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Abstract. Let @ be a given set of real-valued functions on the set
T and let f: ® — R be a given functional with values in the extended
real line R =[—o0, o0]. The objective of the paper is to construct
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ties satisfying the integral inequalities |* ¢du < B(¢), where |* denotes
the upper integral. '
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1. INTRODUCTION

Throughout this paper, let T denote a fixed non-empty set and if M is
a given set, let 2™ and 2™ denote the set of all subsets of M and the set of
all non-empty finite subsets of M, respectively, and let MT denote the set of all
functions from T into M. Moreover, let N:= {1, 2, ...} denote the set of all
positive integers, R :=(—o0, o) and R, := [0, o) denote the real line and
the non-negative real line, and R:=[—o0, o] and R.. := [0, co] denote the
extended real line and the extended non-negative real line, respectively.

The objective of this paper is to construct contents or measures on
T satisfying a prescribed set of inequalities. More precisely, let & = RT be
a non-empty set and let f: & > R be a given functional on &. If ¥ = & is
a given set and y is a content on some algebra on T, we say that u is a lower
Y-representation of f if

| (*Ydu< () for all ye?,
where f *fdy and j"* fdu denote the upper and lower p-integrals of f whenever

f €R” (see [6], Definition 2.4.2, pp. 329-330). The objective of this paper is to
construct lower Y-representations p of a given functional B: & — R, where
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¥ < @ is as large as possible and the content u has good smoothness and/or
regularity properties (for instance, a measure or a Radon measure). Lower
representations of functionals have many applications to Riesz representations
of linear functionals (see [1] and [2]), the moment problem, integral represen-
tations of kernels, construction of probability measures with given marginals
satisfying a described set of integral inequalities (see [4]), and stochastic or-
dering.

In Theorem 3.4, we shall see that the existence of a lower P-representation
of B implies that § is non-negative ¥-definite (see Section 3) and that the
general lowér representation problem reduces to the problem of finding lower
representations of a certain increasing sublinear functional (the positive Daniel
functional associated with f). In Theorems 4.2 and 4.3, we shall see that
non-negative ¥-definiteness implies the existence of contents or measures or
Radon measures representing f on a reasonably large subset of &. In this
section, we shall introduce some preliminary notions and results concerning
sets of subsets and function spaces. In Section 2, we shall introduce some
preliminary notions and results concerning set functions, and in Section 3 some
preliminary notions and results concerning functionals are presented.

We extend the multiplication on R to R as follows:

0:(+0):=0, a(+w):=+w f0<agow
and
a(tw):=Foo if —o<ax<0,
and we define

y Ty 0 +oo
Let + and +denote the following upper and lower extensions of the addition
on R:
a+0 =a+00 =(—w)+w=c forall —0 <a< o,
b+(—0) =b+(—0)=(—0)+mw = - for all —o0 <b < o0,
and we define ] L
- a~b:=a+(-b) and a<bi=a+(=b). . -
Note that a+b = a+b if and only if (a, b) # +(00, —o0), and if so, we write
a+b:=a+b=a+b. Note that a=~b = a—b if and only if (a, b) # +(c0, ),
and if so, we write a—b:=a=b = a—b. If (a;);e; < R is a family of extended
non-negative numbers, we define
Ya:=0if I=0@ and Ya:=sup) aif [#£09.
iel iel ne2(T) ien
If (b.)er = R, we define the upper and lower sums as follows:

ibi=2bi+42b,-‘, )Ejbi=)jb,.+fzb;.

iel icl iel iel el iel
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We say that (b)), is summable if Z::; b, = Z;I b;, and if so, we define

* o
Zbi = Zb, = Zb,
iel iel iel
Note that (b;);c; is summable if and only if either ), _ b <o or Y, by <

and observe that
%

Z bl=b1"i'+b,, and Z b!=b1+'!'bn
1sisn 1<i<n \

Let 5# < 27 be a given set. Then we say that 3 is hereditary if Je # and
2H < o for all H € 5#, we say that 3 is upwards directed if # # @ and for all
H,, H,e s there exists Hes# satisfying H 2 H,UH,, and we define

Us#:= H
He#
and

HC ={A=T|IHe# U{O} so that H=2 A}, #,={T\H|HeH},
F(H)={F<T|HnFe# VHeX}, 9(H)=5F(¥),

Note that < is the smallest hereditary set containing # and that G € & () if
and only if H\Ges# for all He#.

For a non-empty set I, we say that 3# is (( JI}-stable if | ) Hie # for
every family (H),s S 5, and we denote by #,, the smallest (| ) I)-stable set
containing #. We define (()I)-stability and 5, similarly, and if I and J are
non-empty sets, we denote by ;. the smallest ({ JI, () J)-stable set con-
taining # We write

UN:=(UL2) and  (NF):=(N{1,2)
U9:=(UN) and  (Ng:=(M).

We say that 5# is (| ) t)-stable or (") t)-stable if # is (| ) I}-stable or () I)-stable
for every non-empty set I and we denote by #,, and ., the smallest
({J7)-stable and (()z)-stable set containing 3, respectively. We say that # is
a set lattice if # is a (| f, () f)stable set containing @. =~ .. .

If ® < R”, we say that @ is:

(i) hereditary if {feRT ||f|< ¢} = @ for all e &;

(ii) upper hereditary if {feR” | f = ¢} = & for all P& &;

(iii} a positive cone if 0e® and ade @ for all 0 <a < oo and all peP;

(iv) a cone if @ is a positive cone containing 0;

(v) a comvex cone if @ is a cone satisfying ¢4y e &;

(vi) a function algebra if @ is a linear subspace of RT satisfying ¢ e @
for all ¢, yed;

(vii) rectilinear if there exists a linear preordering < on T such that ¢ is
increasing on (7T, <) for all ¢ed.

and
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We denote by B(T) the set of all bounded real-valued functions on T and
we define

" ={pc@| >0}, O ={¢eP|¢<0}, —P={-¢|pcd},
O, ={fecRT | fted}, o&_:={feR"|f ed}.
If # <27 is a non-empty set, we define
W(T, #)={feR" |Vx<y dHe# u{@, T): {f >y} s H<{f > x}},
o(T, #) = {feRT | {If] > S} #° V5> 0}.

Let T be a topological space. Then we denote by 4(T), % (T) and # (T)
the set of all open, all closed and all closed compact subsets of T, respectively,
and by #(T) we denote the Borel o-algebra on T; that is, the g-algebra
generated by # (T). Note that Lsc(T):= W(T, 4(T)) and Usc(T):=
W (T, # (T)) are the set of all lower and upper semicontinuous real-valued
functions on 7, and that C(T):= Lsc(T) nUsc(T) is the set of all continuous
real-valued functions on T.

1.1. LEMMA. Let #, % <27 be non—empty-sets and let us define A :=
HNLO. Then F(H) is a ([\f)stable set containing T, and %(#) is
a (| f)-stable set containing @ and we have:

(1) If AT is a given set satisfying A 2 | ) A, then AcF (#) and we
have Ac% () if and only if BeH#.

(2) # = F () if and only if # is ([)f)-stable, and if I and J are
non-empty sets, then we have:

(@) If # is ({JI)-stable or ((\I)-stable, then so is F (#).

(b) I.d/:'(r”) = ﬂ_(f(ufmn) = {F cT l FnHE%(UI'nJ) for all HE”}

(B F(£©)=2T and F(H)< F(H) and we have # = FNH° for
every set ¢ <27 satisfying # < ¢ < F ().

@UxrcsL=UL°=Luy={teT| {t}e£°}.

(5) Suppose that A is a set lattice. Then F (#) and. % () are set lattices

containing {@, T} and if & is upwards directed, then £ and H~are set lattices
satisfying A =« H < F(H)S F (KA.

(6) o(T, ) is a ||||r-closed hereditary cone and o (T, ) is a linear space if
and only if S is upwards directed.

(7) o(T, #) = {f €R | lim, ¢ | ()] = 0}, #° = {A < T |1,e0(T, #)}.

Proof. (1) and (2). By the definition of & (), we infer that & (o) is

a ((")f)-stable set containing 7, and since % (X") = F (#),, we see that & (#) is
a (| Jf)stable set containing &. Let A = { ) # be given. Since Hn A4 = H for all
He A, we have Ae F (), and since # # J and H\A = @ for all He ¥, we
obtain Ae%(X") if and only if @es#, which proves (1), and (2) is evident.
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(3) Since £ is hereditary, we have & (¥#°) =27 and & (#) < F (X).
Solet .# < 27 be a given set satisfying #° < ¢ < & (#) and let Ae £ N #° be
given. Since # # @, there exists He # such that 4 < H, and since Ae ¢ =
F (H), we have A = AnHe #. Hence ¢ NH#C = #, and since # < ¢, the
converse inclusion holds.

(5) follows from (1)~3), and (4), (6) and (7) are evident. m

1.2. LEMMA. Let # < 27 be a given set, let us define #*:= # U {@, T},
and let 2(T, Jf) denote the set of all functions f eR" of the form :

f--a].T‘*‘b Z 1Hi

Jor some aeR, some be R, and some Hl, ..., H e # satisfying Hy = ... = H,.
Then we have:

(1) W(T, ) is a |l|lz-closed set and W (T, # )= —W(T, ).

@) B(T)nW(T, #)=cly X(T, #) and 1,eW(T, #) if and only if
Ae ™, _

(3) If @: R— R is an increasing, continuous function, then ¢ (f)e W (T, )
for all feW(T, #). In particular, W (T, #) is a cone containing aly,
alr+f, fAaa and fva for all aeR and all fe W(T, #). :

@ {f>ale Al and {f = ateH(.,, for all feW(T, #) and for all
aeR. '

(5) If o is (\JI)-stable, then supy; fie W(T, #) for every family
(fier € W (T, 5#) satisfying supi fi(t) < oo for all teT.

