hand side of (2.9) 
we use the Cauchy-Schwarz inequality and the property h2 (x) < 1x1 for 1x1 3 c, 
h,(x) = 0 for 1x1 c c. For example, the first term is bounded in the following 
way: 

E lh, (& (KO (u)) h 2  (Sq (KO (bn)))I c (apr E (Sf (KO (bn))~ {IS, ( ~ 0  (bnI)I 3 c}))"~ 

Thus we establish that IL'?~' (Un) + I ( ~ ~ ~ ~ )  (u,,) + 1 1 ~ ~ ~ '  (u,) is bounded by 

+ 2 (a , ,  E (S: (KO (bn)) 1 {ISr (KO (bn))l 2 c}))li2 + 6 I z I  I UnI - (cr,r aq,q)'"* 

Now we use the following elementary result. 

LEMMA 1 (see, e.g., [3], [6]). Let X = (Xj; j E Z ~ )  be a wide-sense station- 
ary raadom $eld with values in Rk such that (1.10) holds. Then for any sequence 
of regularly growing sets Un c zd, P I E  N, 

(2.11). - - ,  IU,I-l VarS(Un) -+ C as n + a, . ,- 

where Var S(U,) is the covariance matrix of S(Un) and the matrix C was de$ned 
in (1.12). The relation (2.11) means the elementwise convergence of matrices. 

In view of (2.1 1) we have var S: (KO (b,,)) -+ cr,, as n 4 co, for each 
r = 1, ..., k. 

Furthermore, by Theorem 1, 

where Zr - N ( 0 ,  c,,), so we may infer from Theorem 5.4 of [2] the uniform 
integrability of a family (Sf (KO (b,))'~~", for each r = 1, . . . , k. Using the 
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inequality 

and the condition (2.4) we see that, for any E > 0, there exists c = c(&) (whence 
the functions h1 and h2) such that, for all n large enough, 

i;1'21 (u") + l(2Z.I) (u*) + i(22*2) (u~)  < E. 

Following [6] we can use the representation 
- 

U.2 U,, = {G, t) : j ,  t E U,) 

= {Ci, t ) :  t~K~(3b,,))u(Cj, t): t#Kj(3bn)) =.: M 1 u M 2 .  

Due to the Lyapunov inequality we see that 

where 

Now note that if a random variable [ is such that 151 < c2, then Jcov(5, q)] 4 
2c2 E 1 ~ 1 .  Obviously, Ih, (x)  h,  (y)l < c2 for all x, YEW. Thus, according to (2.4), 

(2.121 El. ,  6 2c2 C E ]hi ( g r  (Q j)) hl (gq (Qj))l 
t i . 4 a 1  

< 2c2 C (cr,r ~ q , ~ ) " ~  G 2 ' 3d c2 (ar,r ~ q , q ) ~ ' ~  IKo (bn)l IUnI 
ti,t)EMl 

because for a fixed j (there are 1U.I positions for J) there exist no more than 
3d lKo(bn)l variants to choose t. 

By the definition of (BL, 8)-dependence we have 

(2.13) 2 ,  C Lip ( - f i ~ ~ ~ )  Lip (Ji~,l)(lQjl A IQtI) 8 d i s t ( ~ j . ~ t ) ~  

tj,t)~Mz - - 
where - , I -  - 

fmfxl, . . ., x2,J = hl (m-'t2 (xi + . . . +x,)) hl (m-112(xm+ + . . . +x2,,J),  EN 

It is easy to verify that Lip(JQll) = c / m  (this is an immediate corollary to 
the Lemma in [4]). A sequence is nonincreasing and 6, -, 0 as r -, co. 
Moreover, b, < dist(Qj, Qt) for (j, t)€M2, which implies the inequality 
edist(Pj.Pc) < ebn-  Therefore, 

The last inequality is tme as (a A b ) / ( & . f i )  G 1 for any positive a and b. 
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In view of (2.12H2.14) and the condition (1.17), we have 

Thus, we come to the relation I, (U,) + 0 as n + co. 

111. To estimate 13(U,.,) let us note that 

By h m m a  1 we obtain 

(2.16) IKo (bJ - E S, (KO (h)) Sq (KO (bn)) + C F , ~  as n + 03. 

