PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 26, Fasc. 2 (2006), pp. 315-366

ON A PARTICULAR CLASS
OF SELF-DECOMPOSABLE RANDOM VARIABLES:
THE DURATIONS OF BESSEL EXCURSIONS -
STRADDLING INDEPENDENT EXPONENTIAL TIMES

BY

J. BERTOIN (Paris), T. FUJITA (Tokyo), B. ROYNETTE (VANDOEUVRE LES NANCY)
AND M. YOR (PARIs)

Abstract. The distributional properties of the duration of a recur-
rent Bessel process straddling an independent exponential time are
studied in detail. Although our study may be considered as a par-
ticular case of Winkel’s in [25], the infinite divisibility structure of
these Bessel durations is particularly rich and we develop algebraic
properties for a family of random variables arising from the Lévy
measures of these durations.
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1. INTRODUCTION

1.1. The excursion durations 4, (0 <o < 1) of Bessel processes. Let
((R;, t = 0), P®) denote a Bessel process starting from 0, with dimension
d=2(1—a), 0<d<2 (or 0<a<1) For any £ >0 let us defing

(1.1)  g®:=sup{s<t;R,=0} and d®:=inf{s>t; R,=0}

so that A® := d® —g'® is the length of the excursion above 0, straddling ¢, for
the process (R,, u = 0).

We denote by e a standard exponential variable, independent of (R,,, u = 0).
In a recent work, Fujita and Yor [12] studied the laws of

(1.2) sup R,, supR,, sup R,.

s<g® s<e 5€d®

Here, in a similar way, but focussing on durations rather than on heights, we
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shall study exhaustively the law of
a3 4y:= A9 = dP—g.

In a first step we compute the density Ja, of 4,:

(14) fou) = g ¥ P A= ) Lz
and we prove that
(1.5) T Efexp(—Ad)] =(1+A—2* (420

Note. We hope to devote another paper to the study of the remarkable
properties of the subordinator (4,,, (¢), t > 0) whose value at time 1 is A4,,;.

1.2. A general result by Winkel [25]. In fact, formulae (1.4) and (1.5) are
a very particular case of a general result by Winkel [25], which we now de-
scribe.
Let (z;, I > 0) denote a subordinator with associated Bernstein func-
tion &, i.e.
Efexp(—At)] =exp(—I®(A) (4, 1=0).

We define, for any t > 0,

(1.6) L, =inf{l: 1, > t},

1.7 O, =tq,—t (the overshoot), =~ U, =t—1(,- (the undershoot),
and

(1.8) A =Tay—Tey- = 0.+ U,

For e, an independent standard exponential variable, Winkel computes (see
Corollary 1 in [25]) the Laplace transform of the 7-tuple:

(e, Le, -Ue, Oe, TL:, TLQ, AJ, -

waer

As a'very partial result of this multidimensional formula, he obtains
O(1+2)—P(4)
(1)

Hence, formula (1.5) is formula (1.9) applied to the subordinator (z;, [ > 0)
defined as '

(19) E[exp(—Ad4)] = (A =0).

n=inf{t>0: L,> 1},

where L, denotes the local time at 0 for the Bessel process (R,, t > 0), ie.
(7, 1 = 0) is a stable subordinator with index a. We note that from (1.9) we
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easily deduce the law of 4,:

45(1) 45(1)

where v denotes the Lévy measure of the subordinator (z;, I 2 0) which admits
c as its translation coefficient. There again formula (1.4) is a particular case of
(1.10) since the Lévy measure of the stable subordinator with index « is equal
up to a multiplicative constant to (dx/x**!) 1,0

To summarize, the formulae (1.4) and (1.5) are doubly particular cases of
the results of Winkel [25], since:

— here, the subordinator (z;, I = 0) is a particular one, namely the a-sta-
ble subordinator;

— our formula only discusses the law of the r.v. 4,, and not that of the
7-tuple

(1.10) P(4,edx) = ———v(dx)+—=0d,(dx),

(e, L., U, O, Twy-> TL,, Ae).

1.3. The self-decomposability of the variable A4, (0 < a < 1). Recall that
a random variable 4 is said to be self-decomposable if, for any c€]0, 1[, there
exists another variable A such that

(1.11) A% cA+ 40,

where A and A4 on the right-hand side are assumed independent. The class of
self-decomposable laws (or variables) is a subclass of infinitely divisible laws;
see, e.g., Sato [21].