6) If # is (()I)-stable, then infi; f;e W(T, #) for every family
(fier € W (T, ) satisfying inf; f;(t) > —c0 for all teT.

D If (fier & W(T, 5) is a rectilinear family satisfying ZE[ Ifi(®)) < 0
for all teT, then ) fie W(T, #).

(8) If @ = RT is a hereditary linear space, then @ _ is an upper hereditary
convex cone containing R, and &, is a convex cone satisfying @ + =_ﬂ,—d§ and
we have

{feB(T) | 1;40eEP} = P=D . NnD_.

Proof. (1)H7) follow from [6], Section 1.2, pp. 247-255, and (8) is an easy
consequence of the definition of hereditariness. m

1.3. LEMMA. Let # < 27 be a set lattice and let S(T, ) and So(T, )
denote the linear space and the convex cone, respectively, generated by {1y |
He# {T}}. Then W (T, ) is a cone containing fAh and fvh for all
f, he W(T, 5#) and we have

cly 8o (T, #) = B(T)nW (T, #).
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Let ¢: R* — R be uniformly continuous and increasing in each variable separate-
Iy, let k = 1 be an integer and let y : R* — R be continuous and increasing in each
variable separately. Then we have:

(1) ¢(f, WeW (T, #) for all f, he W(T, #) satisfying inf,cr f(£) > — o0
and inf.r h(t) > — 0. In particular, W™ (T, #) is a convex cone.

(2) If o is either (| ) c)-stable or () c)-stable, then W (T, #) is a convex
cone and we have Y (fy, ..., fL)eW(T, ) for all fi, ..., f,e W(T, #).

(3) If o is an algebra, then W(T, #) = —W (T, #) and B(T)nW (T, )
is a ||'|l;-closed function algebra satisfying B(T)nW (T, #) = cl; S (T, #).

4) If o is a g-algebra, then W (T, 5#) is the set of all real-valued H#-mea-
surable functions. ‘

Proof. Let f, he W(T, #) be given functions satisfying

a:=inf f({)> —o0 and b:=infh(t)> —
teT

and let us define
H*:=H#0{T} and G():=¢(f ), @)

for all teT By Lemma 1.2 (3), we infer that f—al; and A—b1; belong
to W*(T, #), and since G(2) = ¢o(f(t)—a, h(t)—b), where @Po(x, y) =
¢ (x+a, y+b), we may without loss of generality assume that f, he W* (T, #).
Let ¢ > 0 be given. Since ¢ is uniformly continuous, there exists d > 0 such
that |@ (x, y)—¢ (u, v)| < & for all (x, y), (u, v)e R? satisfying |x—u| < 26 and
ly—v| < 26. Since feW(T, #), there exist Fy, F,,...€ #* satisfying

{fzémn+))cF,c{f=on}foralln=>0 and Fo=T.

Then (F,) is decreasing and F, | @, and if we define D, := F,\F,. foralln >0
and f;:= Z:’: o0nlp,, we see that (D,) is a partition of T satisfying

F,= ] D,e #* forall 0 .
B k=n ’ U e -
and - )

0< f5=0) lp, < f<f+26.
n=0
So by Lemma 1.2 (2) and (3) we have 61, € W(T, #), and since (F,) is de-
creasing, it follows that (817, | n > 0) is rectilinear. Hence, by Lemma 1.2 (7),
we have f;e W(T, X'). In the same manner, we see that there exists a disjoint
partition (E,) of T, satisfying

H,:=|JE,e#* for al n>0 and hy:= ZoénlEneW(T, H)

kzn n=
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and we obtain -
0<h;=06) 1y, <h<h+26.
n=0

Let us define G;:= ¢ (f;, hs) and let xeR be given. Then we claim that there
exists a finite set = = N3 satisfying

(i) {Gs>x}= ) F.nH,.
(n,m)ern
Proof of (i). If {G; > x} = @, then (i) holds with = = &. So suppose that
{G;> x} # @ and let us define

A= {(n, m)e N3 | ¢ (on, om) > x}.
Since (D,NE,) is a disjoint partition of T, we have

Z ¢(5n: 5m) anr\Em,

nmz0
and so we see that A, # @ and
{Gs>x}= | DnnEn.

(n,m)eAx
Let us define

a;:=min{n|3ImeNy: (n,meA,}, a,:=min{m|(a,, meA,},
by:=min{m|IneNy: (n,m)eA,}, by:=min{n|(n, b)eA}.

Then n>a, and m > b, for all (n, mjeA,, and since A, # J, we have
(a4, az)e A, and (by, by)€ A,. In particular, a, < b, and b, < a,. Let n denote
the set of all (n, m)e A, satisfying (n, m) < (b, a,). Then = is a finite subset of
A, containing (a,, a,) and (b, b,). Let A denote the set on the right-hand side
of (i) with this choice of the set n. Let t€ A be given. Then there exists (n, m)en
such that te F,n H,,, and since F, = | J,, Dy and H, = |}, Ex., there exists
a unique (n', m’)e N3 satisfying (n', m’) > (n, m) and te D, NE,.. Moreover,
since " ¢ is increasing, we have x<¢@n, m< ¢, m) = G,, (t) Hence
A < {G;> x}. Let te{G, > x} be given. Then there exists a unique (n, m)e A,

satisfying teD,nE,. If (n,m)en, then teF,nE, = A. So suppose that
(n, m)¢n. Then either n > b; or m > a,, and we get n > a; and m > a,. If
n > by, we see that (n, m) > (b, by)en, and so teD,NE, < F,,nH,, < A.
If m > a,, we have (n, m) > (a4, a;)en, and so teD,NnE, < F,, nH,, < A.
Consequently, {G; > x} A, which completes the proof of (i).

Since #°* is a (| ], () f)-stable set containing F, and H,, for all n, m > 0,
it follows that {G; > x} € #’* for all xe R. In particular, we have G, W (T, &)
and recall that 0 < f;(£) < () < f;(t)+26 and 0 < h;(t) < h(t) < hs(t)+ 20 for
all teT Since ¢ is an increasing function satisfying ¢ (x+20, y+20) <
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¢ (x, y)+e¢ for all (x, y)eR%, we have

0<GM)<G(0)<P(f(®)+25, h()+20) < G(1)+e.
Hence ||[G—Gy||r <& and, by Lemma 1.2 (1), it follows that W (T, #) is
||I'l|l-closed. Since G, W (T, ), we have G = ¢ (f, h)e W (T, 5#), which proves
the last part of (3). Applying this to ¢ (x, y):= ax+ by, where a, be R, we see
that W™ (T, #) is a convex. cone. The remaining statements in the lemma
follow easily from (1) and [6], Proposition 1.2.7, p. 254. =

1.4. LeMMA. Let T be a topological space and let A" = 2T be a non empty
set. Then we have:

VX cADsFX)if andonly if " = H (T)nA°, and if and only
if ' =%nL° for some sets ¥, € <27 satisfying € < A (T) < F (%)

If A =€nL° for some sets &£, € = 27 satisfying € = A (T) = F (%),
then € and A are ((\1)-stable sets and we have:

QUL and Qe =« < F(T)c F(H (T)) = F(6) = F(X).

(3) If & is upwards directed and & <= %(%), then

(@ ¥ ={Ke¥|Kcs|JH}={Ke¥|K<=|)Z}

Proof. (1) Suppose that #" < # (T) < & (X). By Lemma 1.1 (3), we have
A = A (T)n A ©. Suppose that A = A (T)n A °. Since A" (T) = F (A (1)),
we see that the last statement in (1) holds with ¢ := 4 (T) and & := X¥°°.
Suppose that 4 = €n ¥ for some non-empty sets ¥, ¥ < 27 satisfying
C <A (T)c #(¢). By Lemma 1.1 (3), we have & (¥) < & (X), and since
A < €, we obtain A = A (T) = F (A'), which completes the proof of (1).

(2) By (1), we have 4 = A (T)n A" and € = A (T)n%°. Hence " and
% are ([ )7)-stable sets containing &, and since # (T) = F (T) c F (A (T)), we
see that (2) follows from Lemma 1.1 (3) and (4).

(3) Let K% be a given set satisfying K = (J &. Then () 1ee K\L) = @
and since ¥ < % (%), we have K\Le¥ < X (T) for all Le.?. Since & is
upwards directed, there exists Ly e £ such that K\L, = &. Hence K < Lye %,
and since K € ¥, we have Ke¥n £ = A for all Ke¥ satisfying K = | | &.
Since K< | ) = )& for all KeX', we see that (3) holds:"& -

2. SET FUNCTIONS

Let #, # < 2" be non-empty sets and let B: # — [0, co] be a set func-
tion. Then we define '

Frd)=_ wf B(B), fu(4)= sup B(B) forall AT

" Be#,BS A
p¥(A) = inf B*H), Px(A)= sup P (H) forall AcT,
Hes#¥ H2A : Hes## HEA ’

={4=T| inf f*(4\H) =0}
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and we say that f is:

(i) increasing if B(A) < B(B) for all A, Be# satisfying 4 = B;

(ii) inner #-regular if B(B) = f4(B) for all Be# or, equivalently, if
fe(A) = Bx(A) for al ACT;

(i) outer #-regular if B(B)= p*(B) for all Be# or, equivalently, if
B*(A) = p*(A) for all A<T. ‘

If # is a set lattice, we say that f is supermodular if B() =0 and
B(A)+B(B) < f(AUB)+B(ANB) for all A, B T.

If B:27>[0, o] is a set function satisfying §(3) = 0, we denote by
M g the set of all f-measurable sets in the sense of Carathéodory (se€ [5], (1.22),
p. 23); that is, Be .#, if and only if (4) = f(ANB)+f(A\B) forall Ac T
Recall that .#, is an algebra such that the restriction of § to .# is a content
(see [5], (1.23), pp. 23-24).