According to (1.17) we have IU,,I-lIT,I + O  and IU,I-lIU,,\T,I + 1 as n+ a. 
The inequality IQjl E lS,(Qj) S, (Qj)l 4 (gr,r CT~,~)'~'  (which is analogous to 

(2.4)) implies that I 3  (U,) + O  as n + co. The proof is complete. s 

Proof of Theorem 3. For i = 1, . . ., d and some a E (0, I), introduce the 
sequences (bn,i)wN of positive integers b,,i : = [I:- n E N. Thus, for b, = 
(b,,,, . . ., b,,,), we have !KO (bn)l = O(l,d(a-l)IUnI) as n -r GO. Moreover, laUnl = 
O(l;lI U,I) and ]T,l = 0 (I:-' IU,\). We shall estimate I,(U,), r = 1 ,  2, 3, defined 
in (2.2). 

I. The inequality (2.5) yields 

TI. To estimate 12(U,) we use (2.10) and (2.15). For any random variable 
r and positive numbers A, 6 we have 

,w . 
~herefoie, taking into account (1.20) we obtain 

Choosing c = c(E,J = 0 (1:) for some /3 > 0, we derive the bound 

The last summand in (2.10) can be estimated in the following way: 
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Applying (2.15) we conclude that 
1 ( 1 , 1 )  p + d ( a -  1 ) / 2  

2 (Un) = 0 (1, ) + 0 (E:-""iZ). 

Consequently, 

I2 (U,) = Q ( F P a l Z  + la- 1 + i !+d(a- 1112 + jB- naiz) 

Ill. Now consider I, (U,). Waving fixed some y ~(0, I), we can represent the 
set Zd\K,(b,) as the union of the following disjoint sets: 

- .  V1 = { j ~  Zd\lC0 (b,J : dist (j, KO (A,)) < b:), - 

V2 = { j ~  z~\K~ (83 : dist 0, KO (b,)) > b;) . 

Thus one can write 

= : J l . n +  J2 ,ny  

where 

(2.20) Jr,n = IKo (bn)l C C E ~ i , r  xj,q[, = 1, 2 .  
i~Ko(b , )  jeV, 

For any jo a V', Ixi x ~ ~ , ~ I  < a r,q. Hence we have 

(2.2 1)  J1,, = O((VII [K0(bn)l-') = Q(b;-') = O(Ii(Y-l) 1. 

By the definition of (EL, 0)-dependence there exists a constant cl > 0 such 
that, for any R > 0, the following inequality is valid: 

and therefore 

Clearly, the optimally chosen y satisfies the equation x(./-lj_=- -ayA, i.e. 
y = 1/(A + 1). Due to (2.20H2.22) we obtain the bound 

(2.23) I I K ,  (b,)l f Sr (K, (b,)) Sq (KO (b,)) - cr,,l = 0 (CavNA+ll) as n -P oo . 

Taking into account (2.19) we conclude that 

Combining all bounds for I ,  (U,), r = 1, 2, 3, n E N ,  we see that (1.22) holds 
when 

max h (a, p) ' = ae(0.1),8 > 0 
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with 

Obviously, IItr,q(Un)-~,,qllLI + 0 as n 4 co, if p > 0. So we need a and 
fi  satisfying the conditions 

Thus a and 8-should belong to the triangle in R2 cut by the lines 

Consequently, p = max {pl, p2} ,  where 

Then elementary but tedious calculations lead to the final statement (1.23). 

Proof of Theorem 4. We begin with an algebraic lemma for nonrandom 
matrices being of independent interest. For any (k x k)-matrix W and vector 
X E W ~  we use the operator norm 

k 

corresponding to the norm 

and also the so-called spectral norm 

1 1  Wl12 = max {fi : I is an eigenvalue of W* W) 

corresponding to the norm llrl12 = Jn'. .. - 

.w . 

LEMMA 2. Let T = (tigj)tVj= be a symmetric matrix and C = (civj)Zj= be 
a symmetric positive-definite matrix. Set 

Let A satisfy 0 < A < min (1, t ,  kin), where Ami, is the minim1 eigenvalue of 
the matrix C .  Then T is non-singular and the inequality IIT-CII < A implies 
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Proof. We divide the proof into several steps. 
1) By the definition of A, we have, for any i = 1, . . ., k, 

Therefore, for each i we get 0 $ l Zj,, lcirjl < 1 - l lciPil. All the diagonal ele- 
ments of symmetric positive-definite matrix C are positive, so for any i we 
obtain xj,i IAcirjl i 1 - Ligi. It means that I -  LC is the matrix with diagonal 
domination, and due to the theorem by Gershgorin (see, e,g, [24], p. 192) 
I-AC>O. As C>O, we have I - ( I - A C ) > O ,  i.e. I > I - K C .  Thus 
0 < I-AC < 1. Consequently, all the eigenvalues of I - I C  belong to the inter- 
val (0, 1). Therefore, III-.3.Cllz < 1 and t > 0 (see (2.25)). - 