In order to state our main result about the variable A,, we need the
following definition:

Let « > 0 and let K be a positive r.v. We shall say that (¥, ¢t = 0) is an
(o, K) compound Poisson process (valued in R.) if

N¢
(1.12) Y:= )Y K,

where (K,; K,, ...) is a sequence of i.i.d. variables, distributed as'K, and with
(N,, t = 0) a Poisson process with parameter o independent of the sequence
(K;,i=1,2,..). In particular, N, is a Poisson variable with parameter ot.
THEOREM 1.1. For any a€]0, 1[, we have:
Point 1:

1.13) A (lg_y)?(1—u)ag)7<1—a)’
(113) @ * Ban Ut

where Y -4 and Pg,1) on the right-hand side are two independent r.v.’s with
respective laws gamma (1 —o) and beta (x, 1), and U denotes a uniform variable
on [0, 1], independent of 7y -q.
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(i) The density of A,, denoted here by f,_, is given by

(1.14 S = p T 1= Lo
(ili) The Laplace transform of (the law of) 4, is
(1.15) Efexp(—A4)] =(1+4)—4* (4=0).

Point2.(i) 4,is self decomposable, and the Levy—Khmtchme formula takes
the form .

(116) E[CXP(—/IA,)} = CXP(—(I_O‘)}J(I—B_"")E[exp(—_xGa)] dx_x),
0

where G, denotes an r.v. with values in [0, 1], and density

asin (Ta) S Y Y
(—a)r (=9 —2(1— ) w* cos (ma) +u 01 -

117y fe, ) =

(ii) The r.v. G, is characterized by its Stieltjes transform

(1.18) (e):= {7, (;L - )

B a /1"_1—(14-/1)1_1
Tl—a (1+Ap—2

(4A>0)

or, equivalently, by

1 a 1—(1+4p1
. — = = : > 0).
(1.19) E[exp(—A1eG,)] E(1+AG¢) 1= A+aF—1 1420
Point 3. Define (the law of) the r.v.
(1.20) K, "2 ¢/G,,

where ¢ and G, on the right-hand side are assumed independent. In particular,

wnm -

P(K,>x) = (Gi > x) = P(e > xG,) = E [exp(—xG,)].

(i) There exists a (1—a, K,) positive compou"nd Poisson process (Y;, t = 0)
such that

(1.21) 4,"2 | et dy,.
0

(i) A, satisfies the affine equation
(1.22) 4,2 yra-a, 1K),
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where U, A, and K, on the right-hand side are assumed independent, and U is
uniformly distributed on [0, 1].

We note that decompositions such as (1.22), and below (1.69), were also
studied in Jurek [14].

1.4. Some properties of the r.v.’s G, (0 <« < 1). Recall that, for any
ae]0, 1[, the r.v. G, is defined either via its density (1.17) or via its Stieltjes
transform (1.18) (or (1.19)).

THEOREM 1.2. Point 1. The law of Gy, is beta (3, ), i.e. Gy is arc-sine
distributed: ' '

(1.23) Je1, (W) = .

ﬁ Lo,17(w).

Point 2. Let p > 2 denote an integer, and let B,, ..., B,_, be a sequence of
p— 1 independent variables such that, for anyi= 1,2, ..., p—1, B; is distributed
as beta (i/p, 1—i/p). Let ¢, denote a variable which is uniformly distributed on
{1, 2, ..., p—1} and is independent of the sequence (B;),i=1, ..., p—1). Then,
for a = 1/p, we have

(1.24) G.= Gy, "2 B,,,

ie.
p—1

(1.25) Joy, W) = (pl D, Z sm(p) =1 (1 — )P 14 4 (1)

=1

1 ret . (mi ~if ilp—1
(1.26) =20 _; sin( - Ju™ P (=P 10,1 w).
Point 3:
(1.27) G, "2 1-a,.

Point 4. As o — 1, G, converges in law to an r.v., denoted by G, which is
uniformly distributed on [0, 1]. -

Point 5. As a >0, G, converges in law to an r.v., denoted by-Gq, which
satisfies:

(1.28) (i) Jeo () = %(f (sin (ep)) u?~* (1 —u)~ dB) 10,1, (u)
0

_ 1 1 o1 )
u(1 =) n2 4 (log (1 - u)/u))2 LT
(1.29) (ii) Go "ﬂ’m,

where C is a standard Cauchy r.v.
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(i) The Stieltjes transform of (the law of) G, is given by

j‘ fGo (u)

(1.30) §eo)(B) =) 57

1 1 1
- E<A+Go> T i+ Diegeny 7

L5. The variables G,, the unilateral stable laws and the Mittag-Leffler
distributions. Let 10, 1[. We denote by T, a unilateral (R+-valued) stable r.v.
with parameter u:

(1.31) E[exp(—AT)} =exp(—4") (4=0).
Let T, be an independent copy of T,, and define
(1.32) Z,: "= (T T

On the other hand, we denote by M, an r.v. distributed with the Mittag-Leffler
law of index u, that is (see [7], p. 114)

o0 AH
(1.33) E[exp(AM,)] = Zom (AeR)
and, consequently,
’ 1
(1.34) E(M?) = 1%3%—1)) > —1)

from which we deduce
(1.35) M, 1Ty
There exists a remarkable link between the variables G, and Z, _,.

