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1. INTRODUCTION 

Throughout this paper, let T denote a fixed non-empty set and if M is 
a given set, let 2M and 2(M) denote the set of all subsets of M and the set of 
all non-empty finite subsets of M, respectively, and let MT denote the set of all 
functions from T into M. Moreover, let N := (1,2, . . .) denote the set of all 
positive integers, R := ( -a ,  co) and R+ : = [0, m) denote the real line and 
the non-negative real line, and R : = [- oo , m] and I?, : = 10, m] denote the 
extended real line and the extended non-negative real line, respec$ively. 

The objective of this paper is to construct contents or measures on 
T satisfag a prescribed set of inequalities. More precisely, let @ c RT be 
a non-empty set and let P: @ + R be a given functional on @. If Y s QI is 
a given set and p is a content on some algebra on we say that p is a lower 
!P-representation of /I if 

d )  for  all'$^^, 
where i*fdp and I* fdp denote the upper and lower p-integrals off whenever 
f EF (see [6] ,  Definition 2.4.2, pp. 329-330). The objective of this paper is to 
construct lower 'P-representations p of a given functional #?: Q + R, where 



Y G @ is as large as possible and the content p has good smoothness and/or 
regularity properties (for instance, a measure or a Radon measure). Lower 
representations of functionals have many applications to Riesz representations 
of linear functionals (see [I] and [2]), the moment problem, integral represen- 
tations of kernels, construction of probability measures with given rnarginals 
satisfying a described set of integral inequalities (see [4]), and stochastic or- 
dering. 

In Theorem 3.4, we shall see that the existence of a lower Y-representation 
of fl  implies that fl  is non-negative Y-definite (see Section 3) and that the 
general lower representation problem reduces to the problem of finding lower 
representations of a certain increasing sublinear functional (the positive Daniel 
functional associated with 8). In Theorems 4.2 and 4.3, we shall see that 
non-negative 'P-definiteness implies the existence of contents or measures or 
Radon measures representing /l on a reasonably large subset of @. In this 
section, we shall introduce some preliminary notions and results concerning 
sets of subsets and function spaces. In Section 2, we shall introduce some 
preliminary notions and resuIts concerning set functions, and in Section 3 some 
preliminary notions and results concerning functionals are presented. 

We extend the multiplication on R to R as follows: 

O.(+m):= 0, ax(+m):= f CQ if 0 < a  < OZI 

and 
a . ( fco) :=  Tco if -co < a < 0 ,  

and we define 
X - 1 := X ' -  

1 1 
where -:= ao and -:=0. 

Y Y 0 ice 
Let / and +denote the following upper and lower extensions of the addition 
on R: 

a i - c o = a + c o = ( - m ) / m = c o  f o r a l l - c o < a < c o ,  

and we define -- 
a-b:= a/(-b) and aT b := a+(-b). ,, 

Note that a / b = a + b if and only if (a, b) # f (co , - a ) ,  and if so, we write 
a+b :=  a / b  = a+b. Note that a l b  = aTb  if and only if (a, b) # +(my a), 
and if so, we write'a- b : = a z b  = ayb .  If (ai)iEI G R+ is a family of extended 
non-negative numbers, we define 

C a i : = O i f I = O  and ~ a i : = s u p ~ a i i f I # O .  
i d  id n ~ 2 ( I )  i ~ +  

If (bi),I G R, we define the upper and lower sums as follows: 
* 0 
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We say that (bi), is sumable if x:, bi = xk bi, and if so, we define 

Note that (bi),, is supnnurble if and only if either zi, bi+ < oo or zi, b; < m 
and observe that 

C b i = b l i  ... / b ,  and bi=bl  f - . . . f  b,. 
1 < i < n  1 S i 6 n  

Let 2' s 2T .be a given set. Then we say that A? is hereditary i f a  E &' and 
2= G $? for all H E X ' ,  we say that &' is upwards directed if a?' # O and for all 
HI, H ,  E A? there exists HE 3' satisfying H 2 HI uH,, and we define 

and 

Xo = (A G TI ~ H E A ? u ( @ )  so that H 2 A ) ,  SC = {T\H I HE&'), 

Note that &'O is the smallest hereditary set containing 3' and that G E g(X)  if 
and only if H\GE# for all HE#. 

For a non-empty set I, we say that A? is (UI)-stable if U,Hi€2 for 
every family G A?, and we denote by the smallest (U I)-stable set 
containing S. We define (0 I)-stability and &'(,,, similarly, and if I and J are 
non-empty sets, we denote by 2(,1,,,1 the smallest (UI ,  n J)-stable set con- 
taining &? We write 

I U ~ ) : = ( U I ~ , ~ ) )  and (n f ) :=(nw))  
and 

( U C ) : = ( ~ N )  and (nc ) :=(n iv ) .  

We say that S is (U z)-stable or (n z)-stable if $? is (u I)-stable or (n I)-stable 
for every non-empty set I and we denote by S(,,, and q,,, the smallest 
(Uz)-stable and (0~)-stable set containing respectively. We say that X' is 
a set lattice .if 2 is a (u f, n f)-stable set containing 0. A" 

If @ c RT, we say that 8 is: 
(i) hereditary if (f €RT I If 1 < 4) E 9 for all # E @; 
(ii) upper hereditary if (f E RT I f 2 4) G @ for all 4 E 9; 
(iii) a positive cone if 0 E @ and a# E @ for all 0 < a < oo and all 4 E @; 
(iv) a cone if @ is a positive cone containing 0; 
(v) a convex cone if 9 is a cone satisfying # 4 $i E @; 
(vi) a function algebra if dr is a linear subspace of RT satisfying 4. $ E dr 

for all 4, $E@; 

(vii) rectilinear if there exists a linear preordering < on T such that # is 
increasing on (T, 4) for all #I€@. 



We denote by B (T)  the set of all bounded real-valued functions on T and 
we define 

@ + = { ~ € @ I $ > O ) ,  @ - = { $ € @ l ( b < o ) ,  - @ = { - $ I $ € @ ] ,  

If X G is a non-empty set, we defme 

o ( T ,  3EP) = (f eRT I (1 f I > S)E&'O V8 > 0)- 

Let T be a topological space.'Then we denote by 59 (T), b (T) and X (T) 
the set of all open, all closed and all closed compact subsets of T respectively, 
and by B(T) we denote the Bore1 n-algebra on T ;  that is, the u-dgebra 
generated by 9 (T). Note that Lsc (T)  : = w(T,  Q(T))  and Usc (T)  : = 
w(T,  9 (7')) are the set of all lower and upper semicontinuous real-valued 
functions on and that C (T) : = Lsc (T) n Usc(T) is the set of all continuous 
real-valued functions on T 

1.1. LEMMA. Let 8 3 G 2T be non-empty sets and let us define X : = 
2 n 9 0 .  Then 9 (H) is a (0 f)-stable set containing T,  and 9 (3) is 
a (U f)-stable set containing 0 and we have: 

(1) If A c_ T is a giuen set satigying A 2 U 2, then AEF(&') and we 
have A E 59 (X )  i f  and only i f  0 E 2. 

(2) 2 G 9(2) if and only if X is (n f)-stable, and f I and J are 
non-empty sets, then we have: 

(a) If L@ is (U I)-stable or (0 1)-stable, then so is LF(2). 

(b) 9 ( X )  s 9 (X,,,,,,,) = { F  c T I F  HE for all H E  X}.  
(3) 9 (YO) = 2T and 9 (X) c 9 ( X )  and we have c# = f n 2 0  for 

every set f c 2T satisfying sEa c f s 9 (X).  

(4) U X G U Y = U ~ O = U Y ( ~ ~ ~ = { ~ E T I { ~ } E Y ~ ) .  

(5)  Suppose that &? is a set lattice. Then 9 (2) and B(%) are set lattices 
containing (0, T )  and if 9 is upwards directed, then Yo and s-are set lattices 
satisfying X E 2 E F ( 2 )  G 9 (X). 

(6) o (T, 2 )  is a 1.11 T-closed hereditary cone and o (T, X) is a linear space if 
and only i j  2 is upwards directed. 

(7) o ( T , ~ ) = { f ~ R ~ ~ l i m , ~ ~ ~ f ( t ) ~ = O ) ,  2 ° = ( A ~ T I I , ~ o ( T , X ) ) .  
Proof. (1) and (2). By the definition of 9 ( X ) ,  we infer that 9 ( X )  is 

a ( r )  f)-stable set containing and since 3 (X)  = F (Z),, we see that B (2) is 
a (U f)-stable set containing 0. Let A 2 0 2 be given. Since H n A = H for all 
H E 8, we have A E 9 (X), and since 2 # 0 and H\A = 0 for all H E  X ,  we 
obtain AE B (X)  if and only if fd E %, which proves (I), and (2) is evident. 
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(3) Since LFO is hereditary, we have F (.Yo) = 2* and 6 (#) c 9 (X). 
So let $ G 2T be a given set satisfying S? c 3 c B (2) and let A E $ n 2 0  be 
given. Since X # 0, there exists H E  &' such that A z H, and since A E $ G 
S (21, we have A = A n H  E X. Hence 3 n So E 2, and since X G f ,  the 
converse inclusion holds. 

(5) follows from (1)-(3), and (4), (6) and (7) are evident. 

1.2. LEMMA. Let X r 2T be a given set, let us deJine A?* : = &'u f0, T } ,  
and let E (T, %) denote the set of all functions f E RT of the form 

n 

f =al,+b C l w l  
i =  1 

for some ~ E R ,  some ~ E R +  andsome HI, ..., H , E #  satisfying H I  E ... EH,. 
Then we have: 

(1) W (T, X) is a 11-llT-closed set and W (T, SC) = - W (T, X).  

(2) B (T)n W (T, 2) = cl, .Z (T, riP) and l A  E WIT ,  &') ij and only if 
AE&". 

(3)  If q~ : R + R is an increasing, continuous function, then rp (f) E W (T, X )  
for all f E W(T,  H). i n  particular, W(T ,  Sea) is a cone containing a l T ,  
al,+f, f ~ a  and f va for all ~ E R  and all f~ W(T, S). 

(4) { f  > a} E a d  ( f  2 a )  E for all f E W(T,  X )  and for all 
~ E R .  

(5) If S is (U I)-stable, then supkI fi E W (T, 2) for every family 
C W (T, X )  satisfying supiE1 ( t )  < CQ for all t E T.  