2) By assumptions, for any i = 1, .. ., k we get 

Iti.j-ci,jl < max tti,j-ci,jl = IIT-CII < A .  
j=l i =  l , . . . ,k  j= 1 

Hence, for any i and j we have Iti ,jJ- JeijJ < Itij-%J < A,  and so 

As A < I we conclude that, for every i = I, . .., k, 

1 = A max { (I~i,~l+ I)] > R (Ic,,~~ + A ) .  
i =  1, ..., k j= 1 j= 1 

Thus, we get 

In view of (2.27) and (2.28) we obtain the following inequalities: 

Therefore I-AT is a matrix with diagonal domination, and consequently 
I-AT > 0. 

3) A matrix (T- C) is symmetric, so Gershgorin's theorem implies (see, 
e.g., [24], p. 192) that 

4) Let us show that T > 0. It suflices to verify that, for any vector x such 
that l[xllz = 1, the inequality (Tx, x) > 0 holds. Let el, . . ., ek be an orthonor- 
ma1 system of eigenvectors for the matrix C, and Al, . . ., dk be the correspon- 
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ding eigenvalues, Then one can write r = el + . . . + uk ek and 

By the Cauchy-Schwarz inequality and (2.29) we see that 

Thus ((T -C) x, x) > - A .  Taking into account the last inequality, (2.30) and 
the condition A_< Li, we have - 

(Tx, X) = (IT-C)+, x)+(Cx, x)  > &,,,-A > 0 .  

Then T > 0 and I-(I-AT) > 0, i.e. I > I-AT. We obtain 

(2.3 1 )  O < I - A T < I .  

5) We have (see, e.g., [I?], v. 2, p. 5231, for 1x1 < I, 

Now the inequality 0 < I-IC < I and (2.31) yield 

Note that, for any (k x k)-matrices Wl and W2, 

where a v  b = max { a ,  b),   EN. Using this inequality we have 

since 
Il1-ATll2 = IlI-Ac+4C- T)llz d II1-ACIl2+AIIC- TI12 

G I ~ I - A C ~ ~ ~ + A I I C -  T I I  < I I I - A C I I ~  + I A .  

Now A < t implies that 

5 - PAMS 26.2 
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Setting y := 111-LCl12+t, we obtain 

because, by (2.25), 1 - y = 1 - [II-RCI12 - At = Z1Et -At = At. Hence, we get 

IIT-112-Cp1izl12 < IIT-CIIZ. - 

It is easily seen that, for any (k x k)-matrix k-lJ2 1 1  Wll < 1 1  Wlla. So, 
using (2.29) we conclude that the desired statement is established. 

Now we shall apply Lemma 2 to a matrix T = (ti,j)tj=l with random 
elements ti,]. 

COROLLARY 2. IJ; for almost mery o E 62, T satisfies the assumptions of 
Lemma 2, then an event (IIT-CII < A )  entails an event 

Thus, 

Returning to the proof of Theorem 4, we shall employ the following ele- 
mentary proposition (using the same notation as in Theorem 4). 

LEMMA 3 (Bulinski and Shashkin Kg]). Let ( and q be random vectors with 
vahes in Rk. Then, for any E > 0, 

- - 
where - A  (k) is a posititre factor depending on k only. 

,At- - 
Applying Lemma 3 for 

we obtain 

(2.32) sup I P ((en I S (U,) E B) - P (2 E 3)I 
BE%', 

$ sup IP((cIu,I)-~/~S(U,)EB)-P(ZEB)~ 
B E Q ~  
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The second summand in (2.32) can be estimated in the following manner: 

Since 6, + 0 as n -, GO, we deduce that, for all n large enough, 
. - -  . 

where t and Amin were defined in (2.25). 
Thus Corollary 3, the Chebyshev inequality and Theorem 3 imply that 

The second summand on the right-hand side of (2.33) has the following 
upper bound: 

k k 

C P (IU,J - Si (Un) > E; l I 2 )  G E, C var (I U,J - Si (U,)) = 0 (cn) = 0 ((1; 2p i5 ) ,  
i =  1 i=  1 

where we used (2.3) and the choice of E,. Therefore, 

To estimate supke, 1 P ((C 1 Unl)-1/2 S (U,) E B) - P (Z E B)I we apply the 
result of [9]. To this end consider a standard partition of Un (see, e.g., [7] and 
[9]) into "rooms" and "corridors". Set pn : = [E3 and qn : = [if], 0 -< P < a < 1. 
Each edge (a,,i, an,i+ln,i] can be represented as a union of "large" and 
"small" intervals having the length p,, q,, p,, ..., q,, pn, respectively, where 
p, < @, < 3p,. We draw the hyperplanes, orthogonal to the corresponding i-th 
edge, through the end points of these intervals. 