TuHeOREM 1.3. Point 1 (Lamperti [16]). The variable Z,, has the density

sin (ry) 1
= 1
f2.09: nu  x2+2xcos(mu)+1 ¢

=0) .

(1.36) -

Point 2. For any ae(0, 1):

. aw, Z rx) law (Tl - rz)(l —oe
137 taw_(Z1- (taw)
( ) (l) G 1+(Zl )1/& (’Tll_a)(l—d)ll_l_ (7‘1_(1)(1_‘1)/1

(this relation implies obviously that G,'2’1—G,).
(M 1- a)lla
(M- )"+ (M _ )

where M _, and M’ ., on the right-hand side are two independent copies of
Mittag-Leffler r.v.’s of index 1—a.

(1.38) (ii) G, 'z
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1.6. The “algebra” of the variables y,, G,, and X, ,. It is a classical result
that, if y, and 7y, denote two independent gamma variables with respective
parameters a and b, then

Ya (law)
139 ’ a+ = abs /a ’
(1.39) (?a"‘?b Y 'l’b) (Bab> Ya+b)
where 8, and y,+, on the right-hand side are independent and distributed as
beta (a, b) and gamma (a+ b), respectively. From this relation we deduce, in
particular,

(140)  Vorp Bon™™y, and e Pui—s"=y, if b=1—gand O<a<]l.

It is the kind of properties such as (1.39) and (1.40) which justifies the usual
terminology of “beta-gamma algebra” (see also Dufresne [10] for further de-
velopments). Our r.v.s G, (0 < a < 1) also enjoy — together with the r.v.’s
X, defined below — some “algebraic properties” akin to those of the beta-
gamma algebra. We note the fact that, for p > 2, p an integer, and « = 1/p, the
density of G, is a barycentric combination of some beta densities, as asserted
by Theorem 1.2.

TueoREM 1.4. Point 1 (Existence of the variables X,,). For every a, b
such that 0 <a < b <1 there exists an R, -valued variable X,, such that

b(1+4°—1
a(l+AP—1

Point 2. These variables X,, are infinitely divisible and satisfy: for any
sequence 0 <a; <a, < ... €ag,<1

(1.41) E[exp(—AX.4)] = (4=0).

n-1
(1'42) Xal,a,.(lgv) Z Xﬂi.ﬂ(-{-]! Xa,a =0,
i=1

where the r.v.’s on the right-hand side are assumed independent.
Point 3 (Algebraic properties). For any o, 0 <a <1,

(1.43) o7 e(lgt')el Ga+e2G1—¢: . T

e -

where ¢,, ¢,, G, and G_, on the right-hand side are independent, and e, ¢4,
e, are standard exponential variables. In other terms, the variables G, and
Gy, yield an affine decomposition of the exponential law.

Point 4. More generally, for any ae[3, 1],
(144) eGa (la=W) Y(l —a) +X1 —a,a

where, as usual, the r.v.’s which appear on each side of (1.44) are assumed in-
dependent, whereas for ae[0, 4]:

(145) Xo1-ateG"® -y
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We note that (1.44) implies that, for « > %, G, is infinitely divisible and
that the addition term by term of (1.44) and (1.45), where a is replaced by 1—a,
implies (1.43).

1.7. The r.v’s G, and their “algebraic” properties (0 < «, f < 1). Recall
that the (laws of) G, (0 < « < 1) are characterized by

1 o 1=(1427!
(1.46) E(1+m,,,)‘1—a arar—1 *20

This relation led us to raise the following questions:
* Do there exist variables G,z such that

1 o I—(1+AfE
(147) E<1+AG,,,,)"1—3 (1+2—1 ?

o If yes, do these variables have “algebraic” properties similar to those
described in Theorem 1.4?

The next theorem answers these questions in the affirmative.

THEOREM 1.5. Let o, B be such that O <a, B < 1.

Point 1 (Existence of the variable G,g):
(i) There exists an r.v. G,g, taking values in [0, 1], such that

1 ) o 1—(1+Aapt

= > 0).
T+i6.,) ~1-p a+r—1 *>9

(i) In close relation with (1.48), the Stieltjes transform of G,y is

g1 )_ o (1144 YAk
A+G,;) 1-8 (1+ 24— A2

(iii) The density of G,js, denoted by fg, ,, is

(148)  E[exp(—AeG,z)] = E(

(1.49) (4> 0).