(6) I f  X is (n I)-stable, then idier A E W (T, H )  for every family 
G W (T, 2') satisfying infieI J;: ( t )  > - cx, for all t E T .  

(7) I f  (jJiEI G W ( T ,  X )  is a rectilinear family satisfying zi,tfi(t)l < oo 
for all t E T, then CiE, f, E W(T,  X). 

(8) I f  tP G RT is a hereditary linear space, then 8- is an upper .. - hereditary 
convex .cone containing R$ and 8 ,  is a convex cone satisfying @ + = @ - and 
we have 

{f€B(T)j  l u + O ) ~ @ }  E @ =  @+n@-. 

Proof. (lH7) follow from [6], Section 1.2, pp. 247-255, and (8) is an easy 
consequence of the definition of hereditariness. rn 

13. LEMMA. Let X c 2T be a set lattice and let S(T,  S?) and So(T, 2) 
denote the linear space and the conuex cone, respectively, generated by ( I H  I 
HE&' u (T}) .  Then W (T, 2') is a cone containing f A h and f v h for all 
f, h e  W(T,  S)  and we have 

clTSO(T, 2) = B(T)n  W ( T ,  X) .  



Let t$ : Rz 4 R be uniformly continuous and increasing in each variable separate- 
ly, let k 2 1 be an integer and let $ : P -+ R be continuous and increasing in each 
variable separately. Then we have: 

( 1 )  q5 (f, h) E W (T, 2) for all f ,  h E WIT, 3) satisfying id,,, f ( t )  > - co 
and inf,,, h(t)  > - m. In particular, W +  (T, xP) is a convex cone, 

(2) If % is either ((J c)-stable or (0 c)-stable, then WIT, A") is a convex 
cone and we have $I (fi, . . ., fk) E W (T, X) for all f,, . . . , E W (T, 2). 

(3 )  If X is an algebra, then W (T, sf) = - W (T, X) and 3 (T)  n W (T, A?) 
is a Il.llr~losed fifisnction aigebra satisfying 3 ( T ) n  W (T, &')= clT S (T, %), 

(4) If A! is a g-algebra, then W(T, 2) is the set of all real-vaIwd A?-mea- 
surable functions. 

P r o  of. Let f, h E W (T, &') be given functions satisfying 

a : =  inf f (t) > -m and b := in fh( t )  > -a 
te T ~ E T  

and let us define 

R *  := H u  { T )  and G(t) := 4 (f (t), h(t) )  

for all t~ T By Lemma 1.2 (31, we infer that f - a l ,  and h-b lT  belong 
to W +  (T, H), and since G (t) = #* (f ( t )  - a,  h (t)  - b), where #0 (x ,  y) = 
4 ( x  + a, y + b), we may without loss of generality assume that f, h E W' (T,  S). 
Let E > 0 be given. Since 4 is uniformly continuous, there exists 6 > 0 such 
that I #  (x, y)- #J (u, v)l < E for all ( x ,  y), (u, v )  E R2 satisfying Ix -ul < 26 and 
ly - vl < 26. Since f E W (T, s), there exist Fo, F1, . . . E X *  satisfying 

{ f 2 6 ( n + 1 ) ) ~ F ~ ~ { f 2 6 n ) f o r a U n > O  and F , = T  

Then (F,) is decreasing and Fn J. 0, and if we define D, : = F,,\Fn+ for all n 2 0 
and f, := Cnm=, 6nln,, we see that (Dm) is a partition of T satisfying 

F,= u D,EH* for a11 n a O  -- 
k 2 n  - 

and , 

m 

O < f a = 6 C  I F , <  f < f+26. 
n=O 

So by Lemma 1.2 (2) and (3 )  we have 6 lpn€. W (T, R) ,  and since (F,) is de- 
creasing, it follows that ( d l F n  I n 2 0) is rectilinear. Hence, by Lemma 1.2 (7), 
we have f , ~  W (T, X). In the same manner, we see that there exists a disjoint 
partition (En) of T, satisfying 

m 

H , : =  U E,ES* for all n 2 0 and ha:= G n l , ~  W ( T ,  S) 
k>n n=O 
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and we obtain 
m 

Let us define Gg : = # (fd, ha) and let x E R be given. Then we claim that there 
exists a finite set R E Ng satisfying 

Proof  of (i), If {Ga > x) = 0, then (i) holds with n = 0. So suppose that 
(Gg > X) # 121 and let us define 

A,:=  ((n, m ) ~ N g  I #(Sn, dm) > x). 

Since (D,n Em) is a disjoint partition of 7: we have 

and so we see that A, # 43 and 

{Gg>x)  = U D,nE,. 
Q,m)eAx 

Let us define 

a1 := min{n 1 3 m ~ N ~ :  (n, m)€A,), a2 := min{m I (a,, m)€A,), 

Then n 2 al and m 2 b2 for all (n, m) E A,, and since A, # 0, we have 
(a,, az) E A, and (bl , b2) E A,. In particular, al < b1 and bz < a2. Let x denote 
the set of all (n, m ) ~  A, satisfjing (n, m) < ( b l ,  a2). Then R is a finite subset of 
A, containing (al, a2) and (b ,  , b2). Let A denote the set on the right-hand side 
of (i) with this choice of the set K. Let t E A be given. Then there exists (n, m) E x 
such that t E F n n  H,, and since Fn = Ukan  Dk and H, = U k a m  Ek, there exists 
a unique (n', m ' ) ~  N i  satisfying (n', m') 2 (n, m) and t E D,, n Em,. Moreover, 
since #J is increasing, we have x c # (n, m) < # (n', m') = Ga (t). Hence 
A c {Gg > x). Let t E {Gg > X) be given. Then there exists a uniqueln, m ) ~  A, 
satisfying t E D, n Em. If (n, m) E .rc, then t E F ,  n Em G A. So suppose that 
(n, rn)$n. Then either n > bl or m > a,, and we get n 2 al and rn 2 az. If 
n > b,, we see that (n, m) 2 (bl, b,) EK,  and so t  E D, n Em c Fbl n Hb, E A. 
I f  m > a z ,  we have (n, m ) > ( a l , a 2 ) ~ z ,  and so ~ E D , ~ E , ~ J ' ~ ~ ~ H , , G A .  
Consequently, (Ga > x) c A, which completes the proof of (i). 

Since &'* is a (u f, n f)-stable set containing Fn and H ,  for all n, rn 2 0, 
it follows that {Gg > X} E &'* for all x ER. In particular, we have Gg E W (T, if) 
and recall that 0 < fs (t)  < f (t) < fs (t) + 26 and 0 < ha (t) < h (t) < h, (t) + 26 for 
all t E T Since # is an increasing function satisfying # (x + 26, y + 26) < 
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4 ( x ,  y ) + ~  for all (x, ~ ) E R : ,  we have 

0 < G(tj < G6(t) < 4 ( f  ( t )+2S,  h(t)+26) < G ( ~ ) + E .  

Hence IIG - GallT a E and, by Lemma 1.2 ( I ) ,  it follows that W (T, #) is 
Il.IIT-clos~d. Since G, E W (T, 21, we have G = # (f, h) E W (T, z), which proves 
the last part of (3). Applying this to 4 (x, y) : = ax + by, where a, b E R+ , we see 
that W +  (T, &') is a convex cone. The remaining statements in the lemma 
follow easily from ( I )  and [6] ,  Proposition 1.2.7, p. 254. 

1.4. L-. Let T be a topological space and let X E be a non-empty 
set. Then we have: 

- 

(1 )  X G X ( T ) ~ 9 ( X ) ~ a n d o n I y  i fX  = X ( T ) n X o , a n d i f a n d o n l y  
if X = 537 n $Po for some sets 3, V 5 satisfying V E X (7') c F (V), 

If X = %n Po for s o m  sets 9, W E ZT satisfying %' G X (T j  E 9 (@, 
then and X are (0~) - s tab le  sets and we have: 

(2) U X  G UP and O E X G W G S ( T )  E ~ ( X ( T ) ) S F ( % ' )  E F ( X ) .  
(3)  I f  9 is upwards directed and 9 c Q(@, then 

(a) S = { K E Q I K G U X ) = ( K E V I K G U ~ ) .  
Proof. (1) Suppose that cX 5 X (T) s F (X). By Lemma 1.1 (31, we have 

Z = X (T) n Xo. Suppose that X = X (T) n X O .  Since X (T) E 9 (X (T)) ,  
we see that the last statement in (1) holds with 4 : = X (T) and 9 : = XQ. 
Suppose that X = V n 9 O  for some non-empty sets V, 9 G satisfying 
'8 G X ( T )  G 9 (537). By Lemma 1.1 (3), we have 9 (%') c 9 (X), and since 
X E V, we obtain X G X ( T )  G P(X), which completes the proof of (1). 

(2) By (l), we have X = X (T)n X0 and % = X ( T ) n  go. Hence X and 
'8 are (n T)-stable sets containing 0, and since X ( T )  G 9 ( T )  c F (X (T)), we 
see that (2) follows from Lemma 1.1 (3) and (4). 

(3) Let K E W be a given set satisfying K c U 9. Then OLE, (K\L) = 0, 
and since dp c B (%), we have K\L E %? E X (T) for all L E 9. Since dp is 
upwards directed, there exists Lo E 9 such that K\Lo = 0. Hence K s Lo E Y,  
and since K E V, we have K E %'n 9 0  = X for all K E W satisfying K E U 9. 
Since K c U X c U 9 for aII K E X ,  we see that (3) holds.',k 

2. SET FUNCTIONS 

Let 93, 2 G 2T be non-empty sets and let P :  &3 -+ [ O ,  co] be a set func- 
tion. Then we define 

/?* ( A )  = inf fi  (B), fl ,  ( A )  = sup /?(B) for all A c T, 
B E L % , B ~  A BEL%,BG A 

P" (A)  = inf p* (H), fi,(A) = sup fi ,  (H) for all A G T, 
H E S , H  2 A H E S , H G  A 
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and we say that #I is: 
(i) increasing if j (A) G P (B)  for all A, 3 E satisfying A G 3; 
(ii) inner X-regular if p ( 3 )  = Bx(3) for all BEB or, equivalently, if 

&-(A) = f12(A) for all A s T; 
(iii) outer #-regular if P(B) = Ps(B) for a11 3 ~ 9 3  or, equivalently, if 

B*(A) = p"(A) for all A ST. 
' =  If i% is a set lattice, we say that p is supermodular if /?(a) = 0 and 

P(A)+P(B) < / ? ( A u S ) + ~ ( A n B )  for all A, B G T 
If j: 2T + [O ,  w] is a set function satisfying P(D) = 0, we denote by 

AB the set of all P-measurable sets in the sense of Carathkodory (see [ S ] ,  (1.221, 
p. 23); that is, 3 E dlB if and only if /I (A) = j (A n 3) + P (A\@ for all A s 71 
Recall that dB is an algebra such that the restriction of j3 to AB is a content 
(see [5], (1.23), pp. 23-24). 