Let (T, #, p) be a content space, that is, # = 27 is an algebra and u: # —
[0, oo] is a set function satisfying u () = 0 and u (4w B) = pu(A)+ u(B) for all
A, Be 4 such that AnB =@. Then we define

B :={BeB|uB)<ow} and p.(4)=pg(4) for all AcT

We let M), := M, denote the set of all u-measurable sets and let g and ji, mean
the restrictions of u* and u, to the algebra .#,. We say that u is complete if
B = M,, and we say that uis finitely founded if pu(B) = u,(B) for all Be & or,
equivalently, if g, (4) = p,(4) for all A = T. If Z < 27 is an algebra, we denote
by M(T, #) the set of all contents on (T, #), and by M (T) the set of all
contents defined on some algebra on T. We denote by M, (T, 27) the set of all
finite discrete measures on (T, 27), that is, the set of all pe M (T, 27) of the
form u(4) = Z:'=1a,- 14(t) for all A< T for some t,,...,t,eT and some
ai,...,a,€R,.

Let ue M (T) be a given content. Then we define W (u) := W (T, .#4,) to be |
the set of all weakly u-measurable functions and we denote by I* (u) the set of all
p-integrable functions f e R” (see [3], Definition I11.2.17, p. 112). We denote by
I¥(u) the set of all feR" satisfying |, fdu = [*fdp and we define

ifdy:=j*fdu=j*fdu for all fel*(w). - -

Let L(u):= W (u)nL¥(u) denote the set of all u-summable functions.

Let # =27 be a set lattice. Then denote by M, (T, /') the set of all
complete, inner ¢ -regular content spaces (7, #, u) satisfying o4 = # and
w(K) < oo for all KeA.

Let T be a topological space. Then we say that u is a Borel measure if u is
a measure on some g-algebra containing #(T) and we say that u is a Radon
measure if p is an inner % (T)-regular Borel measure. If U< T, we denote by
MR (T|U) the set of all complete, finitely founded Radon measure spaces
(T, £, p) satisfying Ue 4 and u(T\U) = 0, and by Mz (T | U) we denote the set
of all pe Mg (T | U) which are locally finite at U; that is, u®™ ({t}) < oo for all
telU.

6 — PAMS 262
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2.1. THEOREM. Let (T, 2, p) be a content space. Then (T, M, ji) is a com-
plete content space and (T, #,, ji.) is a complete, finitely founded content space
satisfying:

V) B M, = M=M= M = My=M,.
(2) o (A) = (E)a (4) < 1y (A) < p* (4) = #*(4) for all AT,
(3) f.(B) = po(B) < A(B) = pu*(B) = puy(B) = p(B) for all Be 4.
@ |, fdu=1,fdi <[, fdf < [*fdfia < [*fdii = [*fdu for all feRT
() Jy fdu= [, f " dp= S " dp and * fdp = 1 dp=={, £ dy for all
feR".
©) [*fdp =lim,,_,[*(f vn)du and §o fap=1lim,.,§_(f An)du for
all feRT.
() {*fdp =[5 u*(f > x)dx and | fdu = [3 po(f > x)dx for all feRE.
@) Lw={felr@W|f, fdu# +oo} ={feWw] [*Ifldu < }.
) If pis finitely founded, then M, = M, and we have feL(u) if and
only if feW (W) and j'*f+d,u/\_f*f_du < 0.

Let (¢ S RT be a family of non-negative functions and let us define

¢x(0):=), ¢:(t) for all teT and all n < I. Then we have:

10) Y f, ddu< [, brdp and [* . du <y, [*¢idu for all ne2®.

(11) Suppose that (¢p;)er is rectilinear. Then

@ Yo S bidu={ ¢.duand [*¢.du=Y, [*:dp for all ne2®, and
if u* (s = 0) =0, then

®) Yoo S, bdu={, drdp and Y [* ¢:du = [* ¢, dp.

Proof. (1)-(3) follow from [6], Lemma 2.3.4, p. 316; (4) and (5) follow from
[6], Lemmas 2.4.3 and 2.4.4, pp. 330-331; (6) and (7) follow from [6], Theo-
.rem 2.4.6, p. 334; (8) and (9) follow from [6], Corollary 2.4.7, pp. 335-336;
(10) follows from [6], Lemma 2.3.4, p. 316; and (11) follows from [6], The-
orem 248 p- 336. & :

2. 2 THEOREM. Let (T, %, u) be a content space. Let # <27 and Sf c M,
be given sets. If

={Be# | uB)< o} and L :={Le¥|p*L)< o0},

then we have:

(1) If u is inner A -regular, then @A and we have:

(@ {B<T|BnKed,, forallKeX'} < M, withequalityif X < M,,.

() If # = G (ZL), then p*(A) = u? (4) for all A < T satisfying uZ (A) < oo.

(© ueM (T, ) if and only if A =B =M, and p(K)< oo for all
Kexd'.
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() If u?(B)< o for all Be#° and feRT is a given function, then the
following three statements are equivalent:

@) feW(w.

(b) For every € > 0 there exists he W (u) so that u*(|f—h| > ¢) <e.

(c) For every set Le %° there exists a countable set ) = R satisfying
Ln{f >x}e#, for all xeR\Q, and for every ¢ > 0 there exists a function
he W (u) satisfying p*(|f—h| > &) < 0.

(3) Suppose u(T) < oo. If feR" and 4 is a ([ f)-stable set such that Y is
outer G-regular -and f < ¢ for some ¢pe W(T, %), then ’

(a) [*fdp = inf {{* hdp | he W (T, %), h > f}..

Proof. (1) Since py (F) = u(9) = 0, we see that Je A" and (1)(a) follows
from [6], Lemma 2.3.3, p. 315. Suppose that " = % (¥). Let A = T be a given
set satisfying u¥ (4) < oo and let 6 >0 be a given number. Since u* is in-
creasing, we have u* (4) < u? (4) < oo and there exists Le % satisfying L 2 A
and p*(L) < co. In particular, p*(L\A4) < co, and since y is inner 4 -regular,
there exists KeJ such that K < L\A and p,(L\A) < p,(K)+9d. Since
Ked < 9(¥), we have L, := L\Ke.%, and since K < L\ A4, we obtain

Ac Ly, Kn(L)\A)=@ and Ku(Ly\A4)= L\A.
So, by superadditivity of Uy WE get '

Ha (Lo\A) + s (K) < py (L\A) < p1 (K) 46,
and since p, (K) < p* (L) < oo, we see that u, (Lo\A) < 8. Since u*(Lo) < oo

and Lye ¥ < #,, we obtain pu, (Lo) = pu*(L,) (see [6], Lemma 2.3.4, p. 316),
and so by [6], Definition 2.3.2, p. 315, we obtain

1 (4) < p? (A) < p*(Lo) = py (Lo) < p* (A)+ 1y (Lo\A) < p* (4)+6.

Letting 6 | 0, we see that u*(4) = p¥(A). Suppose that pe M, (T, #). Then
A =B =M, and pu(K) < oo for all Ke". Since p is inner A -regular, u is
finitely founded, and so by Theorem 2.1 (9) we have 4" = # = .4, . Suppose
that X" < # = M, and p(K) < oo for all Ke . Since p is inner 9{ regular,
 is finitely founded and so by Theorem 2.1 (1) we have # = .#,. ‘Hence is
complete and p = M, (T, '), which completes the proof of (1)

(2)(a) = (2)(b) is evident.

(2)(b) = (2)(c). Suppose that (2)(b) holds. Then the last part of (2)(c) holds
trivially. So let Le.#° be given and let us define

RE(x)=p*(Ln{f >x}) and Ry (x)=u,(Ln{f >x})

for all xeR. Then R* and R, are decreasing functions satisfying 0 < R, (x) <
RE(x) < p*(L) < oo for all xeR. Let & >0 be given. By (2)(b), there exists
he W (p) satisfying u*(|f—h| > 8) <, and so there exists Be# such that
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p(B) < 8 and {|f—h| > &} < B. Let xR be given. Since he W (u), there exists
H e M, satisfying {h > x+26} = H = {h > x+4}. Since |f(t)—h(t) < 6 for all
te T\B, we have

{f>x+36} = {h>x+20}UB<=HUB
and

He {h>x+26} = {f >x}UB.
Since H, Le .#, and p*(L) < oo, we obtain g(LnH)= u,(LnH) (see [6],
Lemma 2.3.4, p. 316), and since Be%#, we have :

RE(x+38) < i(LnH)+u(B) < i(LnH)+6 ~
and
B(LNH)< Rg(x)+u(B) < Ry (x)+0. .
Hence R (x) < R*(x) < RE(x+38) < Ry (x)+20 for all xeR and all § > 0. In
particular, we see that R, (x) = R (x) for all xe R\Q, where Q < R denotes the
set of discontinuity points of R;. Let xe R\Q be given. Then

py (LO{f > x}) = p*(Ln{f > x}) < (L) < o,

and so by [6], Lemma 2.3.4, p. 316, we have Ln{f > x} € .#,,, and since Ry is
decreasing, Q is countable, which proves (2)(c).

(2)(c) = (2)(a). Suppose that (2)(c) holds and let x < y be given numbers.
Let 6 > 0 be chosen such that x+0 < y—4. By (2)(c), there exist he W(u)
and Be4#° satisfying {|f—h| > 6} = B, and since p?(B) < oo, there exists
Le#° such that B< L. So by (2)(c) there exists ueR satisfying x <u <y
and Ao:=Ln{f >u}e.M,. Since he W(u) and x+6 < y—J, there exists
He#, such that {h>y—6} < H<={h>x+46}, and since x<u<y and
|f(t)—h(@)| <6 for all te A\T, we have

{f>ytcs(h>y—-\L)v{f >y}nL)= (H\A)uU 4,
c({h>x+N\L)u{f >u} = {f > x}.
Since (H\L)w A € M, we infer that f e W (u), which completes the proof of (2).