(150) " fouy @ = L@ 55

Q —.u)u”"1 sin (o) +u* (1 —wff " sin(nf)+ (1 — w2~ u*~#sin (n (a— p)
% (1 — % —2 (1 —uf u* cos (na) + u*®

vam -

(note that it is not quite obvious to verify that J6., =0 for a < p).
(1.51) (iv) 6.."2G,.
(1.52) (v} G, 1-, is a beta (¢, 1—a) ruv.
Point 2 (Algebraic properties). We have:
(1.53) () if a4+B>1, then ¢Gop™® yu-p+X1-pas
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(1.54) (ii) if a+B <1, then yy—p"2 eGop+Xo1—p;

(1.55) (i) for all O<a, B,y <1, &,Gup+e; Gy, "2 e, G, +¢,Gy;

and, if a+p =1, from (1.55) and (1.53) we obtain

(1.56) Ya-pt+Xi-paterGg, e, G,y t+e, Gy,

whereas, if o+p <1, then from (1.55) and (1.54) we get

(1.57) Ya-p+eGp, "2 e Gyt ey Gyt X, 15
() if 0<a< B <1, then e(1—G,p) "2 -0y +¢Goyp,

law)

if 0<pB<a<l, then yu-p+e(l—G,p) "2 eG,,.

Of course, in all the above relations, on each side, the featured r.v.’s are
independent. The relations (1.43)+1.45) are particular cases of the relations
(1.53)+1.57).

1.8. On (4, G) self-decomposable variables. The formula (1.16), where we
do not mention the index a:
® d
(1.58) E(e %) = exp(mé } (l—e"l")E(e"‘G)?x),
0
led us to study the r.v.’s 4 whose laws may be obtained from those of G via the

relation (1.58), thus generalizing the relation between A4, and G,.

Remark and definition. Let G be an R,-valued r.v. The following
properties are equivalent:

(1.59) (i) TE(e"‘G)d;x < o0,

(1.60) (ii) E(log* (1/G))< oo,

(1.61) (i) T(XA 1)E(e"‘6)d?x <o,
. o

: L gy 0% . . ' g
ie. the measure E(e”*%)— 150, is the Lévy measure of a subordinator,
X

(1.62) (iv)y E (log(l+g—>> < o for some (hence all} 4> 0.

Let G satisfy one (hence all) of these conditions and let 6 > 0. We say that an
r.v. 4 is (0, G) self-decomposable if

(1.63) E(e™*) = exp<—5 af (1—e~*x)E(e-xG)%cf> (4 =0)
(1.64) =exp(—0E(log(1+4/G)) (1=0).

8 — PAMS 262
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(Note that (1.63) may be considered as a definition of the law of 4 in terms of
(6, G), whereas (1.64) follows from (1.63) via the simple Frullani integral ar-
gument; see, e.g., Lebedev [17], p. 6.)

The (4, G) self-decomposable r.v.’s are closely linked to the standard gam-
ma subordinator; in fact, their laws are the generalized gamma convolutions
which have been studied extensively by Bondesson [5], [6].

THEOREM 1.6. Let (y,, t = 0) denote the gamma standard subordinator, i.e.
the subordinator such that -

| 1 '
— = = - >
E[exp (—4y)] T exp(—tlog(1+2)) (f, iz 0)
and let h: 10, o[ = R, a Borel function.
Point 1. Let
o
(1.65) = | h(u)dy,.

<

Then A, is finite as. if and only if
(1.66) {log{1+h(u)du < .
]
Point 2. Under the hypothesis (1.66), A, is self-decomposable and

E [exp(—A4,)] = exp(—?(l —e"F, (x)%")
0

Fy(x):= jexp( " ))

Point 3. For all positive rv.s G satisfying (1.59) and all 6 > 0, there
exists h satisfying (1.66) so that

(167) '~ OE(e™™) =Fy(x)= | exv( I )> e

In other terms, all r.v.’s A which are (3, G) self-decomposable can be written
as A" Ay because, by (1.67),

E[exp(—Ai4,)] = exp (—5 I § —e""‘)E(e"‘G)d?x)

Here are some further precisions about this theorem:
o An explicit relation between k and G as in (1.67) is

with

h(u) = for ue(0,0) and h(u) =0 for u> 394,

1
G (/o)
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where ¥ ™! denotes the inverse (in the sense of the composition of functions) of
the distribution function of the r.v. G.