Let (T, 98, p) be a content space, that is, B G 2T is an algebra and p: W -+ 

[O, oo] is a set function satisfying p(0) = 0 and p ( A u B )  = p (A)+p (B) for all 
A, 3 E& such that A n B  = 0. Then we define 

B 0 : = { B ~ B I p ( B ) < m )  and p,(A)=p,.(A) for all A E T .  

We let : = dp, denote the set of all p-masurable sets and let ,i and J i ,  mean 
the restrictions of p* and p, to the algebra dlp. We say that p is complete if 
B = Afl, and we say that p is finitely founded if p (B)  = p, (B) for all B ~g or, 
equivalently, if p, (A) = p, (A) for all A G T. If a c 2T is an algebra, we denote 
by M(T, B) the set of all contents on (T, B), and by M(T) the set of all 
contents defined on some algebra on T. We denote by M,(T, 2T) the set of all 
finite discrete measures on (T, 2T), that is, the set of a11 p EM(T, 2T) of the 
form p (A) = x;,, ai la (ti) for all A G T for some t ,, . . ., t, E T and some 
al,  .. ., a,€R+. 

Let p E M IT) be a given content. Then we define W (p) : = W (T, A$) to be 
the set of all weakly p-measurable functions and we denote by L1 (p) the set of all 
p-integrable functions f €RT (see [3], Definition 111.2.17, p. 112). We denote by 
L* (p) the set of all f sRT satisfying f* f dp = l* f dp and we define 

f fdp : = 1, f dp = I* f dp for all f E L* (p). - -- 
T ~ t n  

Let LOr) : = W(p)n L* (p) denote the set of a11 p-summable functions. 
Let X E 2T be a set lattice. Then denote by M,(T, X )  the set of all 

complete, inner X-regular content spaces (T, 99, p) satisfying X G g and 
p(K) < aa for all K E X .  

Let T be a topological space. Then we say that p is a Bore1 measure if p is 
a measure on some a-algebra containing 93 (T) and we say that p is a Radon 
measure if p is an inner X (T)-regular Bore1 measure. If UE T we denote by 
MR(TI U) the set of all complete, finitely founded Radon measure spaces 
(T, B, p) satisfying UE and p (T\U) = 0, and by M i  (T I U) we denote the set 
of all p~ MR(T I U) which are IocalZy Jinite at U ;  that is, pY"(T)((t)) < co for all 
t €  U .  
6 - PAMS 262 



2.1. THEOREM. Let (T, 93, p) be a content space. Then (T, Ad,, f i )  is a corn- 
plete content space and (T, Ap, Po) is a complete, finitely founded content space 
satisfying: 

(2) PO (A) = (Po), (A) < p, (A) < p* (A) = F' (A) for all A E T 

(3) Po(@ = po(B) <PIB)=p*(B)  = p , ( B ) = p ( B )  for all B E W .  

(4) f 4 = I, f dli C J, f dlB s j*f d ~ ,  4 j*f dji = I* f dp for all f s P .  
(5 )  I i . fd l r=I* f idp: l* f -dp  a n d I * f d p = J * f + d p ~ - j *  f - d p  for all 

f E RT. 
(6) I* f d p  = lh - .  - , j* ( f  v n) dp and I* f dp = limn-+m j* (f A n) dlr for 

all f ~ p .  

( 9 )  If p is finitely founded, then A!,,, = and we have f E L (p) if and 
only i f  f ~ W ( j t )  and I* f t d p h J *  f - d p i  m. 

Let (diIkI E RT be a family of non-negative functions and let us defzme 
4,(t) := C,n#t(t) for all t~ T and all n: s I. Then we have: 

(10) C,, I* 4, dp i J, $1 dlr and I* #* dp i xiEn I* di dp for all n e 2'). 
(11) Suppose thut (t$Jid is rectilinear. Then 
(a) ziEx j. q5i dp = I,+. dp and I* 4. dp = x,, I* $i dp for all r E 2(? and 

if p* (#, = CQ) = 0, then 

(b) xi, J* #idp = I* 91 d~ and ZiEI I* 4i 4 = J* 41 4- 
Proof. (1H3)  follow from [6], Lemma 2.3.4, p. 316; (4) and (5) follow from 

[6], Lemmas 2.4.3 and 2.4.4, pp. 33&331; (6) and (7)  follow from [6],  Theo- 
rem 2.4.6, p. 334; (8)  and (9) follow from [6], Corollary 2.4.7, pp. 335-336; 
(10) follows from [6], Lemma 2.3.4, p. 316; and (11) follows from 161, The- 
orem 2.4.8, p. 336. -- 

2.2. THEOREM. Let (T, a, p) be a content space. Let X G 2': and 9 G dp 
be given sets. If 

9 3 " : = { B ~ ~ I p ( B ) < m )  and . Y " ' = { L ~ 9 ~ p * ( L ) < c o ) ,  

then we have: 

(1) If p is inner X-regular, then @ E X  and we have: 
(a) { B  c T I Bn K E MI*+ for all K E X )  c Apt with equality if X c A,*. 
(b) If X G 59 (Y), then p* (A) = pT(A) for all A G T satisfying p p ( ~ )  < oo. 
(c) p€M,(T,  X )  if and only if X G W = and p ( K ) <  oc for all 

K E X .  
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(2) If y9(B) < cc for all BE go and f E RT is a given function, then the 
following three statements are equiualent: 

(a) f E Wb). 
(b) For every E > 0 there exists h E W (p) SO that p* (1 f-hl > 8) c E. 

(c) For every set L E P  there exists a countable set Q E R satisfying 
L n (f > x) E A?, for all x E R\Q, and for every s > 0 there exists a function 
h E W (p) satisfying p* (1 f - hl > E) < m. 

(3) Suppose p(T)  < a. Iff cRT and B is a (0 f)-stable set such that ,u is 
outer 9-regular and f < t$ for some 4 E W (T, g), then 

(a) jCfdp = inf{Jehdp I h~ W ( T ,  g),  h 2 f]. 
Proof.  (1) Since px (121) = p (0) = 0, we see that 0 E X and (l)(a) follows 

from [6], Lemma 2.3.3, p. 315. Suppose that X E $(Sf) .  Let A G T be a given 
set satisfying p"(A) < co and let 6 > 0 be a given number. Since p* is in- 
creasing, we have p* (A) < pB(A) < co and there exists L E 2' satisfying L 2 A 
and p* (L) < a. In particular, p* (L\A) < a, and since p is inner X-regular, 
there exists K E X such that K E L\A and p, (L\A) < p, (K)+ G. Since 
K E X E 3 (T), we have Lo : = L\K E 9, and since K E L\A, we obtain 

A E Lo, Kn(Lo\A) = 0 and Ku(L,\A) = L\A. 

So, by superadditivity of p,, we get 

and since p, (K) d p* (L) < ao, we see. that p, (Lo\A) < S. Since p* (Lo) < ao 
and Lo E 9' G dlp, we obtain p, (Lo) = p* (Lo) (see [6], Lemma 2.3.4, p. 3161, 
and so by [6], Definition 2.3.2, p. 315, we obtain 

P* (A) d P* (A) P* (Lo) = P* (Lo) < p* (A) + p* (&\A) < p* (A) + 6 .  

Letting 6 10, we see that p* (A) = p" (A). Suppose that p E M ,  (T, X). Then 
X G Li3 = A,, and p (K) < a0 for all K E X .  Since p is inner 3"-regular, p is 
finitely founded, and so by Theorem 2.1 (9) we have X G = dlpt. Suppose 
that X c l = A$!& and p(K) < m for all K E X.  Since p is inner-X-regular, 
p is finitely founded, and so by Theorem 2.1 (1) we have GY = A$!@. ii[ence p is 
complete and p = M,(T, K), which completes the proof of (1). 

(2)(a) * (2)(b) is evident. 
(2)(b) =s- (2)(c). Suppose that (2)(b) holds. Then the last part of (2)(c) holds 

trivially. So let LEA? be given and let us define 

RL (x) = p* (L n {f > x)) and RL (x) = p, (L n { f > x)) 

for ail x E R. Then RL and RL are decreasing functions satisfying 0 < RL ( x )  < 
RL (x) < p* (L) < ao for all x E R. Let 6 > 0 be given. By (2)(b), there exists 
h E W (p) satisfying p* (1 f - h] > 6) < 6, and so there exists BE B such that 
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p (3) < 6 and {If - hl > 6) G B. Let x E W be given. Since h E W (p), there exists 
HE A,, satisfying {h > x + 26) E H c {h > x + d). Since I f  (t) - h (t)l < 6 for all 
t~ T\B, we have 

(f > x+36) c ( h  > x+2S)vB G HUB 
and 

H c: ( h > x ~ - 2 6 )  ~ { f  > x ) u B .  

Since H,  LEA^ and y*(L) < a, we obtain ji(LnH) = p,(LnH) (see [dl, 
Lemma 2.3.4, p. 316), and since  BE^, we have 

' . RL(x+36) < ji(LnH)+p(B) < j ( L n H ) + S  - 
and 

B(LnH) < RG(x)+p(B) < RL(x)+d. . 

Hence R, (x) < RL (x) 6 IZL (X + 36) < RL (x) + 26 for all x E R and all 6 > 0. In 
particular, we see that RL(x) = RL(x) for all XER\Q, where Q c R denotes the 
set of discontinuity points of RL. Let XER\Q be given. Then 

~ * ( L n { f  > x)) = p*(Ln{f > x}) G p(L) < m, 

and so by [6] ,  Lemma 2.3.4, p. 316, we have L n  { f > x }  E Ap, and since RL is 
decreasing, Q is countable, which proves (2)(c). 