Let us enumerate the "big" blocks (with edges having the length p, or pn): 
d w 

U(') i = 1, ... , N, N = Hi,, [l,,i/(pn+q,)] = O(l;adIU,I) = O(lF-ad). Set U, = 

u Uo, UC0) = u.\ 0,. Introduce & = jEu(i) X j  (i = 0, . . . , N), V: = 
N 
= Va r q, V: = Var Yo, and recall 

THEOREM 5 (Bulinski and Shashkin 191). Let the assumptions of Theo- 
rem 3 be sati@ed for s E (2, 31. Then, for a nonrandom (k x k)-matrix A and any 
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where b is a constant, 4gk a class of bounded convex subsets of Wk, and Z a stan- 
dard Gaussian vector with values in Rk. 

Let us take A = IUnI-1/2 C-'/'. Set Sn = CJEDnXI. NOW we shall examine 
separately the summands on the right-hand side of (2.35). - . 

1) The bound for IIAVl-Ill. Note that 

AnaIogously to (2.23) one can show that 

Introduce the matrices cov (I;, 5) : = (cov (Y;,r, YI,~)):,~= i, j = 1 ,  . . . , N.  
We have 

Ilcov (X, Yj))/ G k max )cov (Y,,,, $,,)) = 0 ( I u ( ~ ) I  Bgn) as n a. 
r,i 

Hence the second summand in (2.36) can be estimated as follows: 

For the third summand in (2.36) we have 

Var Y, q 

llmll iG 
as IlVar Y,II /~  U(l)1 < oo. 

Thus, IIC- IUnl Vf11 < 0 ( l~x~B-a*M-bd-'n 1- 
In view of Lemma 2 we conclude that 
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Consequently, 

2) The bound for llAl12 llV~11. We have 

llAl12 IlVo211 = IllUnl- 112 c- 112 2 1 1  Ilvo"ll = 

3) The bound for IU{ll]" N IIVclll". Observe that lonl = N IU(l)l, and so 

IU[')lsNIIV~lIIS = 1110,,1112V-1 1 1  I Ofi:,l -"Iz 1 V")ls N 

< const N1-"iZ [U'l)IflZ 

= 0 (l:M-ud)(l -s/2) fads12 M(1- s/2) + ud{s - 1) 1 = 0 IZ. 1. 
4) Gathering the bounds obtained at steps 11, 2) and 3) we see that the 

i coeficient of in (2.35) has the form 
i 

(2.37) 0 (2;") + + (1f(l -s12) +ad(- 1) ) + 0 (1;maxV - a,M - ad - A81 )+Oil!-") 
= 0 (l~ma~{-A#,M/l -s/2)+ad(s- l),Z(M-ad-A@)$- "1). 

I '. , 
i It is not Wcult  to see that for 

due to the conditions concerning A and M in Theorem 4 it follows that 

0 < M(s/2-1)-~d(s-l) = 2(ad+d#l-M) = U - P =  v < A#?. 
I .  

Taking y = 1; v13y in view of (2.35) and (2.37) we obtain 

Thus (2.34) and (2.38) imply (1.24). The proof is complete. 

REFERENCES 

[I] Y. Y. Ba k h tin and A. V. Bulins ki, Moment ineqwrlities for the sums of dependent multiin- 
dexed random variables (in Russian), Fundam. Prikl. Mat. 3 (1997), pp. 1101-1108. 

[2] P. Billingsle y, Convergence of Probability Measures, Wiley, New York 1968. 
[3] E. Bolthausen, On the central limit theorem for mixing random fields, Ann. Probab. 10 

(1982), pp. 1047-1050. 



280 A. Bulinski and N. Kryzhanovskaya  

[4] A. V. Bulinski, On the conuergence rates in the CLT for positively or negatively dependent 
randomfields, in: Probability Theory and Mathematical Statistics, I.  A. Ibragimov and A. Yu. 
Zaitsev (Eds.), Gordon and Breach, 1996, pp. 3-14. 

[5] A. V. Bulinski, Asymptotic Gaussian behavior of quasi-associated nector-valued random 
fields (in Russian), Obozr. Prikl. and Prom. Mat. 7 (2000), pp. 482483. 