» Moreover, it is known (see [6], and also [23], Theorem 5.24, p. 362) that
a positive r.v. 4 is of the form

A= { ha)dy ),
0

i.e. its law is a generalized gamma convolution if and only if its Laplace trans-
form y 4(4) := E (e~ *4) is hyperbolically completely monotone, i.e. it satisfies:
for all u > 0, the function

(0+1/v) > Y4 (uv) Y 4 (u/v)
is completely monotone, as a function of (v+1/v).

THEOREM 1.7. Let G satisfy (1.60) and let A denote an r.v. which is (8, G)
self-decomposable.

Point 1. There exists a (3, K) positive compound Poisson process
(%, t = 0) with K"2¢/G, such that

(1.68) A:= {etdy,.

O'——-B

Point 2. A satisfies the affine equation
(1.69) AU (44 K),

where the r.v.’s U, A and K on the right-hand side are independent, and U is
uniform on [0, 1].
Point 3. Let y (i) := E(e™*4). Then the Stieltjes transform of G equals

1 v @
1. — — E(e™*4 = 0).
(170) E( HG) ;W= —g(0gEE™) (>0
- We note that Theorem 1.7 presents the points 2 and 3 of Theorem 1.1in
a more general set-up. We shall now establish a converse of Theorem 1.7
which, essentially, hinges upon the properties of the inverse Stieltjes transform.
This leads to the following:

DEFINITION. A function F: ]0, co[ — ]0, co[, which is C%, is said to satisfy
the condition (ST, 6) (obviously, ST stands for Stieltjes transform) if:

(i) F extends holomorphically to C\]— oo, Of;

(ii) for any u > 0, the limits

Fi(w:= lim F(—u+in), F_(@u):= hmF( u—in)

70+ =04+
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exist, are continuous, and satisfy

(1.71) Im(F_(w—F,.)>0 for any u > 0;
(iii) for AeR, lim,_,, AF (%) = 4.
This definition proves useful in the following:

THEOREM 1.8. Let A denote a positive r.v. with Laplace transform y, i.e.
E(e™*) =y (1) (A = 0). Assume that F := —/'/\{y satisfies the condition (ST, 9).
Then '

. 1
—_ _ _ >
f): 2ﬂalm(F w—F,) @=0)
defines a density of probability on R., and A4 is an rv. which is (9, G)
self-decomposable, when G denotes an r.v. with density fgz = f.
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L. Bondesson about generalized gamma convolutions.

2. PROOF OF THEOREM 1.1
2.1. Proof of point 1 of Theorem 1.1. First we recall this point:

@1 6 4,0 Hs,
ﬁ(tz,l)

where Y —q and P,y on the right-hand side are two independent respective
gamma (1—o) and beta (x, 1) variables.

. (i) The density f, of A, is given by -

@2 for b= gy e o g (9
(i) The Laplace transform of (the law of) A, is
(23) Efexp(—A4)] =(1+4—=4 (120). .

As indicated in the Introduction, this point is a particular case of the
results of Winkel [25]. However, below, we give three proofs of this point. The
first and second proofs are very specific to the Bessel process context in which
we are working, whereas the third one, of a more general kind, uses arguments
close to those of Winkel.
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2.1.1. First proof of point 1 of Theorem 1.1.
2.1.1.a. By scaling, we have

(24) « 2e(di—g1) "= e((1—g1)+(@d—1).

Furthermore, (1—g,, d1—1)““"(1 1» R2 T{V), where the pair (1—g,, R,) is
independent of T =inf{t > 0: R“) =0}, with (RY), u > 0) being a Bessel
process starting from 1. This is obtained by applying the Markov property to
R at time 1, together with the scaling property. It is well known (see e.g., [8];
[26], p. 14; [13]) that - .

(2.5) T3 (law) 1/29@),

where y) is gamma (x) distributed. Thus, from (2.4) we get‘

aw 1
(2.6) Aa“=’e((1—gl)+R%2 )
Y@

where the pair ((1—g,), R,) on the right-hand side is independent of y,,. More-
over, classical properties of the Bessel meander (see, e.g., [8], where these
properties are recalled) imply

2.7 (R}, 1—g1) "= (1 —g1) 2¢4, (1—gy)),

where e, is a standard exponential variable, independent of g,, and g, is beta
(@, 1 —a) distributed. Bringing (2.7) in (2.6), we obtain

Aa“%"’(l—gl)e<1+°—1),
T@

where the r.v.’s g4, ¢, ¢, Y on the right-hand side are assumed independent.
Furthermore, the classical properties of the “beta-gamma algebra™ imply
€1 (daw) 1

(1—gy)e"® ')’(1 -g9 and 1+ —

) Y@ Be.1y

and hence, finally, '

' 4, (law) Y1 ~a) o)

ﬁ(a 1)

2.1.1Lb. The expression of the density (given by (2.2)) of 4, follows from
(2.1). Furthermore

1-a 1-a
E —AA) =E )ﬂ’“ “’)il (___1_> _ ( B >
[exp(—A4,)] [exp( B E Y E Ttho

h u 17e a—1 x—1 a a
—aj<m> u du—a£(11+u) du = (1+2)—2

o
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2.1.2. Second proof of point 1 of Theorem 1.1. It hinges upon the
same arguments as in the preceding proof, but it has a more analytic flavor. We
shall show that

2.8) Efexp(—240] = (1 4+AF—A* (43 0).