(2)(c) * (2)(a). Suppose that (2)(c) holds and let x < y be given numbers. 
Let 6 > 0 be chosen such that x +S < y - S. By (2)(c), there exist k E W(p) 
and BE B0 satisfying {If - hl 2 S) c B, and since p9 (B) < a, there exists 
L E ~ "  such that B 5 L. So by (2)(c) there exists U E R  satisfying x < u < y 
and Ao:=Ln{f  > u } E A ~ .  Since h ~ W ( p )  and x+6<y-6 ,  there exists 
HE A, such that ( h  > y- 6) E H G (h > x + 61, and since x < u < y and 
1 f It)-h(t)1 < 6 for all t€A\T, we have 

Since (H\L) u A, E As, we infer that f E W (p), which completes the proof of (2). 

(3) Let f E RT be a given function satisfying f d # for some # E W (T, 9 )  
and let rn denote the infimum on the right-hand side of (3)(a). ~ h z n  f d,u < m. 
Hence we have the equality if l* f dp = a. So suppose that f* f d p  < co and let 
c > j* fdp be a given number. By 161, Theorem 2.4.5, p. 331, there exists aER 
such that lC (f v a)dp < C, and since y (T) < coy there exists 6 > 0 such that 

Let us define S,:= (f-a)', $:=($-a)+ and f " : = 6 ~ ~ 0 1 A l ,  where Ai:= 
{fa 2 id). Then 0 d f, d f" d f,+ 6 and, by Lemma 1.2 (2), we have S, < $ 
E W (T, 9). Hence, there exists Gf E 3" : = 9 u  (0, T) such that 

($2 id) c GT c ($2(i-1)6) for all i 2 0 .  
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Then ( G f )  is decreasing, and since f, < I) and $ is finite, we obtain Ai G G I  and 
GF 5.0. Since p is finite and outer g-regular, there exists Gi E B* such that 
Gi 1 Ai and p*(Gi) d 2- ' - '+ph(Ai)  for all i 2 0. Let us define 

Since (Ai )  and (GT) are decreasing and Ai E Gf n G', we see that (Gi) is de- 
creasing and A, G Gi c GF n Gi for all i 2 0. Hence 

. m ' 

h : = 6 x l G r > P  and p * ( G i ) < 2 - ' - 1 + p * ( ~ i ) ,  
i = O  

and since B* is (0 f)-stable and Gi 4 B, we have G, E $* for all i~ I and 
0 6 h( t )  < m for all t E T B y  Lemma 1.2 (2), it follows that WIT, $1, and 
since (GJ is decreasing, (6 I,,) is rectilinear. Hence, by Lemma 1.2 (2) and (7), we 
see that h and h+a belong to W ( T ,  8). Note that f < f v a = f , + a <  
f" +a =S h + a and f'7 < + d. SO by Theorem 2.1 (1 1) and rectilinearity of (I,,) 
and (I,,) we have 

m 

$* fdp  G m < j*(h+a)dp = ap(T )+ j*kdp  = ap(T)+d p*(Hi) 
i =  0 

for a11 c > J* f dp. Letting c 4 J* f dp ,  we see that nt = j* f dP. 

2.3. THEOREM. Let X be a (0 f)-stable set and let (T,  93, p) be a content 
space satisfying p E M ,  (T, X) .  Then p is a complete, $finitely founded content and 
if U ~p T is a given set satisfying U 2 U X ,  then we have: 

(2) p i ( ~ )  = p, (A) = p, ( A )  < p* ( A )  < p" (A) for all A c T and for all 
9 Lp ET. 

(3) U E 9 ( X )  n 8 ( X )  and we have p (T\U) = 0 and p ( T )  = p(U). 

(4) If 9 G 93 and X E 8(Y), then p* (A) = p2(A) for all A E T satis- 
fying p9(A) < ao. In particular, p* (A) = pSI(")(A) for all A E T satisfying 
pS(") (A) < a. 

(5) If TI,,, G B and p(K,) + 0 for every decreasing sequence (K,) c X 
satisfying K ,  10, then (T,  B, p) is a measure space. 

Proof. (1)  follows from Theorem 2.1 (9) and Theorem 2.2 (1); (2) is evident 
and (3) is implied by Lemma 1.1 (1) and inner X-regularity of p. Since 



99 (% (X) )  = 5 (X),  we see that (4) follows from (1) and Theorem 2.2 jl), and (5 )  
is implied by [6], Theorem 2.4.7, pp. 319-320. 

2.4. THEOREM. Let T be a tupolugical space and let Y E 2" (7') be a non- 
empty set satisfying Z (T) G F (X), Then X is  a (0 T)-stable set containing 
O and if (T, 9, p) is a given content space, theil we have: 

(1) If p E M, (T, X),  then p E MR (T I U) for all U 2 U X 

(2) If p E MR (T I U), then p* (A) = p'(T) (A) for ail A G T ,  sutigying 
p*'T) (A) < 00. - - 

(3) If p E M i  (T I U), then p* (C) = p"tT) (C)  4 c~ for every compact set 
C G  U.  

P r o  of. (I) Suppose that p E M ,  (T, X )  and Iet U G T be a given set such 
that U 2 u X By Lemma 1.4, we infer that X is a (n.t)-stable set satisfying 
F (T) G 9 (X). So, by Theorem 2.3 (1) and (5), we see that p is a complete, fi- 
nitely founded Bore1 measure satisfying UE 93 and p (T\U) = 0, and since 
X E X ( T )  and p is inner X-regular, p€M,(T 117). 

(2) Let us define $? : = (K F X (T) I K s U, p(K) < a). Let BE W and 
a < p (B) be given. Since U E 3 and p(T\U) = 0, we have U n  3 E ~43 and 
p (B)  = p (U n B) > a. Since p is finitely founded, there exists Bo E satisfying 
Bo 5 U n  B and a < p(B,) < a, and since p is inner X (T)-regular, there exists 
K E A? (7') such that K c Bo and p (K) > a. From the relations p (B,) < oo and 
B, G Un B we see that KEV. Hence p is inner %'-regular, and since p is 
complete and V G X (T) G g, we have p CLE M,, (T, %'). Since V E 9 (T) = 

9 (3 (T)), the assertion (2) follows from Theorem 2.3 (4). 
(3) Suppose that p E M i  (T I U). Since pg(T)({t)) < oo for all t E U, there 

exist open sets G, satisfying t~ G, and p (GI) < m for all t E U. Let C G U be 
a compact set. Since (G, 1 t E U) is an open covering of C, there exists a finite set 
z c U satisfying 

C S G : =  UG,. 
SEX 

Hence pg(T) (C)  < p (G) < xfEnp (G3 < m, and so we see that (3) follows 
from (2). a IV 

Let @ G be a non-empty set and let /?: @ + % be a given functional. 
Then we denote by 8" (v) : = - 8 (- v) the dual functional of P for all o E - @, and 
we say that jl is increasing if p (4) < b($)  for all 4 ,  1(, E @ satisfying 4 < $. Let 

domB:= I IP(4)I < 00)  

denote the Jinite domain of p, let 

dom*B:={#J~@I /? (# )<co]  and dom,B:={t#~@Ifi(6)>-co)  
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i denote the upper and lower finite domains of B, respectively; moreover, let 
.5$ denote the set of all A E T satisfying 1, E dom* B. If 8 is a convex cone, we 
say that fl  is: 

(i) subadditive if #?(#/$) < p(&)iP($) for all 4, $ E @ ;  

(ii) positively homogeneous if p(0) < c~ and B (at$) = ap (4) for all t$ E @ 
and all 0 < a c oo; 

(iii) sublinear if #?(0) = 0 and fl  is subadditive and positively homogeneous. 
If q :  RT + R is a functional and X c 2T, we denote by the set of a11 

A c T satisfying infKd Q (l,,,) = 0 and we define - 

where Tn h : = (h A n - I )  + (h - n)+ denote upper truncation of h for all h E RS and 
all n 3 1. If q : iTT + R is an increasing sublinear functional, then Il f ll,, : = q (Iff) 
is a seminorm on RT and if @ c RT, we denote by cl, 9 the I[.ll,-closure of @. 

Let 9 E RT be a non-empty set, let 8 :  @ + R be a given functional, and let 
Y E @ be a non-empty set. Then denote by and P, the upper and lower 
Y-envelopes of v ;  that is: 

for all f €KT. Note that is an increasing functional on RT with dual func- 
tionalp,. If % G 2' is a given set satisfying E : = {IH 1 H E X )  c @, we define 
p" (A) : = BE(lJ and B*(A) : = BE(lA) for all A s T. We denote by fi(y) and 
fl<a> the positive upper and lower Daniel Y-functionals, respectively; that is: 

I * 
B<')Cf) = inf{C x(+)B(JI) 1 K E ~ ( ~ ) ,  X E & ,  C x($)$ f), 

@E% Iti~r 
0 

B<lp)(f) = sup{C x(u)Bo(u) I n : ~ 2 ( - ~ ,  x€RX+, C ~ ( 0 1 ~  2 f )  
UEn 

for all f €RT. Note that /I(') is an increasing, positively homogeneous, subad- 
ditive functional on RT with dual functional p(,) and that we have 

(3.1) 8") ($) < 8' ($) < B ($) for all $ E Y and 

B(')(f) < bIP(f) for all f €RT. 

We say that fi is non-negative <Y)-definite if B(y)(0) 2 0 and we define 

= {f €RT I zx($)B($) > -oo for all n ~ 2 ( ~ )  
3m 

and for all X E F + :  EX($)$ 2 f). 

Note that is an upper hereditary, positive cone containing dam,#?('). 



3.1. LEMMA. Let @ E RT be a convex cone, let 8 :  8 + R be a given func- 
tional, and let U S  define A : = a n ( -  @). Then A is a linear subspace of RT and we 
have : 

(1) If 8 is positively homogeneous, then either P(O) = 0 or fi (0) = - co and 
we have fl@ .r.j) G a- l p(4) for all 4 E @+ (Markov's inequality). 

(2) If /? is subadditive and x is a non-empty finite set, then: 

(a) xiEz #i @ and fi EEn di) < b($i) for all (4i)iEz @; 

(b) Ck, $i E - @ a d  ELx 80 ($3 < B0 ICYEX $i) for all ($i)ie, G - @; 

(c) 4 + $ ~ @  and B(#)+/3"($) < P(4+$) for all # E @  and for all $ € A ;  
(d) 4 + $J E - @ and ~ ~ ( 4  + $1 < #?(+I -L B" ($) for a l l 4  E A and for all 

$ €  -@, 

(3) i f  8 is subadditive and 8(O) 2 0, then jY (4) 4 P(#) for all + E  A. 