) Let fe R” be a given function satisfying f < ¢ for some ¢e W(T, 9)
and let m denote the infimum on the right-hand side of (3)(a). Then j fdu <m.
Hence we have the equality if {* fdu = c0. So suppose that {* fdu < co and let
c> j fdu be a given number. By [6], Theorem 2.4.5, p. 331, there exists aeR
such that _[ (f va)du < ¢, and since u(T) < oo, there exists § > 0 such that

S(L+p(M)+*(f va)du<ec.
Let us define f,:=(f—a)*, y:=(p—a)* and f*:= 52:‘;01,“, where A4;:=

{f. > i6}. Then 0< f, < f*< f,+06 and, by Lemma 1.2 (2), we have f, <y
e W(T, %). Hence, there exists Gfe%*:= 40U {0, T} such that

{y>id}csGF={Yy=31G—-1)8} forallix0.
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Then (G¥) is decreasing, and since f, < ¥ and ¥ is finite, we obtain 4; = G} and
G¥ | . Since u is finite and outer %-regular, there exists G'e%* such that
G'2 A; and p*(G) <27 14 u*(4) for all i > 0. Let us define

ﬂ (GF NG,

Since (4;) and (G¥) are decreasing and 4; < G¥ N G', we see that (G) is de-
creasing and A4; = G; < G¥*NG' for all i > 0. Hence

hi=8Y 16> f* and u*(G) <2 ut(4),
i=0

and since ¥* is ([)f)-stable and G;|d, we have G;e%* for all icl and
0 < h(t) < oo for all te T By Lemma 1.2 (2), it follows that 15,€ W (T, %), and
since (G;) is decreasing, (6 1,) is rectilinear. Hence, by Lemma 1.2 (2) and (7), we
see that 1 and h+a belong to W(T, %). Note that f< fva= f,+a<
fP+a< h+aand f° < f,+0. So by Theorem 2.1 (11) and rectilinearity of (1,,)
and (1g) we have

{*fdu<m < [*(h+a)dp = ap(T)+[* hdp = ap(T)+ 6 i u* (H;)
i=0

<au(T)+ Y p*(4)+5 Y 2771 < au(T)+6+* fd

i=0
<ap(T)+3(L+p(M)+[* fidu=(L+u@M)+[*(fvaydu<c

for all ¢ > [*fdp. Letting c | [*fdy, we see that m = [*fdy. =

2.3. THEOREM. Let A be a () f)-stable set and let (T, #, j) be a content
space satisfying pe M, (T, A"). Then  is a complete, finitely founded content and
if UST is a given set satisfying U 2| ), then we have:

() BeX cFAH)sB=M=M ={BST | BnKe# forall Ke A}

Q) par(A) = po(A) = p (A) S p*(A) < % (A) for all AS T and. for all
¥ <27,

B) UeF(A)NnG(A) and we have u(T\U) =0 and u(T) = u(U).

@ If =B and A < 9(ZL), then p*(A) = p%(A) for all A = T satis-
fying u?(4) < oo. In particular, p*(A4) = p®*)(4) for all A< T satisfying

U (4) < co.

5) If H(ney SR and pu(K,)—0 for every decreasmg sequence (K,) = A

satisfying K, | D, then (T, #, p) is a measure space.

Proof. (1) follows from Theorem 2.1 (9) and Theorem 2.2 (1); (2) is evident
and (3) is implied by Lemma 1.1 (1) and inner . -regularity of u. Since
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% (% (A)) = F (X'), we see that (4) follows from (1) and Theorem 2.2 (1), and (5)
is implied by [6], Theorem 2.4.7, pp. 319-320.

2.4. THEOREM. Let T be a topological space and let #° < % (T) be a non-
empty set satisfying A (T) = F (X'). Then A" is a ([)t)-stable set containing
@ and if (T, #, p) is a given content space, then we have:

(1) If ueM(T, &), then pe Mg(T|U) for all U2 |)A.

@) If neMg(T|U), then p*(A) = u®*M(A) for all A< T, satisfying

pfFM(4) < 0.

3) If ueM R(TIU) then p*(C) = u*M(C) < o for every compact set
ccU.

Proof. (1) Suppose that pe M, (T, ) and let U < T be a given set such
that U = ( ) . By Lemma 1.4, we infer that " is a ({)z)-stable set satisfying
F(T) < F (A). So, by Theorem 2.3 (1) and (5), we see that p is a complete, fi-
nitely founded Borel measure satisfying Ue# and p(T\U) =0, and since
A <= A (T) and p is inner A -regular, ue Mg(T|U).

(2) Let us define €:={KedA (T)| K< U, u(K) < o0}. Let Be# and
a < u(B) be given. Since Ue# and u(T\U)=0, we have UnBe# and
u(B) = (U B) > a. Since y is finitely founded, there exists Bye £ satisfying
By, = UnBand a < u(B,) < o0, and since u is inner " (T)-regular, there exists
K e (T) such that K < B, and u(K) > a. From the relations pu(Bg) < o and
By € UnB we see that Ke¥. Hence p is inner %-regular, and since u is
complete and ¥ < o (T) = B, we have ueM,(T, %). Since ¥ < F(T) =
%(%(T)), the assertion (2) follows from Theorem 2.3 (4).

(3) Suppose that pe M(T | U). Since u®™ ({t}) < oo for all te U, there
exist open sets G, satisfying te G, and u(G,) < oo for all teU. Let C = U be
a compact set. Since (G, | te U) is an open covering of C, there exists a finite set
7 < U satisfying

CcG:=JG,.

ten

Hence p*™(C) < p(G) <Y, 1(G)< o, and so we see- that (3) follows
from (2): = o

3. FUNCTIONALS

Let & = RT be a non-empty set and let f: @ - R be a given functional,
Then we denote by §°(v) := — f(—v) the dual functional of B for all ve — P, and
we say that B is increasing if B(¢) < f(Y) for all ¢, y € @ satisfying ¢ < . Let

dom B := {¢pe® | |B(¢) < o}
denote the finite domain of B, let

dom*f:={pe® | f(¢) <o} and dom,f:={ped|p(¢)> —n)
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denote the upper and lower finite domains of B, respectively; moreover, let
%, denote the set of all 4 = T satisfying 1,& dom* f. If @ is a convex cone, we
say that B is:
(i) subadditive if B(¢+v) < B(¢)+BW) for all ¢, Yed;

(ii) positively homogeneous if B(0) < co and B(a¢) = af(¢) for all ped
and all 0 <a < oo;

(iii) sublinear if §(0) = 0 and p is subadditive and positively homogeneous.

If n: R" - R is a functional and 2" = 27, we denote by X% the set of all
A < T satisfying infgcn(14%x) =0 and we define

B ={fR 1N =1"(N)# too}, =1k |n0f) <o},
E@) = {feRT| lmn(T'I) =0}, £ = o(T, XYL @),

where T"h:= (hAn~')+(h—n)* denote upper truncation of h for all he R%, and
all n > 1. If n: RT > R is an increasing sublinear functional, then || f1|, := n (| f])
is a seminorm on R” and if ¢ < R”, we denote by cl, @ the [Il,-closure of &.

Let & = R” be a non-empty set, let f: & — R be a given functional, and let
Y < @ be a non-empty set. Then denote by B¥ and By the upper and lower
Y-envelopes of n; that is:

B*()=inf{B()) |Ye? ¥ >f}, Pu(f)=sup{f°)|ve—¥, < f}

for all feRT. Note that ¥ is an increasing functional on RT with dual func-
tional By. If 5# < 27 is a given set satisfying E := {15 | He #} < &, we define
B*(A):= BE(1,) and B (A):= Br(1,) for all A = T. We denote by p¥> and
Bcwy the positive upper and lower Daniel W-functionals, respectively; that is:

B () = inf {3 x@) BW) | 12, xeR%, ¥ x W) > /),

Yer yer

Bews (f) = sup {3 x() B°(0) | 1€29, xR, ¥ x(@)v > f)

yen ven

for all feR”. Note that ¥ is an increasing, positively homogeneous, subad-
ditive functional on R” with dual functional B.e, and that we have

G B <BW)<PW) for all ye¥?  and
B (f) < BT (f) for all feR.
* We say that f is non-negative {P)-definite if p*>(0) >0 and we define
Hy ={feR"| ix(t//)ﬁ(llt)> —oo for all me2®
sem and for all xeR"%: Zx(‘ﬁ)l// = f}

SEN

Note that H} is an upper hereditary, positive cone containing dom, S<*”.
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3.1. LeMMA. Let & = RT be a convex cone, let B: @ — R be a given func-
tional, and let us define A := ® N (—®). Then A is a linear subspace of RT and we
have:

(1) If B is positively homogeneous, then either B(0) =0 or (0) = — oo and
we have B®(ligsq) <a ' B(¢) for all ped* (Markov’s inequality).

(2) If B is subadditive and w is a non-empty finite set, then:

@ Y $ie® and B b) < Yo B(¢) for all ($ien = D5

(b) Y Wie—®@ and Y, B )< B3, %) for all (Wiex S —@;

() p+ye® and B(P)+B° () < B(Pp+¥) for all e P and for all YyeA;

(d) ¢+ye—D and B°(P+Y) < B(P)+B° () for all peA and for all
ye—9a.

(3) If B is subadditive and B(0) = 0, then B°(¢) < B(¢) for all peA.

4) If B is positively homogeneous and subadditive, then

(a) B is sublinear if and only if (0) = 0 if and only if B(0) > — oo, and if
and only if there exists ¢e® such that B(¢) # + 0.