We denote by P® the distribution of the Bessel process, starting from 0, with
dimension d = 2(1—¢«) (0 < & < 1), and let (4,:=t—g,, t > 0) denote the age
process of excursions of R away from 0. Then, for fixed ¢ > 0, we have

29  E®[exp(—i(d—g))] = E®[exp(—A(4+ T, 00))]
(2.10) = E@(exp(— 14, ES [exp(—ATy)]),

where T, denotes the first hitting time of 0 by (R,, t = 0) and (0, t = 0) is the
usual family of translation operators. The Laplace transform of T;, featured in
(2.10) may be computed explicitly (see, e.g., [13]), in agreement with (2.5):

(2.11) E® [exp(—2(d—gJ)] = E® [exp(—14) Ko (R,/22) (Rin/24)]

(212 = E@[exp(—A4)(®(1, 1—a, A4,)

—I (1—a)(A4)exp(24)],

where K, denotes the Bessel-Mac Donald function with index x, and
&(1, 1—a, -) denotes the confluent hypergeometric function with parameter
(1, 1 —o) (see [17], p. 260). We now replace in (2.12) the fixed time ¢ by a varia-
ble e, exponentially distributed and independent of (R,, u = 0). Note that, by
scaling,

(2.13) 4.4 " By 00y -0, ,
and hence, using the definition of the hypergeometric function @(1, 1—«, ),

E [exp (_ Ad u)] = E® [exp ( -4 (de_ ge))]

1 0 0

= e ¥ 7z d(1, 1—a, Az)dz— (e *(Az)*z"%dz
ri=o, ( A

2 e e w KT (1—0) (12)* .
[y o3 e )] e

Consequently,

w o pLY I
Elerp(~1240) = ( £ Jare v o)

=0

- Ilk « e_“uk—l! ]
- (kgor(l—d-l-k)£(1+A)k—a+1du>——/1
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—i('l)k L —/1'J=—(1+/1)°=-1—1 -2
=AY L 1—2/(1+4)

=(1+1—2.

2.1.3. Third proof of point 1 of Theorem 1. It hinges only — as in
the proof of Winkel [25] — upon the fact that the process

g:=inf{t >0, L,>1}, 1>0,

is a stable subordinator, without drift term, where (L,, ¢t = 0) denotes the local
time process at 0 of (R, t = 0). Thus

rl—a
rl+o

(2.14) E[exp(—4it)] = exp(—l 2‘“/1“) =e W (1>0),

where & (1) is the characteristic exponent of (;, | > 0) (cf. [8] for a discussion of
the values of normalization constants related to (L, t = 0) and (7, [ = 0)).
Now, let in general (z;, I > 0) denote a subordinator without drift. In other
terms:

(2.15) E[exp(—At)] = exp(—1® (1)
with
D) := exp(—z(l—e“")v(dx)),
where v denotes the Lévy measure of (z;, [ > 0). Let us define
L:=if{l;7,>t}, t=0,
and let ¢ denote an exponential variable, with mean 1, independent of (z;, I > 0).

LEMMA 2.1. Let

(2.16) - . - A("-’) = T(L!)—T(Lg)k . ’ 7 -
Then

d(1 _
217) E[exp(—adoy) = 24 FA—2()

?(1)

Clearly, point 1 (iii) of our Theorem 1.1 is an immediate consequence of
(2.17), when Lemma 2.1 is applied to the subordinator defined by (2.14), i.e.
when

45(,1)=F(1_a)

2742 (120).