(4) If 8 is positizrely homogeneous and subadditive, then 
(a) fl  is serblinear if and only # /? (0) 2 0 if and only if B (0) > - ao, and $ 

and only if there exists ~ E G  such that P(4) # f co. 

(5 )  Suppose that B is increasing and positively homogeneous and let us define 

Y " : = { A E T ~  ~ , E Y ) ,  

If X G 2T is a given set containing (0, T )  such that Y G W (T, X )  and lH E @ 
for all  HE^, then 

(a) fix(A) = pS"%(A) < plp(lA) < BY(A) for all A E T. 

P r o  of. (1) Since B is positively homogeneous, we have aB (0) = B (0) < co 
fora l lO<a< co.Hencep(0)iseitherOor - c o . L e t t # ~ @ + a n d O < a <  co be 
given. Then 1143a1 < a-I #, and since a-I I$ E @  and 8 is positively homogene- 
ous, we have 

P(lr43a)) B(aP1 4) = a-1 P(4). 

(2) Since fi is subadditive, (2)(a) follows by induction on the number of 
elements in n, and since - CEn ui = EL, (- ui), we see that {2)(b) follows from 
(2)(a). Let 4 E 8 and $ E A be given. Since is a convex cone containing 4 and 
-t $, we have 4 + $ E a ,  and since 4 = (4 + $) - $ and #I is subadditive, we 
obtain 

P(4) < B(4+$)+B(-$) = B(4+$)'B0($)¶ 

and so we see that j (4)  + P" ($) < j(# + $11, which proves (2)(c). In the same 
manner, we prove that (2)(d) holds. 

(3) Let 4~ A be given. Since 4-4 = 0 and B is subadditive, we have 
8 (0) < B (4ILB" (41, and since 810) 2 0, we get P" (4) < 8 (4). 

(4) The first two equivalences in (4) follow from (I), and if /? is sublinear, 
then 0 E A and B (0) = 0 # + co. Suppose that t$ E and j (4) # & oo. Since 
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p is positively homogeneous and subadditive, we have P(0) < m and 
fi (4) < P (4) i f i  (0), and since /? (4) is finite, we obtain p (0) > - cg, which com- 
pletes the proof of (4). 

(5) Let A 5 T be given. The first equality and the last inequality in (5)(a) 
are evident. So let us show that #Ix(A) d py(lA). I f  flP(lA) = CO, this is evident. 
So suppose that r(1,)  < a and let a > fly(lA) be a given number. Then there 
exist 0 < 6 < 1 and $ E Y such that $3 1, and #?(~)  < aa6. Since (0, T }  _c 2 
and I,/J E Y E W (T, A?), there exists HE 2' satisfying ($3 1) c H G (+ > 6). 
Since II/ I,, _we have A s H and 61H < $, and since @ is a c-onvex cone 
containing 1, and p is increasing and positively homogeneous, we 
obtain 68 (1,) = /? (6 I,,) < /I (I)) < ad. Consequently, #?"(A) < /3' (IH) < a. Let- 
ting a 5. flF(lJ, we see that P2(A) < flY(lA) for all A c 7j which completes the 
proof of (5). m 

32. LEMMA. Let Y E @ E RT be non-empty sets, let P :  @ 4 R be a given 
functional and let rand 8 denote the convex cones generated by Y ndom fl  and 
1Y n dom* By respectively. Then we have: 

(1) py ( f )  < f l A  ( f )  for all f E R~ and for aII A s @ satigying 
Andom*p G Y. 

(2) If E E RT is an upper hereditary set, then jA(h) < By(h) for ail ~ E E  
and all A E @ satisfying A 2 Y n  E n dom'p. 

(3 )  PC') ( f )  = ( f l C y ' ) "  ( f )  for ail f E RT and f l < Y )  ( f )  = ~ ( ~ ) ) ~ ( f )  for all 
f EHF. 

(4) P(') is sublinear if and only if /I is non-negative (Y)-definite if and only 
if #l(')(O) > - m, and i f  and only if B('>(f)  # f oo for some f €RT. 

( 5 )  If Y is a convex cone and f l  is positively homogeneous and subadditiue 
on Y, then P<y) ( f )=p ly ( f )  for a21 fcRT.  

Proof. ( 1 )  is evident. So let E 5 RT be an upper hereditary set and let 
A _c @ be a given set satisfying A c Y n E n  dom* #?. Let h E E be given and let 
us show that flA(h) < jP (h). If f l y  (h) = a, this is evident. So suppose that 
BF(h) < 6 and let a > f l y  (h) be given. Then there exists $ E Y satisfwg t,b 3 h 
and P($) < a. Since E is an upper hereditary set containing h, we have 
$ E !P n E ndomX /? G A, and so we obtain pA (h) < #? ($) < a. Letting a 4 ply (h), 
we see that PA (h) < Dlf (h). 

(3) Let f € R T  be given. Since YG 8 and /I(') is increasing, we have 
#?(') (f) < (/I('))" ( f )  < ( ~ ( ~ ) ) ~ ( f ) .  Hence, if B<') ( f )  = co, we have equality. So 
suppose that P<') (f) < a and let a > ( f )  be given. Then there exist 
n E  2!Y3 and x E R; satisfying 

* 
u : = C x ( $ ) 1 I , 3 f  and q : = C x ( $ ) / I ( $ ) < a .  

@=n J l e ~  



Then * 

where .t : = {$ E K I x ($1 # 0). Since x E R; , we have z G Y n dorn* (b), and if 
f F HP,  we get * 

and so r z P n dom 0. Hence v E 0, and if f E fly then u E Y: By the definition 
of j(F>, we have $(') (u) < q < a. Hence (P('>)* ( f )  < B('> (0) < a, and if 
f E q, we get (/3C'Y})Y( f )  < J{p) (u) < a. Letting a 3. p{'P> (f ), we obtain (2). 

(4) follows from Lemma 3.1 (4). 

(5) Let JER* bc given. By Lemma 3.1, we get Bc'>(f) < j Y ( f ) .  Con- 
sequently, if P''> (f) = a, we have equality. So suppose that /IC') (f) < m and 
let a > ( f )  be given. Then there exist R E  2"P) and x E W: satisfying 

v : =  x(+))S 2 f and x ( $ ) p ( $ )  < a. 
#EP 

Since Y is a convex cone containing x, we have o E Y and fiF(f) < #I (0). Let us 
define z := ( $ E X  ] x($) > 0). If 'f = 0, we get 

* 
u = O  < f and 0 = Cx($)/3($) < a, 

and Lemma 3.1 (1) and positive homogeneity of /I imply #?'( f )  < #I (0) < a. I f  

r # O, we have v = zzET x ($1 $ 2 1; and since #? is positively homogeneous and 
subadditive on !P, we obtain 

Hence j<'> (f) < PIP( f )  < a. Letting a J #?('P) (f), we see that #?(y> (f) = YCf). 
-- 

33; LEMMA. Let q:  RT + 8 be an increasing sublinear functional, let 
g E be a set lattice, and let us define X : = g n 9,. Then 9, and %': c 2T are 
hereditary set lattices and we have: 

(1) Lu(q) and L*(q) are hereditary Il./l,-closed linear spaces and A?? (q) is a l1.11,- 
closed linear space such that the restriction of q to I? (q) is finite and linear. 

(2) LU(q) c L*(q) G o(T, 9,), 9, = {A E T I l A ~ E ( q ) ) .  

(3) E ( r l ) = { f ~ R ~  I q ( f ) ~ q ( f - ) <  03) = { f € R T I  q ( - f ) ~ ~ ( f + ) <  a). 

(4) V r Vq and 9, and '3; are hereditary set lattices and o (T, %';) and P ( q )  
are hereditary I(.(l,,-closed linear spaces. 
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(5) X is a set lattice satisfying X G V c F (W) E F ( X )  and 
(a) X', = {A c T I l ,~L!~(q))  c 
Ib) {f EB(T) 1 (f + OIEJC, ]  !z fiX(vl). 
(6) If @ !z W T  is a non-empty set and O dmotes the conuex cone generated 

by @, then q" and q(@> are increasing sublinear functionals and 
(a) q ( f )<qg( f )<  )l<@)(f)<qO(f) for all f € R T  with equality $ f ~ @ .  

(7 )  Let L denote the set of all f E RT satisfying lim,, , q (( f - - n)+)  = 0 
and let us define W : = W (T, 4 (GI?)). Then k is an upper hereditary convex 
cone containingp- (q) and qW is sublinear on E, and tlw (1,) = Q ~ ( ~ ( A ) '  for all 
A c T  

Proof.  (1) and (2) follow from [ti], Lemma 2.1.5 and Theorem 2.1.6, pp. 
293-295, and since I f  1 = 2 f - + f = 2 f + -f, we see that (3) follows from sub- 
additivity of q .  

(4) Since q is increasing and sublinear, dp,, %': are hereditary set lattices 
such that %? c Vv. Let f ~ c l ,  o(T ,  Xk) and E ,  S > 0 be given and let us define 
F : = { I f  1 > 6). Then there exists h E o (T, Xi) satisfying tj (1 f - hl) < ~6/2, and if 
we define H : = {Ihl > 6/21 and G : = (1 f - hl > 8/21, then F G H u G. Since 
k~ o (T, 33, there exists K E Xk such that g (I,,,) < ~ / 2 ,  and by Lemma 3.1 (1) 
we have 

Hence, by sublinearity of tj we obtain 

and so P = {I f  1 > 8) E Xi for all 6 > 0; that is, f E o (T, Xk). Hence o (T, Xi) is 
Il.llq-closed, and so (4) follows from (1). 

(5) By (4) and Lemma 1.1 (2) and (3), we see that X c GS c 9 (%) E 
9 ( X )  and the first equality in (5)(a) follows from (2) and Lemma 1.1 (7). Let 
A E  Xk be given. Then there exists K E X such that q (I,,,) < 1, and since 
KE 8 9 ,  we have q (1,) < q (1,) + q (I,,,) < oo, which proves the lasf inclusion in 
(5)(a). By (4), we see that gr(q) is a hereditary linear space, and so (5j(bb) follows 
from (5)(a) and Lemma 1.2 (8). 