(5) Suppose that B is increasing and positively homogeneous and let us define
v :={AcT|1,e?}.
If o < 27 is a given set containing {@, T} such that ¥ < W (T, #) and 1ge @
for all He 3, then

@) B¥ (A =B ") <P'1)<P'(4) for all ACT.

Proof. (1) Since f is positively homogeneous, we have aff(0) = f(0) <
for all 0 < a < oo. Hence f(0) is either 0 or —co0. Let e ®* and 0 < a < o0 be
given. Then 1,5, < @' ¢, and since a~! ¢ € ® and B is positively homogene-
ous, we have :

PP (Lg>a) < Bl@a™' @) = a™' B(9).

(2) Since g is subadditive, (2)(a) follows by induction on the number of
elements in 7, and since — Z:“ u; =Y. (—u), we see that (2)(b) follows from
(2)(a). Let ¢ € @ and € A be given. Since P is a convex cone containing ¢ and
+v, we have ¢+ e, and since ¢ = (¢ +y¥)—y and B is subadditive, we
obtain

B(d) < B(d+¥)+B(—¥) = B(@+¥) =B W),
and so we see that f(¢)+B° (¥) < B(¢+y), which proves (2)(c). In the same
manner, we prove that (2)(d) holds.
(3) Let ¢peA be given. Since ¢—¢ =0 and f is subadditive, we have
B(0) < B(¢)~p°(¢), and since B(0) =0, we get () < B(¢).
(4) The first two equivalences in (4) follow from (1), and if § is sublinear,
then 0e A and B(0) =0 # +oo. Suppose that ¢ @ and f(¢) # + co. Since
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B is positively homogeneous and subadditive, we have f(0) < o and
B($) < B(¢)+ B(0), and since B(¢) is finite, we obtain B(0) > — oo, which com-
pletes the proof of (4).

(5) Let A = T be given. The first equality and the last inequality in (5)(a)
are evident. So let us show that 8% (4) < ¥ (1,0). If B (1)) = oo, this is evident.
So suppose that ¥ (1) < oo and let a > B¥(1,,) be a given number. Then there
exist 0 < 8 < 1 and y € ¥ such that ¢ > 1, and B () < ad. Since {@, T} = #
and ye ¥ < W (T, ), there exists H e # satisfying {y > 1} < H < {y > 6}.
Since ¥ > 1,, we have A = H and 15 <y, and since @ is a convex cone
containing 15 and f is increasing and positively homogeneous, we
obtain 38 (1g) = B(d1x) < B(Y) < ad. Consequently, p* (4) < B(1g) < a. Let-
ting a | B¥ (1,), we see that % (4) < p¥ (1) for all A = T, which completes the
proof of (5). =

3.2. LeMMA. Let ¥ < @ = R” be non-empty sets, let B: ® — R be a given
functional and let Y and ©@ denote the convex cones generated by ¥ ndom § and
¥ ndom* B, respectively. Then we have:

M) B¥Y<SBAS) for all feRT and for all A<= satisfying
Andom* < V.

(2) If E = R” is an upper hereditary set, then p1(h) < B¥ (h) for all heE
and all A < & satisfying A 2 YnEndom* .

@) B (f) = (BF)°(f) for all feRT and B (f) = (BF)(S) for all
feHj.

(@) B<¥’ is sublinear if and only if B is non-negative ¥ )-definite if and only
if B¥>(0)> —oo, and if and only if B¥>(f)# £ oo for some feRT.

(5) If ¥ is a convex cone and B is positively homogeneous and subadditive
on ¥, then BT (f) = B¥(f) for all feR".

Proof. (1) is evident. So let E = RT be an upper hereditary set and let
A € @ be a given set satisfying 4 € ¥ n Endom* . Let he E be given and let
us show that g4 (h) < B¥ (h). X B¥ () = oo, this is evident. So suppose that
B¥ (k) <o and let a > B¥ (h) be given. Then there exists y € ¥ satisfying ¢ > h
and B(Y) < a. Since E is an upper hereditary set containing h, we have
YePYnEndom* B = A, and so we obtain 84 (h) < () < a. Letting a | ¥ (h),
we sce that BA(h) < A% (h). ,

(3) Let feRT be given. Since Y= @ and B<¥” is increasing, we have
B (f) < BT (f) < (BP)Y(f). Hence, if f<¥> (f) = oo, we have equality. So
suppose that B<¥7(f) < oo and let a > B¥>(f) be given. Then there exist
ne2® and xeR" satisfying

*

vi= Y x(¥ =f and q:=3 x()pW) <a.

Yer yen
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Then

%k

v=2x@)y and g=3Yyx()BWY)<a,

et yer
where 7:= {yen | x() # 0}. Since xeR%, we have 1 = ¥ ndom*(f), and if
feH¥, we get
*
—o0 < Y x(¥)B(Y) < o,
Yer
and so © = ¥ ndom (f). Hence ve ©, and if f € H}, then ve Y. By the definition
of B¥?, we have B¥’(v) < g <a. Hence (B)(f) <Y (v) <a, and if
feHE, we get (B)Y(f) < B (v) < a. Letting a] B (f), we obtain (2).
(4) follows from Lemma 3.1 (4). ’
(5) Let feR” be given. By Lemma 3.1, we get 5<¥>(f) < ¥ (f). Con-
sequently, if B<¥” (f) = oo, we have equality. So suppose that B¥” (f) < oo and
let a > B<¥>(f) be given. Then there exist 7e2® and xeR" satisfying

vi=Y x@)y>f and wa(!//)ﬁ(W)<a-
=4 en

Since ¥ is a convex cone containing 7, we have ve ¥ and B¥ (f) < B(v). Let us
define 7:= {Yen | x(y) > 0}. If 1 = O, we get

%

p=0<f and 0=Y x(¥)BW) <a,

Yyexn

and Lemma 3.1 (1) and positive homogeneity of g imply ¥ (f) < f(0) < a. If
7 # @, we have v = Z;Etx(v,[/) ¥ > f, and since § is positively homogeneous and
subadditive on ¥, we obtain

*

BFN<BO< Y xW)BW) <a.

yen
Hence 8 (f) < B? (f) <a. Letting a | B<*> (f), we see that BF?(f) = B¥(f). =
- 33. LeMMA. Let n: R" >R be an increasiﬁg sublinear Junctional, let

% < 27 be a set lattice, and let us define A := € %,. Then £, and €5 < 27 are
hereditary set lattices and we have:

(1) L*(n) and E*(n) are hereditary ||||,-closed linear spaces and L (n) is a |||,
closed linear space such that the restriction of n to L' (n) is finite and linear.

@QLmesmcsol, L), £,={AcT|1,el@)}
@) () = {feR" | n(f)vn(f7) < o} = {feR" | n(=f)vn(f™) < co}.

(4) € < %, and £, and €\, are hereditary set lattices and o (T, €*) and L% (1)
are hereditary ||I\l,-closed linear spaces.
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(5) o is a set lattice satisfying A =¥ <= F ()= F(A) and

@ #={AS T|1,e2*@)} < %,

(b) {feB(T) | {f # 0} e} < £ (n).

(6) If ® = RT is a non-empty set and © denotes the convex cone generated
by &, then #® and n‘® are increasing sublinear functionals and

@ n() <n®() < 7P (f) < n°(f) for all feR" with equality if fe®.

(7) Let L denote the set of all feR” satisfying lim,. oy ((f~—m*)=0
and let us define W:= W (T, 4(%)). Then L is an upper hereditary convex
cone containing I (n) and 4% is sublinear on L, and 1% (1) = n*“ (A) for all
Ac T

Proof. (1) and (2) follow from [6], Lemma 2.1.5 and Theorem 2.1.6, pp.
293-295, and since |f| = 2f ~ + f = 2f T — f, we see that (3) follows from sub-
additivity of 7.

(4) Since # is increasing and sublinear, %,, %, are hereditary set lattices
such that € < €}. Let fecl,o(T, A7) and &, 6 > 0 be given and let us define
F:= {|f] > 6}. Then there exists he o(T, ;) satisfying n (| f —hl) < &6/2, and if
we define H:= {|h| > 6/2} and G:= {|f—h| > §/2}, then F < HUG. Since
heo(T, A™), there exists K € A% such that # (15g) < &/2, and by Lemma 3.1 (1)
we have

2 £
<5 - =
n(le) <5n(f—h) <3
Hence, by sublinearity of # we obtain

nlpg) <n(le)+n(lmg) <e,

andso F = {|f| > 8} e for all § > 0; thatis, feo(T, A7;). Hence o(T, A7) is
[Ill,~closed, and so (4) follows from (1).

(5 By 4) and Lemma 1.1 (2) and (3), we see that X <€ < F (¥) =
F (X)) and the first equality in (5)(a) follows from (2) and Lemma 1.1 (7). Let
Ae Ay be-given. Then there exists Kef" such that n(l,%) <1, and since
Ke %,, we have n(1,) < 1(1g)+n(1 4%) < o, which proves the last inclusion in
(5)(a). By (4), we see that £ (1) is a hereditary linear space, and so (5)(b) follows
from (5)(a) and Lemma 1.2 (8). '

(6) Since 5 is increasing and sublinear, #® is an increasing sublinear
functional satisfying n < #®. Let feRT be given. By Lemma 3.1, we have
7 (f) < 1®(f). So let us show that 7 (f) < n*® (f). If n¢®>(f) = o, this is
evident. Suppose that #¢®>(f) < co and let a > n<®’(f) be given. Then there

exist 7€2® and xeR% satisfying
*

vi=Y x(@)¢>f and Y x(Pn(¢)<a.

den den
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Then ve @, and by sublinearity of n we have

() <10) Y x@)n(d) < a.

den

Letting a | 7¢® (f), we see that #°(f) < n¢®>(f), and since 7 is increasing,
7(¢) = n®(¢) for all ¢ e ®, which completes the proof of (6).