I'l+a)
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Proof of Lemma 2.1. By the definition of A, we have
E[exp(—A49)] = E(f exp(—t —A(t,—Tq,)-) dt)
0

=E() | e'exp(—Ad)dt) (where d;:=7,—1-)

1>07;-

= E() [exp(—1;-)—exp(—1)] exp (—49)

>0

— E(J exp(—5)dl { (1—e™) e v(d))
0 0

= E(I exp(— 1) dl) (S (1+A)— & (1))
S(1+1)—D(3)
o)

2.2. Proof of point 2 of Theorem 1.1. We first recall this point:

() 4, is self-decomposable, and the Levy—Khintchine formula takes the
form

(2.18) E[exp(—4i4)] = exp(—(l—oc)aj?(l—e“")E[exp(—xGa)] d—j—),
0

= (@(1+1)— (%) T ™10 gf =
(4]

where G, denotes an r.. taking values in [0, 1], with density

asin (o) wi(l—upt
(1—-a)n (1—u)**~2(1—u)fu*cos(na)+u

219  fe. () = 72 Lo.11 ()

(ii) The law of G, is characterized by its Stieltjes transform

o At+u A+G,

a—1__ x—1 R
L e U’ 7PN
I—a (A2

(2.20) SUG)(A):=}Mdu=E( 1 )

or, equivalently, by

(2.21) E[exp(—xleG,)]:E( 1 )_ o 1-(1+4p7"

1+4G,) ~ 1—a (1+47—1

2.2.1. We prove that f;_, as defined by (2.19), is a probability density, which
is characterized by (2.10), or (2.21).

2.2.1.a. Let
(2.22) F,(A):=

4 =0).

@ (14t
T—a (1+AF—2°
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Since the function fg, is continuous and integrable on [0, 1], in order to prove
(2.19), we may use the inversion formula for the Stieltjes transform. Recall (cf.
[24], p. 340) that if f is integrable and if S(f) denotes its Stieltjes transform

_ 7 f(u)du
(2.23) SR = e
we have
(2.24) F) = tim ST (UM =S/ (zutin

n—0+ 2im o

Thus, to prove (2.19) amounts, thanks to the injectivity of the Stieltjes trans-
form, to showing that .

0 ifu>1,
Je.w) if uef0, 1].

Formula (2.25) follows from an elementary computation; in fact, we shall prove
this result later in a more general framework (cf. 5.1.1 below).

(2.25) fim Fa(zu—in)—Fa(—u+in) ={

7104 2in

' 2.2.1.b. We prove that f; is a probability density.
Since fg, = 0, it suffices to show that

1
gfga(u)du = 1.

Now, from (2.20) we obtain

o .,‘La—l_(l_*_ll)a—l

1
nga(u)du = }1}2} j's(fGa)('l) = }1_{130 1—0!1 (1+l)a_la

o 1—(L+1AF

= o a1

We a]so note that the equivalence of (2.20) and (2.21) follows from
E 1 1 1 1 71\
(226) E[exp(—AeG,)]=E <T/1Ga) = IE (m) = ‘}:S (feo) (I)
_L o T (AT 1
Al—a ((1+)h)/,1)“_._(1/1)a 1—a (1+4)—1"°

2.2.2. Proof of (2.18). With the help of (2.21), and taking logarithmic
derivatives on both sides of (2.18), the question amounts to showing

%Iog((l +AF—1) = —(1—a) Uj? e **E[exp(—xG,)] dx
0
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' (2.51)- '

by (2.3), or

(1+ﬂ.)a—l—.2.a_1
L+ —2

227 = —(1—oc)Te“"‘dxi‘e“"“fgw(u)du
0 0

1 ..
= —(l—oc)g T fe,(w)du  (Fubini)

1
—(l—cx)E(/H_Ga).

However, (2.27) is nothing else but (2.20). =m

The careful reader may have been surprised by the above proof, in par-
ticular by the proof given in 2.2.1.a, which may seem quite unnatural. Clearly, it
is not in this manner that we discovered formula (2.18). Here is our original
proof, which is more intuitive, but which, unfortunately, contains some
non-rigorous features.

2.23. Another proof of (2.18).

2.2.3.a. Our aim is to find, from 2.2.1, an r.v. G,, taking values i in [0, 1],
such that

(2.28) E( 1 )= 2 1-U+70 ),

1+4G,)  1—a (1+4F—1

When « = 1/2, choosing for G,;, an r.v. with distribution beta (}, 3), we see that
the relation (2.28) is satisfied, since from the beta-gamma algebra

(2.29) e Ba1-a e} Y@
we deduce

1 1
(230) E [exp ( — Aeﬂ(a,l —a))] =E (m) =FE [eXP( _A'Y(ﬂ))] = m.

Hence,_ for o = 1/2, Wlth G1/2 (lf_—W) ﬂ(1/2,1/2)

gL \__1 _ 12 11—+,
1+4Gy)  /1+4 1-120+)7 -1

This particular result for « = 1/2 invites to look whether the density f, of the
r.v. G, may be written in the form

(2.32) fa) = [h, @ p,(dy), wuel0,1],

where h, denotes here the density of a beta (y, 1—y) variable, and py, (dy) a cer-
tain positive measure. Since from (2.30) we have
1

1 1 1
2.33) M m N+ T @ du= (1+lﬁ(,,,1_,)>=(1+/1)7’
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the problem amounts to finding a measure p,(dy) such that

I f.(w)du 1 a 1—(144y¢
(2.34) j = I(1+/1)V Ha (dy) = 1—a (Q+4°—1

(> 0).