(6) Since q is increasing and sublinear, is an increasing sublinear 
functional satisfying q < ?*. Let f €RT be given. By Lemma 3.1, we have 
q ( @ )  (f) < q@ (f ). So let us show that q" (f) < q<@> (f). If q<"> (f) = co, this is 
evident. Suppose that q<@')Cf) < ao and let a > q<@)(f) be given. Then there 
exist TC E 2(*) and x E R'Z+ satisfying 

u : = x x ( d ) $ > f  and i x ( d ) q ( d ) < a .  
4- $EX 
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Then ~ € 8 ,  and by sublinearity of q we have 

Letting aJq<@){f), we see that g"(f) d gc">(f), and since q is increasing, 
g (4) = q*(+) for all 4 E @, which completes the proof of (6). 

(7) By sublinearity of q we see that L is an upper hereditary convex cone, 
and since ( f  - n)' < Tn f -, it follows that Lu- (q) c E. Let fi , f2 E L be given 
and let us-show that 

If qW (fl) = m or qw (f,) = m, this is evident. Suppose that qw { fl) < co and 
qw (I2) < c~ and let al > qw If1) and a, > qw ( fi) be given numbers. Then there 
exist $z E W such that # i  > A  and q (+J < a, for i = 1, 2, and since L is an 
upper hereditary set containing fi, we have 4 i ~ L .  Since (#iv{-n)) = 

-a)', there exists an integer n 3 1 such that ~ ( $ 3  < at,  where 
$i:=$iv(-n)for i = 1 , 2 .  By Lemma 1.2(3), we h a ~ e $ , , $ ~ ~ f l a n d  since 
$i 2 - n and 99 (W) is a set lattice, we get $ : = $, + $2 E W by Lemma 1.3 (1). 
Since $ 3  2 f,+ f,, we have 

Letting ai qw (A), we see that 

Since W is a cone, vW is sublinear on L and by Lemma 3.1 (9, we get 
qW (1 A) = qg(%) (A) for all A G T rn 

3.4. THEOREM. Let rP E RT be a non-empty set and let f i  : =@ + R be 
a given functional. Let !.P E 45 be a non-empty set and let p~ M ( T )  be a given 
content. Then the following three statements are equivalent: -- 

. (1)- p is a lower Y-representation of 8. ,7v. 

(2) fl is non-negative !F-definite and is an increasing sublinear func- 
tional on RT satisfying 

(3) p is a lower Y-representation of flB<>. 

Let q := RT - + I f  be an increasing sublinear functional and let Yc RT be 
a non-empty set such that p is a lower &representation of q. Then q<r) is an 
increasing sublinear functional on RT and we have: 

(4) qr(f) h ~ ( ~ ( f )  b J , f d l ~  h j * f 6  G s")(f) G qr(f)  for all f JET. 
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(5)  Let L G E(g) be a hereditary linear space and let A c RT be a non- 
empty set satisfying O : = A n E - n L* (q) G Y: Then 

(a) j* f  d~ < qr(f  1 va (f = rA (f for all f E L- 
and if qA (f) < q Cf)  for all f E L- , then p is a lower L--representation of q and 
we have 

(b) -m <I* f d p < i *  f d p < r l ( f )  = qY(f) for aZl  EL- and for all 
V 2  8. 

P r o  of. The implication "(2) (3)" is evident and "(3) * (1)" follows from 
Lemma 3.1. Suppose that (1) holds. Let f €RT be given and let us show that 
j* f dp g /?<') (f ). If flCy) (f) = GO, this is evident. Suppose that fi(Y> (f) < m 
and let a > /?(y> (f) be given. Then there exist x E 2") and x e R",atisfying 

* 
u : = z x ( $ ) $ > f  and f x ( $ l p ( $ ) < a .  

@En 

Since the upper p-integral is increasing and sublinear and j* $dp < fi  ($1 for all 
$EX, we have 

Letting a 1 p<y)(f), we obtain j* f dp < (f) for all f eRT and applying this 
on -5 we infer that the inequalities in (2) hold. In particular, pCy) (0) 0, and 
so by Lemma 3.2 (2) we see that f l  is non-negative (Y)-definite and that fl(y' is 
an increasing sublinear functional on RT. 

(4) follows from the equivalence of (1) and (2). Since L G @ (q), we obtain 
L- G E (q), and so by Lemma 3.3 (3) we have L- nL* (v) = L-ndom*q. 
Hence O = A n L -  ndom* q G and by Lemma 1.2 (8) we infer that L- is an 
upper hereditary convex cone. So by Lemma 3.2 (1) and (2) we have qr(f) < 
qe( f )  = qA (f) for all f E L- . Hence (5)(a) follows from (4). Suppose that 
qA Cf) < q (f) for a11 f E L- and let V E RT be a given set satisfying V 1 8. By 
(5Ha), we see that p is a lower L--representation of q. Let f E k- be given. Since 
RT G &- 5 (q), we have j* f - d p  < q (f -) < oo, and since g is- increasing, 
we obtain q (f) < qv( f )  < qQ (f) = qA (f) = q (f). Consequently, (5)(b) follows 
from (5)(a). 

4. LOWER REPRESENTATIONS OF SUBLINEAR FUNCTIONALS 

By Theorem 3.4 we infer that p is a lower Y-representation of /? if and only 
if p is a lower Y-representation of PCy) and if and only if /?(y) is an increasing 
sublinear functional on RT such that p is a lower RT-representation of B('). 
Therefore, we see that it suffices to solve the lower representation problem for 
an increasing sublinear functional q : RT + R. This will be done in Theorems 
4.2 and 4.3 below but first we need the following sandwich theorem: 



4.1. THEOREM. Let X G 2T be a set Iattiw and let c g(X)  be 
a non-empty set. Let /I: 2T 4 10, a] be a supermodular set Jirnction and let 
e: B 4 [ O ,  m] be a given set function satisfying 

(1) f l  (K) < fl (K\G) + p (G) for all K E X and for all G E 9. 

Then /3, is an imreasing supermodular set function and we have: 

(2) f i x  (Av B) 6 /Ix (A) + eSr(B) fur all A,  B c= T. 

(3) If 99 E 2T is non-empty and linearly ordered by inclusion, then there 
exists a content p E M(T,  2T) satisfying - .  

(a) fis (A) < p (A) 6 Q" (A) for all A T and ,u (D) = #ls(D) for all D E 9. 

(4) There exists an inner X-regular content space (T, a, p) satisfying: 

(a) X c F ( X )  G A3 = JtM* = {S E TI K ~ B E ~  for all K E X ) ,  

Ib) P (TI = BX IT) and fi,(A) < p* (A) < p* (A) < Q~ (A)  for all A G T. 
Pro of. In the Iiterature, there exists a series of "sandwich theorems" under 

various conditions on and Q; see [I], [2], [4], [7], and [S]. However, I have 
not found a version which fits to our objective and I have chosen to give 
a self-contained proof. 

Since X is a set lattice and fl supermodular, we see that fl, is an in- 
creasing submodular set function. 

(2) Let A, B G T, K E X and G E  59 be given sets satisfying K c A u B and 
B c G. Then K\G G A, and since G E 59 c 3 (X),  we have K\G E X. Hence 
f i  (K\G) 6 fly (A), and so by (1) we obtain fl (K) < pjr (A) + e (G). Taking 
infimum over G and supremum over K, we see that /3,(AuB) < fl,(A)+ 
e" (B). 

Let Dl c . . . s D, E T be given sets and let Z G 2T be a finite a-algebra 
containing Dl, . . ., D,. Let us define Do := and let Y denote the set of all 
non-empty atoms of the a-algebra Z. Then Y is a finite disjoint partition of 
T and we denote by k the number of elements in 9'. Since fl, is increasing and 
Pm(0) = 0, there exists a unique integer 0 < r < n such thal flJY(Dv) < co if 
0 < v < r and Px(Dv) = co if r < v 6 n. Let us define Yo  := (SEY I S ED,) 
and Yo : = Y\YO and let p and m = k- p denote the number of elements in Yo 
and Yo, respectively. Since Do E Dl c . . . c D, and D, E Z, there exists an enu- 
meration S,, . . ., S, of Y o  and integers 0 = p o , 6  p, < . . . 6 p, = p satisfying 
Dv= SPY f o r d O d v < r ,  where SO:=O andS1:=S1u ... u s i f o r  1 < i < p .  
If m 2 1, we choose Sp+ E Yo such that 

flx(SPuSp+l) = minfl,(SPuS) 
S E ~ O  

and we define 

Sp+l:= SPuSp+, and 9 ' l :=Y~\{Sp+~}.  
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If m 2 2, we choose S,,, E 9, such that 

f l x ( S ~ + 1 ~ S p + 2 )  = min/3x(SP+1uS) 
S€Sq 

and we define 
S P + ~  := S P + 1 u S p + 2  and Y2:=9l\(Sp,2} 

Proceeding similarly we obtain an enumeration S 1 ,  . . ., Sk of Y and integers 
0 = p, 6 p ,  < . . . 6 p, = p satisfying 

(i) D,=SPv and j!lI(DV)< a for all O < v d r ,  
(ii) fix (Di) .= ~o for all r < v < n, - 

(iii) &(S1) = minigVsk&(Si-'usv) for all p < i < k, 
where S o : = @  and S i : = S l u  ... usi for l < i d  k. 

Let ui E Si be an arbitrary but fixed element in Si for all 1 6 i < k  and let us 
define ci : = /?, (S3 - P, (Si-I) for 1 < i < q and ci : = a~ for q < i < k, where 

with the convention inf O : = k + 1. Since Px is increasing and #lx (SP) < CO, we 
have p < q 6 k + l ,  and if we define p ( ~ ) : =  ~:=,c i lA(uJ  for all A E 6 then 
p is a discrete measure on (T, 2T) and we claim that the following holds: 

(iv) Q" (si) = fiX(si) = co for all q < i < k, 8, (5') < oo for all 0 < i < q; 
(v) p(S) = fl*(Si) for all i = 0, 1, ..., k; 
(vi) B, (A) 6 p (A) for all A E Z; 
(vii) p(D,,) = Bx(Dv) for all v = 0, 1,  . . ., n; 
(viii) p (A) < Q' (A) for all A E C. 