(7) By sublinearity of n we see that L is an upper hereditary convex cone,
and since (f = —n)* < T"f 7, it follows that L () < L. Let Ji, f eL be given
and let us-show that

n” (fi+ ) <% (f)+1% (f2)

If % (f1) = o or 4% (f,) = oo, this is evident. Suppose that % (f;) < oo and
1" (f») < o and let a; > 5" (f,) and a, > 1" (f,) be given numbers. Then there
exist ¢y, ¢, € W such that ¢; > f; and 5 (¢;) < a; for i = 1, 2, and since L is an
upper hereditary set containing f;, we have ¢;eL. Since (¢;v(—n))=
¢i+ (¢ —n)”, there exists an integer n =1 such that n(J; <a;, where
Yi:=¢;v(—n)fori=1, 2. By Lemma 1.2 (3), we have ,, , € W, and since
Y; > —n and 9 (%) is a set lattice, we get ¥ :=; +¥, e W by Lemma 1.3 (1).
Since Y = ¢+ ¢, = fi + f5, we have

" (fi+ ) S 1) S W) +nW2) < ai+a;.
Letting a; %" (f), we see that

n” (fi+ ) <o (f)+0" (f) for all fi, fr€L.
Since W is a cone, #" is sublinear on L and by Lemma 3.1 (5), we get
1) =n%9) for all AS T =

3.4. THEOREM. Let @ = R” be a non-empty set and let B:=® — R be
a given functional. Let ¥ = @ be a non-empty set and let ye M (T) be a given
content. Then the following three statements are equivalent:

(1) u is a lower ¥-representation of P. o

(2) B is non-negative P-definite and B> is an increasing subhnear Sunc-
tional on RT satisfying

Beey (N) <[, fau<[* fd#<[>’<”>(f) for all feRT.

(3) u is a lower W-representation of B<¥>.

Let n:= RT - R be an increasing sublinear functional and let Y< RT be
a non-empty set such that u is a lower Y-representation of #. Then n¢* is an
increasing sublinear functional on RT and we have:

@ n(N) < N[, fap< [ fap<n® () <n™(f) for all feR".
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(5) Let L = I*(y) be a hereditary linear space and let A = RT be a non-
empty set satisfying @ := ANL_nI*(n) = Y. Then

@) [*fdu <n7(f) <n®(f) =n*(f) for all feL.
and if 71 (f) < n(f) for all feL_, then uis a lower L._-representation of n and
we have

(b) —c0 <j*fd,u$_f*fdu<11(f)=11v(f) for all feL_ and for all
V=26.

Proof. The implication “(2) = (3)” is evident and “(3) =(1)” follows from
Lemma 3.1. Suppose that (1) holds. Let f € RT be given and let us show that
* fdu < B (f). If B> (f) = oo, this is evident. Suppose that f<* (f) < oo
and let a > B<*?(f) be given. Then there exist 7e2® and xeR% satisfying

v:=w§x(¢)¢>f and ﬁx(w)ﬁ(w)m.

Since the upper p-integral is increasing and sublinear and [* ydu < B (¥) for all
Yen, we have

[* fdu< [*odp < wz X"y < X xWBY) <a

Letting a | f<*” (f), we obtain {* fdu < ¥ (f) for all feRT and applying this
on —f, we infer that the inequalities in (2) hold. In particular, <¥” (0) > 0, and
so by Lemma 3.2 (2) we see that 8 is non-negative { ¥ )-definite and that g<*” is
an increasing sublinear functional on R”.

(4) follows from the equivalence of (1) and (2). Since L. = I* (), we obtain
L_c I* (5), and so by Lemma 3.3 (3) we have L_nE*(y) = L_ndom*#.
Hence @ = ANnL_ndom*# < X, and by Lemma 1.2 (8) we infer that L_ is an
upper hereditary convex cone. So by Lemma 3.2 (1) and (2) we have ¥ (f) <
78(f) = n1(f) for all feL_. Hence (5)(a) follows from (4). Suppose that
n4(f) < n(f)for all feL_ and let V = R” be a given set satisfying V = ©. By
(5)(a), we see that p is a lower L _-representation of 5. Let f € L_ be given. Since
RY c L_ < I* (), we have j* f~du<n(f") < oo, and since # is-increasing,
we obtain 1 (f) < 1" (f) <n°(f) = n*(f) = n(f). Consequently, (5)(b) follows
from (5)(a). =

4. LOWER REPRESENTATIONS OF SUBLINEAR FUNCTIONALS

By Theorem 3.4 we infer that u is a lower ¥-representation of § if and only
if u is a lower P-representation of f<¥> and if and only if f<¥” is an increasing
sublinear functional on RT such that u is a lower RT-representation of f<¥”.
Therefore, we see that it suffices to solve the lower representation problem for
an increasing sublinear functional 5 : RT — R. This will be done in Theorems
4.2 and 4.3 below but first we need the following sandwich theorem:
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4.1. THEOREM. Let X =27 be a set lattice and let 4 = %(A") be
a non-empty set. Let B: 2T - [0, co] be a supermodular set function and let
0:% —[0, o] be a given set function satisfying

(1) B(K) < B(K\G)+¢(G) for all KeX and for all Ge¥%.
Then B, is an increasing supermodular set function and we have:
() Bx(AUB) < By (A)+0%(B) for all A,B=T.

(3) If 2 < 2T is non-empty and linearly ordered by mcluszon then there
exists a content pe M(T, 27) satisfying

(@) By (A) < p(A)<0®(A) for all A= T and u(D) = B (D) for all De 2.

(4) There exists an inner A -regular content space (T, &, u) satisfying:

@A <FAH)<B=M,={BST|KnBe# for all KeA'},

(b) p(T) = Bx (T) and By (4) < py(A) S p*(A) < %(A) for all AST

Proof. In the literature, there exists a series of “sandwich theorems” under
various conditions on § and g; see [1], [2], [4], [7], and [8]. However, I have
not found a version which fits to our objective and T have chosen to give
a self-contained proof.

Since S is a set lattice and f supermodular, we see that S, is an in-
creasing submodular set function.

(2) Let A, B T, Ke and Ge ¥ be given sets satisfying K < A UB and
B < G. Then K\G € A4, and since Ge¥ < ¥ (X'), we have K\Ge . Hence
B(K\G) < Bx(A4), and so by (1) we obtain F(K) < fx(A)+¢(G). Taking
infimum over G and supremum over K, we see that S, (AUB) < fy(4)+
o® (B).

Let D, < ... =D, < T be given sets and let < 27 be a finite g-algebra
containing D, ..., D,. Let us define Dy := @ and let & denote the set of all
non-empty atoms of the o-algebra X. Then & is a finite disjoint partition of
T and we denote by k the number of elements in &. Since f is increasing and
B (@) =0, there exists a unique integer 0 < r < n such that f,(D,) < oo if
0<v<rand By(D,) = 0 if r <v < n Let us define ¥°:={Se& | S < D,}
and %, := % \&° and let p and m = k— p denote the number of elements in #°
and %, respectively. Since D, € D; = ... €D, and D, X, there exists an enu-
meration Sy, ..., S, of &° and integers 0 = py < p; < ... < p, = p satisfying
D,=SPforall 0 <v<r where S°:=@ and §':=S,u...uS;for1 <igp.
If m>1, we choose S,,;e€% such that

Bx (8P US,+ 1) = min fy (SPUS)
and we define Seso

§P*l:=8P0US,+; and =L\ {Sp4a)
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If m> 2, we choose §,,,€%; such that

B (871 US,+2) =15?31y1}ﬂx(SFHUS)
and we define b
Sp+z:=Sp+1USp+2 and 9’2:=5/’1\{Sp+2}.

Proceeding similarly we obtain an enumeration S,, ..., S; of & and integers
0=po<p: <... <p, =p satisfying
@ D,=SP and B,(D,)< oo forall 0g<v<r,
(i) Bx(Dy) = oo for all r <v <n, =
(i) B (SY) = min;<,<x P (S71US,) for all p<i<k,
where $°:= 0 and §':=S,u...uS§; for 1Kigk :
Let u; € S; be an arbitrary but ﬁxed element in S; for all 1 < i < k and let us
define c;:= ﬁw(S")—ﬁf(S"‘l) for 1 <i<gq and c;:= oo for g < i<k, where
=inf{0 <i< k| Bx(S) = o0}

with the convention 1nf @D:=k+1. Since f is 1£1creasmg and B, (SP) < oo, we
have p < g < k+1, and if we define u(4):= Z; o Cila(u) for all A = T, then
p is a discrete measure on (T, 27) and we claim that the following holds:

(iv) 0®°(S) =Bx(S) = o forall g<i <k, Bx(S) < oo for all 0 <i < g;
(V) u(SH =Bx(S) for all i=0,1,...,k;
(vi) By (A) < pu(A) for all AeZ;
(vii) u(D,) = B,(D,) for all v=0,1,...,n
(viii) p(4) < @?(A) for all AeZ.
Proof of (iv). Since By is increasing, B (S') < oo for all 0 <i < g and
Bx(S) =00 for all g<i<k Let g<i<k be given. By (iii), we have
B (8% < Bx(8271US;), and so by (2) we obtain

0 =By (S) < Py (STT1US) < B (ST H+0%(S).