[6] A, V. Bulins ki, Statistical version of the central limit theorem for vector-oaIued random 
fields, Math. Notes 76 (2004), pp. 45-64. 

[7] A. Bulin ski and A. Khrennikov,  Generalization of the critical volume NTCP model in the 
radiobiology, Universitk P. et M. Curie Paris-6, CNRS U.M.R. 7599, Probabilitks et ModBles 
Alkatoires, Pnipublication, PMA-977 (20051, Preprint, Paris-6, pp. 1-13. 

[XI A. V. Bujinski  and E. S ha  banovic  h, Asymptotic behavior for some finctionals of posi- 
tively and negatively dependent random fields (in Russian), Fundam. Prinkl. Mat. 4 (1998), 
pp. 47-92. 

[9] A. V. Bulinski  and A. P. Shashkin, Rates in the central limit theorem for dependent 
multiindexed random vectors, J. Math. Sci. 122 (2004), pp. 3343-3358. 

[lo] A. Bulins k i  and A. Shas hkin, Limit Theorems for Associated Random Fields and Related 
Systems, 2006, 400 pp. (to appear). 

[ll] A. V. Bulinski  and A. P. S hashkin,  Strong invariance principle for dependent randomfields, 
IMS  Lecture Notes Monogr, Ser. Dynamics and Stochastim 48 (20061, pp. 128-143. 

[12] A. B ul in s ki and C. S u q  uet, Normal approximation for quasi-associated random jields, 
Statist. Probab. Lett. 54 (2001), pp. 215226. 

[13] A. V. Bulinski  and M. A. Vronski, Statistical variant of the central limit theorem for 
associated random fields (in Russian), Fundam. Prikl. Mat. 2 (19963, pp. 99%1018. 

1141 P. D oukhan  and G. Lang Rates in the empirical central limit theorem for stationary weakly 
dependent random fields, Stat, Inference Stoch. Process. 5 (2002X pp. 199-228. 

[I51 P. D o  u khan  and S. Lou hichi, A new weak dependence condition and application to moment 
inequalities, Stochastic Process. Appl. 84 (1999), pp. 313-342. 

[16] J. Esar  y, F. Proschan and D. Walkup, Association of random variables with applications, 
Ann. Math. Statist. 38 (1967), pp. 14661474. 

[ I f l  G. M. Fihtengolts ,  Calculus (in Russian), Firmatlit, Moscow 2003. 
[I 81 E. Gin  6 and F. Go t z e, On standard normal convergence of the multivariate Student t-statistic 

for symmetric random vectors, Electron. Comm. Probab. 9 (2004), pp. 162-171. 
[19] E. G i n 6  F. Gotze  and D. Mason, When is the Student t-statistic asymptotically standard 

normal?, Ann. Probab. 25 (1997), pp. 15141531. 
[20] M. G. H a  h n and M. J. K l  a s s, Matrix normalization of sums of random uectors in the domain 

of attraction of the multivariate normal law, Ann. Probab. 8 (1980), pp. 262-280. 
[21] K. Joag-Dev and F. Proschan,  Negatiue association of random var!gbles, with applica- 

tion$ Ann. Statist. 11 (1983), pp. 286295. 
1221 R. A. Maller, Quadratic negligibility and the asymptotic normality ofoper~or~normed sums, 

J. Multivariate Anal. 44 (1993), pp. 191-219. 
1231 R. A. Maller, M. J. Klass  and H. T. V. Vy On the Studentization of random uectors, 

J. Multivariate Anal. 57 (1996), pp. 142-155. 
[24] M. M a r  kus  and Kh. Mink, Review of Matrix Theory and Matrix Inequalities (in Russian), 

Nauka, Moscow 1972. 
[25] C. M. Newman, Asymptotic independence and limit theorems for positively and negatively 

dependent random variables, in: Inequalities in Statistics and Probability, Y .  L. Tong (Ed.), 
Hayward, 1984, pp. 127-140. 

[26] M. Pel igrad  and Q.-M. Shao, SeIf-nomlized central limit theorem for sums of weakly 
dependent random variables, J. Theoret. Probab. 7 (2) (1994), pp. 309-338. 



[Zq S. J. Sepahski, ~robabilistic characterizations of the generalized domain of attraction of the 
multivariate normal law, J .  Theoret. Probab. 7 (19941, pp. 857-866. 

Department of Mathematics and Mechanics 
Moscow State University 
Moscow 119992, Russia 
Email: bulinski@mech.math.msu.su 

natakr@gmail.com 

- .  Received on 7.7.2006 

Convmaence rate in CLT 28 1 