P r o  of of (iv). Since #?, is increasing, fl,(Si) < co for all 0 6 i < q and 
Px(Si) = rn for all q 6 i 6 k. Let q < i < k be given. By (iii), we have 
Bx(Sy 6 BJCr(Sq-luSi), and so by (2) we obtain 

Since PJY (Sq-I) c co, we get e" (Si) = .o = P (Si), which completes the proof 
of (iv).. . -- 

P r  o of of (v). Let 0 < i 6 k be given. If i < q, we have cj  'g &(Sj - 
Bx (Sj-') for all 1 < j < i, and since &(So) = OX (O) = 0 and p (S) = El, jqi ci, 
we see that p(Si) = PJP. (9). If i 2 q, we have ci = ao and fix (9) = oo, and since 
p (Si) 2 ci, we infer that Px (si) = ~o = p (s'). Thus p (si) = j!lX (si) for all 
l < i < k .  

Proof of (vi). Let I7 denote the set of all subsets of (1, ..., k) and let us 
define S, : = U,, Si for all x E Zl with the convention S, : = 0. Since C is a finite 
a-algebra, we have C : = {S, I x E n). Hence, we must show that /I, (S,) < PIS,) 
for all 7~ E 27. We shall do this by induction on the number of elements in x. Let 



nj denote the set of all 7 ~ ~ 1 7  with exactly j elements for j = 0, 1, . .., k. If 
n E ITO, we have TC = 0 and S ,  = 0 ,  and so p(S,) = 0 = B,  (SJ for all n E no. 
Let 1 < j 6 k be a given integer satisfying p (S,) 2 Bs (S,) for all n E Ilj-, and 
let us show that p(S,) 3 fiS [SX) for all n E nj. SO let n E nj be given. Since j B I, 
we have TC + 0, and let i : = max n: denote the largest element in a. If i 3 q, we 
have y (S,) 2 ci = a, and so y (S,) 2 8% (S,). Then suppose that i < q. Since 
T : = n\(i) €ITjT we have p(S,) 2 P,(S,), and since i < q and S, E St, we have 
Px (SJ < Px (S') < GO. Observe that S' = Si-I u S, and S, = Si-I n S,. Hence, 
by supermodularity of #Ix, we obtain - 

Since S, = S, u Si and S, n Si = a, we have p (S,) = p (S,) + p [Si) = p (ST) + ci, 
and since i < q, we get ci = BX (s')-fl(Si- ') < CO. Consequently, 

and since pX(Sd) < GO, we infer that (S,) < p (S,) for all x E I T j .  Thus, by 
induction on j, we see that Bs (S+) 6 p (33 for all ?I. €17, and since 
Z = {(S 1 Z E ~ } ,  we have proved (vi). 

Proof  of (vii). Let O 6 v < n be given. If v < r ,  we have D, = SPV, and so 
by (v) we obtain 8% (D,) = p(Dv). If v > r, we get fiT(Dv) = m, and so by (vi) we 
have BX(DV) = m = y(DV), which completes the proof of (vii). 

Proof of (viii). Let A E E be given. If Q" (A) = oo or A = 0, then (viii) 
holds trivially. So suppose that A # 0 and Q" (A) < m. Then there exists n E 17 
such that n: # 0 and A = S,. Let i = maxa denote the largest integer in n. 
Since Q" is increasing and Si E S,, we have Q" (Si) < (S,) = @"(A) < oo, and 
so, by (ivj, we see that i < q. By (2) and (vi), we obtain 

and by (v) we get p(S) = BX(s') < GO. Since p is a measure and A = S, E Si, -- 
the following relations hold: 

/ 1- 

~ ( 4  = p (s,) = P (fi-p(Si\S,) = Bx (Si) -p (Si\S,) d Q" (S,) = e" (A), 

which proves (viii). 

(3) Let 9 G 2T be a non-empty set such that 59 is Iinearly ordered by 
inclusion. Let A G T and D E ~  be given and let M: denote the set of all 
,UE M (T, 27 satisfying fig (A) < ,u (A) d q" (A) and p (D) = #I, (D). By Tycho- 
nov's theorem, LO, mj2' is a compact Hausdorff space in the product topology 
and observe that M: is a closed subset of [0, ooI2' for all A E T and all D E 3. 
Let A,, . . ., Ak E T and Dl, . . ., D , E ~  be given sets. Since 3 is linearIy or- 
dered by inclusion, we may choose the enumeration of the Dfs such that 
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Dl c: ... ED,. Applying (iHviii) with C :=  O(A1, ..., Ak, Dl, ..., DM), we see 
that 

n k n n M;: i+ 0, 
i =  1 j= 1 

and since M: is closed and compact in [O, colzT, we have 

fl n M 5 # 0 .  
A C T  X k I  

Thus, there exists a content p E M ( T ,  2T) satisfying (3)(a). 
. 

(4) Let M denote the set of all p E M (T, 27 satisfying p (T) = 0% (T)  and 
&(A) < y (A)  < @"(A) for all A E 'I: Let 5 denote the preordering on M given 
by p1 I p2 if and only i f p , ( K )  < p,(K) for all K E X .  Let (r, < j  be a given net 
and let by)@ s M be a r-net such that (p,) is increasing with respect to 
preordering 5. Note that M is a closed subset of the compact Hausdorff space 
[0, ~ o ] ~ ' ,  and so there exist p E M and a subnet of 01,) which converge to p in 
the product topology on [ O ,  m12'. Since by) is (<)-increasing, (y,(K)) is in- 
creasing for all K E X .  In particular, 

and, consequently, 

p(K) = sup p, (K)  for all K E X. 
Yer 

Hence p, 5 y for all y E r. Applying (3) with 9 : = (0, T}, we see that M # 0. 
So by Zorn's lemma there exists a maximal element 8 E M  for the preordering 
5, that is: 

(ix) OEM and if  EM and 9(K) 2 8(K) for all KEX, then 9(K) = B(K) 
for all K E X  

and we claim that 

(x) 8 (K,) = 8(Kl nK2)+ 0, (K1\K2) for a11 K,, K2 E X -- 
Proof of (x). Let K1, K , E X  be given and let us define D := K,\K,. Let 

K E X and G E $9 be given. Since 8 E M  and G E 59, we have 8 (G) Q Q" (G) < 
e(G), and since B is a content, 

6 (K) < 8 (K\G) + 8 (G) < 8 (K\G) + q (G). 

Hence 8 is a supermodular set function such that the pair (8, Q)  satisfies con- 
dition (1). So by (3) applied to @, q)  : = (8, q)  and the set 59 : = (0, D, T), there 
exists a content v E M (T, 2T) satisfying 8, (A) < v (A) < Q" (A) for all A G ?: 
v (D) = 8, (D) and v (T) = 8, (T). Since 8 E M, we have 8 (T)  = BX(T) and 
BX (A) < 8 (A) Q Q' (A) for all A c T. Hence fl, (A) < 8, (A) < v (A) Q q" (A) 
for all A G T and v (7') = 8,(T) < BIT) = 8% (T) d v (T); that is, v (T) = px (T), 

7 - PAMS 26.2 
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and so v EM. From the relation v ( K )  2 9 (K) for all K E 2" we infer that 
v (K) = 0 (K) for all K E X b y  (ix). Since K, and K, n K, belong to X and 
v (D) = Ox (D), we have 

which proves (x). 

Let a : = A@, denote the set of all 6,-measurable sets and let p denote the 
restriction of 0,  to A&. By [ 5 ] ,  (1.23), pp. 23-24, we see that (T, a, p) is 
a content space and, by (x) and [ S ] ,  (1.24) and (25), pp. 26-28, applied to the 
restriction of 6 to X, we have X' E 3. Let A G T and a < p, ( A )  be given. 
Then there exists BE B such that 3 G A and 6, (B) = p(B) > a. Hence, there 
e x i s t s K ~ X s u c h t h a t K ~  BandO(K)> a . S i n c e K ~  B G  A a n d K f X  EB, 
we obtain a < I3 ( K )  = p(K)  < px(A) 6 p* (A), Letting a f p, (A), we see that 
p* (A) = p, (A), and since p (C) = I3 (C) for all C E X, we have p, ( A )  = p, (A)  = 

&(A) for all A z T Hence (T, a, p) is an inner X-regular content space 
satisfying = Ap+, and so we see that (4)(a) follows from Theorem 2.2 (l)(a). 
Since B E  M ,  we have p, (A) = 0, (A) B (A)  for all A G T and Px(T) 6 
p (T )  < 0 (T )  = fl, (T). Let A G T and G E 9 be a given set satisfying G 2 A. 
Since G E $9 G $ (X )  and 0 E My we obtain g (G) 2 Q ~ ( G )  2 B (G), and by (4Xa) 
we have G E 3. From the property I3 E M  we infer that p* (A) d p (G) = 
9,(G) d 8(G) < Q (G). Taking infimum over G, we see that p* ( A )  < p" (A), 
which completes the proof of (4)(b). ria 

4.2. THEOREM. Let q :  RT + R be an increasing sublinear functional and let 
E (T) denote the set of all f E RT such that 

s u p f ( t ) < a o  and inf f ( t ) > O .  
~ E T  t ~ t f  > 0)  

Then there exist a content A E M ( T ,  27, an increasing sublinear functional 
5 : RT + R, and a net (pJXEn G M, (T, ZT)  satisfying: 

(1) q0 ( f )  G t ( f )  = to ( f )  = liMxTn ST f d ~ z  G v ( f )  for all f € R T .  

. (2). A(A) = t(1,) for all A c T and 1 is a lower LU- (9)-representation of 
5 and q. . xc. 

(3) v O ( f )  S C f  d~ = S ( f )  G ~ ( f )  for all f ~wt;)u(K ( t ) n E ( T ) ) .  

(4) @ (q) G L* (8 G L1 (A), LU (q)  c (t), L? (q)  E C (5). 
P r o  of. (1) Let us define O : = (13 E RT I q (0) < CO) and let Re be equipped 

with its product topology. Let Y denote the set of all UER' for which there 
exists p E Md (T,  2T) satisfying o (8) 2 ST 6dp  for all 6~ O. Since q is an increas- 
ing sublinear functional, we see that 8 and Yare convex cones. Let n 2 1 be 
a given integer and let us define q,(O) : = q(8) if 8 E O  and q(0) > - oo, and 
qn(8):= -n if ~ E O  and q(6) = -a. Then v,ER@ and we claim that q , ~ c l x  
where cl denotes the closure operation for the product topology on Re. 