Since B (S*” 1) < o0, we get 0%(S) = oo = B(S%), which completes the proof
of (1v) . -

Proof of (v). Let 0 <i<k be given. If i < g, we have ¢;= Bx(S)—
By (S YHforall 1 <j<i, and since By (S°) = Bx (D) = 0 and u(S') =y, <j<iCis
we see that u(S%) = B (S)). If i > q, we have ¢; = 00 and B (S?) = oo, and since
(S = c;, we infer that B, (S) = co = u(S?). Thus u(S’) = B, (S for all
1igk

Proof of (vi). Let IT denote the set of all subsets of {1, ..., k} and let us
define S, := Uien S; for all e IT with the convention S, := (. Since 2 is a finite

o-algebra, we have X := {S, |ne IT}. Hence, we must show that f,(S,) < u(S,)
for all = I1. We shall do this by induction on the number of elements in 7. Let
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II; denote the set of all welIl with exactly j elements for j=0,1, ..., k If
nelly, we have n = @ and S, =, and so u(S,;) =0 = B, (S,) for all zell,.
Let 1 <j < k be a given integer satisfying u(S,) > B (S,) for all zell;_; and
let us show that u(S,) = B« (S,) for all ze II;. So let e IT; be given. Since j > 1,
we have n # @, and let i := max n denote the largest element in 7. If i > g, we
have u(S,) = ¢; = o0, and so u(S,) = B, (S,;). Then suppose that i < g. Since
t:=n\{i} eIl;_,, we have u(S,) > B (S.), and since i < g and S, = §', we have
B (S2) < Bx (S) < 0. Observe that §' = §1"1uUS, and S, = S ' S,. Hence,
by supermodularity of S, we obtain

B (57 )+ B (S2) < P (54 B (S) < B () +1(S).

Since S, = S, US; and S.nS; =@, we have u(S,) = u(S)+u(S) = u(S)+c;,
and since i < g, we get ¢; = Bx (S)—B(S' 1) < c0. Consequently,

Bt (S)+ B (S2) = B (S 1)+ B S+
< B (S + (S + ¢ = B (S + (S,

and since By (S') < oo, we infer that B (S,) < u(S,) for all neIl;. Thus, by
induction on j, we see that B, (S, < u(Sp) for all mell, and since
X = {8, | nell}, we have proved (vi).

Proof of (vii). Let 0 < v < n be given. If v < r, we have D, = §¥, and so
by (v) we obtain S (D,) = u(D,). If v > r, we get B, (D,) = oo, and so by (vi) we
have B, (D,) = oo = u(D,), which completes the proof of (vii).

Proof of (viii). Let AeX be given. If ¢¥(4) = o0 or A = @&, then (viii)
holds trivially. So suppose that 4 # @ and ¢¥(4) < 00. Then there exists ne IT
such that 7 # & and 4 = §,. Let i = max = denote the largest integer in m.
Since ¢ is increasing and S; < S,, we have ¢%(S;) < 0%(S,) = 0%(4) < o, and
so, by (iv), we see that i < q. By (2) and (vi), we obtain

B (5) < B (S'\S) +0% (Sx) < u(S)\S) +07 (S0,

and by (v) we get u(8) = B (S%) < co. Since p is a measure and 4 = S, = S,
the following relations hold: - V

-

#(A4) = p(Sx) = pn(8)—u(S\Sy) = Bx (5)—n(S\S2) < 0% (Sz) = ¢° (4),
which proves (viii).

(3) Let 2 = 2T be a non-empty set such that & is linearly ordered by
inclusion. Let A = T and DeZ be given and let M3 denote the set of all
pe M (T, 27) satisfying B (4) < pu(4) < ¢°(4) and u(D) = By (D). By Tycho-
nov’s theorem, [0, c0]?" is a compact Hausdorff space in the product topology
and observe that M% is a closed subset of [0, c0]*" forall 4 = T and all De @.
Let 4,,..., A, =T and D,, ..., D,e9 be given sets. Since & is linearly or-
dered by inclusion, we may choose the enumeration of the D;s such that
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D, = ... €D,. Applying (i}{(viii)) with X := ¢ (44, ..., 4, Dy, ..., D,), we see
that

n

ﬂﬂM

and since MY is closed and compact in [0, co]?", we have

N (Mi#0

AET Ded
Thus, there exis_ts‘ a content pe M (T, 27) satisfying (3)(a).

(4) Let M denote the set of all ue M (T, 27) satisfying u(T) = B (T) and
B (A) < p(A) < @®(A4) for all A < T. Let < denote the preordering on M given
by u; < u, if and only if p, (K) < u, (K) for all Ke A" Let (I', <) be a given net
and let (u,)yer S M be a I'-net such that (u,) is increasing with respect to
preordering <. Note that M is a closed subset of the compact Hausdorff space
[0, c0]?", and so there exist ue M and a subnet of (u,) which converge to x in
the product topology on [0, c0]>”. Since (1) is (<X)-increasing, (1, (K)) is in-
creasing for all Ke . In particular,
sup p, (K) = lim y, (K)

"r

yel
and, consequently,

u(K) =supp,(K) for all KeX'.
yell
Hence p, < u for all yeI'. Applying (3) with 2 := {@, T}, we see that M # @.
So by Zorn’s lemma there exists a maximal element 6 € M for the preordering
<, that is:
(ix) 0e M and if $e M and 9(K) = 6(K) for all Ke ¥, then 3(K) = 0(K)
for all KeJt”

and we claim that
(x) 6(K,) = 0(K;nK;)+0x(K{\K,) for all Kl, Kze.%’

- Proof of (x). Let K;, K,e X be given and let us define D : = Kl\Kz Let
Ked and Ge¥ be given. Since fe M and Ge¥, we have 0(G)<®(G) <
2(G), and since @ is a content,

0(K) < 0(K\G)+8(G) < 6(K\G)+¢(G).

Hence 0 is a supermodular set function such that the pair (6, g) satisfies con-
dition (1). So by (3) applied to (8, ¢):= (0, @) and the set @ := {@, D, T}, there
exists a content ve M (T, 27) satisfying 0., (4) < v(4) < 0%(A) for all A = T,
v(D) = 0x (D) and v(T) = 0, (T). Since 6 M, we have 6(T) = B4 (T) and
Bx(A) < 0(4) < 0%(4) for all A< T. Hence By (A) < 04 (4) < v(4) < 0%(A)
forall A = T and v(T) = 0 (T) < 6(T) = Bx (T) < v(T); that is, v(T) = B (T),

7 ~ PAMS 26.2
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and so ve M. From the relation v(K) 2 0(K) for all Ke# we infer that
v(K) = 0(K) for all Ke X" by (ix). Since K; and K, nK, belong to ) and
v(D) = 0, (D), we have

0(K1) =v(Kq) =v(KinK3)+v(D) = 6(K;nK3)+0x (D),
which proves (x).

Let # := #,, denote the set of all 8,,-measurable sets and let u denote the
restriction of 0, to .#,,. By [5], (1.23), pp. 23-24, we see that (T, %, p) is
a content space and, by (x) and [5], (1.24) and (25), pp. 26-28, applied to the
restriction of 8 to J, we have # = #. Let A= T and a < u,(A4) be given.
Then there exists Be # such that B < A and 6., (B) = u(B) > a. Hence, there
exists Ke # suchthat K = Band 0(K) > a.Since K€ B Aand Ke A < &,
we obtain a < 6(K) = u(K) < px(A) < p,(4). Letting a T u, (4), we see that
ty (A) = px (4), and since p(C) = 0(C) for all Ce A, we have u, (4) = uy (4) =
04 (A4) for all A <= T Hence (T, %, p) is an inner ¢ -regular content space
satisfying # = .4, , and so we see that (4)a) follows from Theorem 2.2 (1)a).
Since 8e M, we have p,(A)=0y(A4) = Bx(A) for all AS T and B, (T) <
p(T)<O(T)=Bx(T). Let Ac T and Ge¥ be a given set satisfying G = A.
Since Ge ¥ = ¥ (A") and 0e M, we obtain ¢(G) = ¢? (G) = 6(G), and by (4)(a)
we have Ge#. From the property 0e M we infer that u*(4) < u(G) =
0, (G) < 6(G) < 9(G). Taking infimum over G, we see that u*(4) < g% (4),
which completes the proof of (4)(b). =

4.2. THEOREM. Let 7: RT — R be an increasing sublinear functional and let
E(T) denote the set of all feR” such that

sup f(t)< oo  and inf f(¢) > 0.

T el >0)

Then there exist a content Ae M (T, 2"), an increasing sublinear functional
é: RT> R, and a net (Up)pen S My(T, 27) satisfying:

) 7°(f) < E(N) = & (f) = limpyp [ fdp, <y (f) for all feR".

. Q) AA)=¢&(1y) for all AS T, and 1 is a lower I (&)-representation of -

¢ and n. _ o

Q) 1°(N) < [* fdA = E(f) < n(f) for all fel' @)U (ENE(T)).

@IEmsFrOsL@) HsL@ Ln)sLQ

Proof. (1) Let us define @ := {#eR” | n(f) < o} and let R® be equipped
with its product topology. Let Y denote the set of all ve R® for which there
exists pe M, (T, 27) satisfying v(6) > j"T fdu for all 6€ @. Since 5 is an increas-
ing sublinear functional, we see that @ and Y are convex cones. Let n > 1 be
a given integer and let us define #,(0) :=#(0) if 6@ and 5 () > — 0, and

M,(0):= —n if 0 O and () = — o0. Then 5, R® and we claim that 5,eclY;
where cl denotes the closure operation for the product topology on R®.
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Suppose that 5, ¢clY. Since ¥ = R® is a convex cone, cl Y is a closed convex
subset of R®, and so by the Hahn—Banach theorem (see [3], Theorem V.2.10,
p. 417) there exists a continuous linear functional F: R® — R satisfying
F(n,) < c:=infF (v).
veY

Since Y is a convex cone and ¢ > — o0, we have ¢ =0, and since F is a con-
tinuous linear functional, there exist 7€2® and xeR"™ such that

F(o)= ). x(0)o(0) for all geR®.

fen

Let 3em be given and let us define g4(9):= 1 and g4(8) := 0 for e O\ {9}.
Then F(gg) = x(9), and since g4 = 0, we have gge Y. Hence x(3) = F(og) =
c¢=0for all 9em. Let te T be given and let us define x,(0) := 0(¢) for all e @
and ¢:=Y,  x(6)0. Since «,(0) = [, 0d5,, we have k,€ Y and ¢ () = F (x,) =
c¢=0for all teT, and since x(d) > 0 for all 6= and # is an increasing sub-
linear functional, we obtain

*

0=c>Flm) =3 xOn0) > ¥ xOn0) >n(4) >0,

en Oex

which is impossible. Hence 5,eclY for all n > 1. Let Y denote the closure of
Yin R® (with respect to the product topology). Then ¢l ¥ = YN R®, and since
fneclY and #,(0) — n(0) for all G ®, we have nge Y, where 5o denotes the
restriction of # to the set ®. Hence, there exist a net (I, <) and a I'-net
(@y)yer Y such that n(6) = lim,,r0,(0) for all 0@, and since g, Y, there
exist measures v, € My (T, 27) such that |, 0dv, < g, (0) for all 6 @. Hence, we
have

@) limsup,;r{,0dv, < lim,;;g,(6) = n(f) for all fe®

and by Thychonov’s theorem there exists a net (II, <)} and a subnet (Vy(p)zer Of
(v,) such that the limit

E(f):=1lim _f dex(n)
ztl

exists in R for all feRT. Since I} (v) = RT for all ve M,(T, 27), we see-that £ is
an increasing sublinear functional satisfying &(f) = &£°(f) for all feR” and by
(i) we have ¢ () < n(P) for all 8¢ @. Since n(f) = oo for all fe RT\O, we have
E(f) < n(f) for all feRT”. Applying this to —f, we infer that #°(f) < £(f) <
n(f) for all feR", and so we see that (1) holds with pu,:= v,

(2)+4). Let us define 1(4):= £(1,) for all A = T Since & = &°, it follows
that ¢ is additive on R”, and so we see that A is a content on (T, 27). Let
fel(£) be given. By Theorem 2.1 (7), we have

Fm@=EMﬂ>mh
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and by [6], Theorem 2.3.9, p. 310, and additivity of ¢ on R%, we obtain

ifum > x)dx < E(f]) < .

Since .4, = 27, we get W (1) = R”, and so by Theorem 2.1 (8) we have feI!(1);
that is, I*(£) = L' (u) and the remaining inclusions in (4) follow from (1). Let
fel (&) be given. Then f~ eI*(¢) < L' (1), and so we see that §y f di > —oo.
By Theorem 2.1 (7), we have

{*ftdi= Tl(fi > x)dx,

and since f~eL'(), we get [*f~di=], f di<w. So by [6], Theo-
rem 2.3.9, p. 310, and Theorem 2.2.6, pp. 294-295, and by additivity of &, we
have

[, fTdA=¢(f)<oo and [*fHAASE(ST).
Since & =¢£° and 0 < €(f7) < o0, the following relations hold:

SN <A+ =EUN-E()=LUN+E(=fT) <L)
Hence £(f) = ¢(f")—¢(f7), and so by Theorem 2.1 (5) we have

Fraav={frar—f*frai<&(fH)—e( ) =&y

Thus, by (1), we see that 4 is a lower L (£)-representation of £ and #. In
particular, (3) holds if _f fdi= o orif fel*(). So suppose that feL' (&)n
E(T) and that [* fdi < co. Then * fdi < &(f), and since f e E(T), there exist
positive numbers b > a > 0 such that al, < f* <b1,, where 4:= {f > 0}.
Since a>0 and {* f*dA < oo, we obtain ¢(1,)=A(4) <o and E(f*) <
bA(A) <oo. Hence, by Lemma 3.3, we have f*elI*(£), and so

—fel-(®) and &(f)= =& ()= (=N < =" (=Ndu=], fan,
which -,completes the proof of (2)4). = : -
4.3.. THEOREM. Let #: RT - R be an increasing sublinear‘ functional, let

A" < 27 be a given set lattice and let us define W := W (T, 4()). Then there
exists an inner A -regular content space (T, #, p) satisfying:

() X sF(H)=B=M, ={B<T|KnBeR for all KeX'}.
() 1x(A) < pe (A < p*(A) <" () =n" (1, for all AST.

Q) If n"(1x)< oo for all KeA', then pu is finitely founded and
peM, (T, A).

(4) p is a lower (WL (u) 2% (n))-representation of n and we have
AeF (A)NG(A) and u(T\A) =0 for all AS T such that A2|)A.
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(5) If pis finitely founded, then p is a lower (W 0 8% (&))-representation of
n and u is a lower 9% (¢)-representation of n".

(6) If pis finitely founded, X\, < # and u(K,)— 0 for every decreasing
sequence (K,) = A" such that K, | D and u(K,) < oo, then (T, &, u) is a measure
space.

Moreover, if A < RT is a non-empty set satisfying

O:=AnNX YN W

and w2 (f) < n(f) for all feL%(n), then u is a lower 2% (n)-representation of
n and we have:

(7) —oo <[, fap <[* fdu <n(f)=n"(f) for all fe2%(y) and for all
V=26. ‘

®) If & =%, then p is finitely founded and pe M, (T, X).

() Let T be a topological space such that A" = %, and # = A (T) =
F(A). Then \ ) = |) &, and we have:

(@) peMg(T|U) for all U< T such thar U= ().
(b) If ©* = Lsc(T), then | ) &, is open and pe M3(T|U) for al U< T
such that \ ) < U c | &,.

Proof. (1)«3). Let AeM(T,2") be the content from Theorem 4.2.
Then 4 is an increasing modular set function on (T, 2T) and the triple
(B, 0. 9):= (4, 4, (X)) satisfies condition (1) in Theorem 4.1. So by Theo-
rem 4.1 (4) there exists an inner ¢ -regular content space (T, #, p) satisfying (1)
and Ay (A4) < pu, (4) < u*(A) < A¥9(A) for all A< T. Hence (2) follows
from Theorem 4.2 and Lemma 3.1 (5), and (3) follows from (1), (2) and Theo-
rem 2.2 (1)(c).

4 Let feWnI: (uyn L% () be a given function and let y > x > 0 and
¢>0 be given numbers. By Lemma 1.2, we have f*eW(T, 4(#)) and
fTeW(T, # (X)), and since {@, T}e % (H)NF (X), there exists GeF (X
and Fe% (A) satisfying

Cft>yleGe{ft>x} and {f- >y cFc{f >x}
By Theorem 4.2, we have %" n S X%, and since f~ eo(T, A7), there exists
Ked such that A({f~ >x}\K)<e Since Fe#(AX), we have C:=
FnKeX, C<{f” >x} and A(F\C) < &. From the inequalities 1 (G) < 1(G)
and A(C) < u(C) we infer that
EE(fT > <p@) < AG) <A > x),
AfT > <AF) = AO+AFNC) < p(O)+e < pu*(f~ > x)+e.

Letting ¢ | 0, we see that u* (f " > ) < A(f* > x)and A(f~ > p) < p*(f~ > x)
for all y > x > 0. Since x/yu* (h > x) and x VA (h > x) are decreasing, there
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exists a countable set Q < (0, o0) such that p*(f* > x) < A(f* > x) and
AfT > x)<u*(f” >x) for all xe(0, 0)\Q. Hence, by Theorem 2.1,

(*frapu<(*f~di and [*f-di<[*f dp,
and since f~ eLl*(u), we have
f A< frdas, fdp.

So, by Theorem 2.1, :

% p * N - * . - i

Ffdp=1{"frap=f f-du<{" fraa~f, f~di=1 fda,

and since felL’ (1) and A is a lower L' (y)-representation of 5, we obtain
j* fdp <n(f) for all feWnI¥X (u)n L% (n), which proves the first statement
in (4). Let A = T be a given set satisfying 4 2 ) &#". By Lemma 1.1 (1), we have

Ae F (A)n%(X), and since p is inner ¢ -regular and @ is the only set in
A" which is contained in T\A4, we get u(T\4)= 0.

(5) By (1), we have W = W (u), and so by Theorem 2.1 and finite founded-
ness of u we see that ¢~ e L(u) for all ¢ € W. Hence, by (4) we infer that u is
a lower (W n 2% (¢))-representation of #, and so by Theorem 3.4 (5) it follows
that u is a lower 2% (¢)-representation of n".

(6) Let us define ¢ := {KeX | u(K) < oo}. Since p is finitely founded
and inner S -regular, u is inner #-regular and by (1) and Theorem 2.1 (9) we see
that u is complete. Hence ue M, (T, %), and so (6) follows from Theorem 2.3 (5).

(7) follows from Theorem 3.4 (5), and since RT <= 2% (i), we see that (8) is
implied by (3) and (7) with V:= W, :

(9) By (8), we have ue M, (T, A'), and so we see that (9)(a) follows from
Theorem 2.4 (1). Suppose that @* < Lsc(T) and let te | ) &%, be given. By (7),
we have 1°(1y) =n(1y) < co. Consequently, there exists e @ such that
0>1, and n(f) < co. Since 0(t)>1 and 0eO®* = Lsc(T), we see that
G:={0 >4} is an open set containing t, and by Lemma 3.1 (1) we have
1(1g) < 27(0) < oo. Hence n*™ ({t}) < n(lg) < o, and so G | ) &,. In par-
ticular, | ) %, is open and by Lemma 1.1 (2) we have 4(T) < %(¢"). So, by (2),
O {t}) < n* D ({t}) < oo for all te| ] %,. Hence (9)(b) follows from (9)(a). m
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