Contents and measures satisfying integrnl inequalities 309 

Suppose that q, $cl Y: Since Y G RB is a convex cone, cl Y is a closed convex 
subset of Ws, and so by the Hahn-Banach theorem (see [3], Theorem V.2.10, 
p. 417) there exists a continuous linear functional F: Re -+ R satisfying 

F (q,) < c : = inf F (u). 
WE l" 

Since Y is a convex cone and c > - m, we have c = 0, and since F is a con- 
tinuous linear functional, there exist 7 ~ ~ 2 ( @ )  and X E R =  such that 

F ( Q ) =  Cx(O)e (O)  for all g € R e .  
@EX 

Let Q E n be given and let us define ~ ~ ( 8 )  : = 1 and q, (8) : = 0 for 8 E 0\(9). 
Then F (Q~) = x (a), and since gg 3 0, we have QSE Y: Hence x.(lSF) = F (Q,) 2 
c = 0 for a11 9 E X. Let t E T be given and let us define rc, (8) : = 0 ( t )  for all 8 E O 
and 4 : = COex x (8) 19. Since ~ ~ ( 0 )  = ST8dS,, we have K, E r a n d  # (t) = F (K,) 2 
c = 0 for all t E T, and since x (8)  2 0 for all BE  n and q is an increasing sub- 
linear functional, we obtain 

which is impossible. Hence q, E cl I" for all n 2 1. Let T denote the closure of 
Tin Re (with respect to the product topology). Then cl Y = TnR", and since 
q, E cl Y and 1, (0) -, q (0) for all 0~ O, we have qe E i;; where denotes the 
restriction of q to the set 0. Hence, there exist a net (r, <) and a r-net 
( Q , ) , ~  c Y such that q (0)  = lim,,, e,  (0) for all O E 0, and since Q ,  E there 
exist measures v, E Md(T, 2T) such that j, Bdv, < Q ,  (0) for all 8 E 8. Hence, we 
have 

(i) lim supyt j, Odv, < limYt, Q ,  (8) = q (0) for all 0 E O 

and by Thychonov's theorem there exists a net (l7, 5)  and a subnet (v,(,,),, of 
(v,) such that the limit 

exists ih R for all f E RT. Since 12 (v) = RT for all v E M ,  (T, 2T), we see that 5 is 
an increasing sublinear functional satisfying 5 (f) = 5" ( f )  for all f E RT and by 
(i) we have 5 (0) < q (0) for all 0 E O. Since q (f) = oo for all f E RT\O, we have 
5 ( f )  < q ( f )  for all f €RT. Applying this to -f, we infer that qo (f) < 5 ( f )  < 
q ( f )  for all f E RT, and so we see that (1) holds with : = v,(,,. 

(2H4). Let us define A(A) : = t(1,) for all A G T Since 5 = to, it folIows 
that [ is additive on RT, and so we see that 1 is a content on (T, 2T). Let 
f EL* (r) be given. By Theorem 2.1 (7), we have 
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and by [6], Theorem 2.3.9, p. 310, and additivity of 5 on W:, we obtain 

Since MA = 2=, we get W (A) = RT, and so by Theorem 2.1 (8) we have f E L1 (A); 
that is, L* ((1 E I? b) and the remaining inclusions in (4) follow from (1). Let 
f E Lu- (t) be given. Then f - EL" ( 5 )  c & (11, and so we see that I* f d l  r - co. 
By Theorem 2.1 (7), we have 

and since f -EL' (A) ,  we get J* f -dA = j* f -dA < w. So by [6] ,  Theo- 
rem 2.3.9, p. 310, and Theorem 2.2.6, pp. 294-295, and by additivity of t ,  we 
have 

J , f - d A = ( ( f - ) < m  and j * f ' U < t ( f i ) .  

Since ( = to and 0 6 t (f -) < ca, the following relations hold : 

Hence 5 (f)  = ( (f +)- { (f -), and so by Theorem 2.1 (5) we have 

Thus, by (I), we see that A is a lower Lu- (&representation of { and q .  In 
particular, (3) holds if I* f dA = oo or if f E Lu (5). So suppose that f E Lu- (t) n 
E (T) and that l* f d3, < co. Then J* f dL d 5 ( f  ), and since f  E E (T), there exist 
positive numbers b > a > 0 such that a l ,  d f + < b 1,, where A : = (f > 0). 
Since a > 0 and I* f + d A  < oo, we obtain ((1,) = i(A) < oo and t(f +) d 
bA(A) <a. Hence, by Lemma 3.3, we have f + E Lu(t), and so 

which completes the proof of (2H4). -- 
. *P 

43. THEOREM. Let q :  R~ + R be an increasing sublinear functional, let 
X s 2T be a given set lattice and let us define W : = W (T, Q(X)). Then there 
exists an inner X-regular content space (T, a, p) satisfying: 

(I) 2- G 9 ( X )  c 98 = M = ( B  G T I K ~ B E B  for aII K E X ) .  
p* 

(2) 1.1% (A) d p* (A) < p* (A) < yB(%) (A) = qW (IA) for a22 A c ?: 

(3) if plw(ld < co for all K E X, then p is finitely founded and 
p E M, (T, =f). 

(4) p is a lower (W n L*- Q n 25 (1.1))-representation of q and we have 
A ~ S ( X ) n g ( s f )  and p(T\A) = 0 for all A G T such that A ?  US. 
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(5)  If p is $niteiy founded, then p is a lower (W n 25 (c))-representation of 
q and j.i is a lower i?f (()-representation of gW. 

(6) If p is finitely founded, X(,,, G and p(K,) + 0 for every decreasing 
sequence (K,) G X such that K, J 0 and p (K,) < a, then (T, a, p) is a measure 
space. 

Moreover, if A G RT is a non-empty set satisfying 

and qA ( f )  < q (-f) for all f E 25 (q), then p is a lower 25 (&representation of 
q a d  we have: 

(7) -m <I, f d p  41' f d p < q ( f ) = q v ( f )  for all f ~i!T(d and for all 
V 1 8 .  

(8)  If X G S,, then p is Pnitely founded and p~ M, IT, X). 

(9) Let T be a topological space such that X E PV and X E X (T) G 

9 (X). Then u X E U 2',, and we have: 
(a) p € M R [ T { U )  for all U c T such that U z  O X .  
(b) If @ Of G Lsc IT), then u 9, is open and p E M i  (T I U) for all U G T 

such that u X z U s tJ Z,,. 

Proof. ( l j (3) .  Let A E  M(T,  2T) be the content from Theorem 4.2. 
Then 1 is an increasing modular set function on (T, 2T) and the triple 
( f l ,  e, 3) := (A, A, 8(&")) satisfies condition (1) in Theorem 4.1. So by Theo- 
rem 4.1 (4) there exists an inner X-regular content space (T, B, p) satisfying (I)  
and Ax (A) < p, ( A )  6 p* (A) < R"(x)(A) for all A c T. Hence (2) follows 
from Theorem 4.2 and Lemma 3.1 (3, and (3) follows from ( I ) ,  (2) and Theo- 
rem 2.2 (l)(c). 

(4) Let f E W n  L*- @ ) n  O f  (q) be a given function and let y > x > 0 and 
E > 0 be given numbers. By Lemma 1.2, we have f + E W (T, $9 ( X ) )  and 
f - E W (T, F (X)), and since ($3, T )  E $9 ( X ) n  9 (X),  there exists G E B (AT) 
and F E 9 ( X )  satisfying -- 

{ f + > y }  E G G ( ~ +  > x )  and { f - > y ) ~ F ~ ( f - > x ) .  

By Theorem 4.2, we have Xk c Xi,  and since f - E o (T, X:), there exists 
K E X such that A ({ f - > x)\K) < E. Since F E B (X), we have C : = 

F n K E 3y; C E (f - > x )  and A (F\C) < E.  From the inequalities p (G) < I (G) 
and A(C) 6 p(C) we infer that 

~ * ( f '  > Y )  < p(G) < A(G) < 1Cf+ > x),  

Letting~LO,weseethatp*(f' > y ) < A ( f +  >x)andA(fP > y ) < p * ( f -  > x) 
for afl y > x > 0. Since x n p *  (h > x )  and x n A  (h > x) are decreasing, there 



exists a countable set Q E (0, CQ) such that p* (f + > x)  < A( f  + > x) and 
A (f - > X )  < p* (f - > X) for all x ~ ( 0 ,  m)\Q. Hence, by Theorem 2.1, 

J * f + d p < j * f - d L  and j ' f - d A < J * f - d p ,  

and since f - E L*(p), we have 

So, by Theorem 2.1, 

and since f E ku- (q) and 1 is a lower LU- (?)-representation of g, we obtain 
[* f dp d q (f) for all f E W n L*- (p) n 25 (v), which proves -the fust statement 
in (4). Let A G T be a given set satisfying A 2 U X .  By Lemma 1.1 (I), we have 
A E 9 (X)n 93 (X), and since p is inner X-regular and 0 is the only set in 
X which is contained in T\A, we get p(T\A) = 0. 

(5) By (1), we have W G W (p), and so by Theorem 2.1 and finite founded- 
ness of p we see that #-  EL(^) for all $ E W Hence, by (4) we infer that p is 
a lower (W nP?({))-representation of q, and so by Theorem 3.4 (5) it follows 
that p is a lower E(t)-representation of vW. 

(6) Let us define % : = {K E 2" I p(K) < co). Since p is finitely founded 
and inner X-regular, p is inner $$-regular and by (1) and Theorem 2-1 (9) we see 
that p is complete. Hence p  E M, (T, %), and so (6) follows from Theorem 2.3 (5). 

(7) follows from Theorem 3.4 (5), and since RT 5 525 (q), we see that (8) is 
implied by (3) and (7) with V := W. 

(9) By (8), we have p E M, (T, X), and so we see that (9)(a) follows from 
Theorem 2.4 (1). Suppose that O +  G Lsc (T)  and let t E Yq be given. By (7), 
we have 1" (I{,)) = q (l{zl) < m. Consequently, there exists 8 E O such that 
8 2 4,) and q (0) < oo. Since 9 (t) 2 l and 8 E @+ E Lsc (T), we see that 
G:=  (0 > 3) is an open set containing t, and by Lemma 3.1 (1) we have 
? (1 ,) < 2q (8) < m. Hence q'(T) ((t)) < q (1 ,) < CQ, and so G G U Prl. In par- 
ticular, U Y,, is open and by Lemma 1.1 (2) we have 3 ( T )  c B (&). So, by (2), 
p'(T)((t)) < ~ ' ( ~ ) ( ( t ) )  < o~ for all t E U 9,,. Hence (9)(b) follows from (9)(a). PS 
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