2.2.3.b. Searching for u,(dy) such that (2.34) is satisfied. We replace in (2.34)
(144) by € (¢t = 0), and we obtain

o 1-g¢D % o imtla_ N —tnat D).
(2.35) 1 e e 1 — 1 . a(mgo e _n;() e )
=fe " pu(dy).

Consequently, since both sides of (2.35) are Laplace transforms, we obtain

236 @) = T2 3 B ()= T By @).

We shall now discuss two cases: (i) and (ii).
(i) « = 1/p, p an integer, p = 2.

In this case, the following computation is entirely rigorous. In formula
(2.36), one finds only p—1 terms, since

(p—1+1)ot=p-%= 1=0-a+1.

Hence

(2.37) Mo (dy) = Z ke (dy) = — Z Oiip (1)

so that, plugging this value of p, in (2.32), we obtain -

1 71 u"/"_l(l—u)“"“’
—1, =, T (k/p) T (1—k/p)

1 72!
Jo(u) = _lg‘ k/p(u)=p

1 P-1lg4 k-p~1
= X Sm(nn P )u""’_l(l —u)~HP
k=1

from the formula of complements for the gamma function

reri-»= sin (mz)
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(cf. [17], p. 3). Hence

_ 1 I rt ikip( Y ke
f;(u)_(P_l)TW m(k§1e 1—u

1 (exp (im - p~ ) /(1 —w) "+ u/1 —u))

= Im I
(p—mu 1—exp(in-p~ 1) (w/(1 —u)'"”

_ asin(ra) w1 —upt

(1 o)m (1—u)**—2(1—u) u*cos (na) +u>*

with « = 1
- p

(ii) a is not of the form 1/p, p an integer, p > 2.
Plugging (2.36) in (2.32), we get

o (i u(m+1)u—1(1__u)—(m+1)« B oo una(l_u)—m:—l >
U\m=o((m+1) ) (1—(m+1)a) w=ol (mr+1)I(—nw)

u (m+1)x
sin (no (m+ 1)) (ﬂ)

1 o . u na
TR (ﬁ) }

again from the formula of complements. Hence
1 ™ (u/(1—u))” ) 1 ( 1 )}
a —I : I .
Jal) = {un m (1 —e™ (u/(1—u))’ +(1 —ujn " 1—e™ (u/(1—u))”

a1 1
T 1—an (1 —u)**—2(1—u)*u*cos (ma) +u?>

(238)  fa@) =1

2.39) - IL {in

HMS

X (sin (ro)) u* 1 (1 —u)*~ 1 (1 —u+u)}

_ o sin(na) Wl —uyp !t
T 1—a 7w (1-w*—2(1—u)u*cos(mo)+u>®

‘wefo, 1].

In fact, this computation may be made quite rlgorous with the help of the
following two arguments:

e Although the function h, () is a density only for ye[0, 1], we may
replace everywhere in this computation h, by its holomorphic prolongation
(with respect to the y variable).

o The two series which appear in this computation may be “reduced” to

v ] inna U no
n§0 ¢ (1 - u)
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which only converges for u/(1 —u) < 1, i.e. for u < 3. But it is not difficult to see
that the density f,, which we are trying to obtain, is such that f,(u) = f,(1—u)
for ue[0, 1] (see, e.g., (1.19) and point 3 of Theorem 1.2). Thus, it suffices to
consider ue[0, 1/2], and it is precisely for these values of u for which the
previous series converges.

2.2.4. We prove that A4, is self-decomposable. From Lukacs [19], p. 164,
this is equivalent to the property that x — xv,(x) is a decreasing function of x,
where v, denotes the density of the Lévy measure of 4,. This is satisfied, since

Ve (x) = ——E [exp(—xGJ)].

In fact, all generalized gamma convolutions are self-decompo'sable.

2.2.5. Remark 2.2. It is well known that a self-decomposable distribution
o is the invariant measure of a generalized Ornstein—-Uhlenbeck process
(Y, t 2 0), ie. a process which solves

(2.40) dY, = —Y,dt+dZ,,

where (Z,, t > 0) is a Lévy process (cf. [21] and [22], p. 49). Furthermore, if
&, (resp. P,) denotes the characteristic exponent of Z (resp. g), we have

P,(4)
®,(4)

We deduce from this formula that if w (resp. u) denotes the density of the Lévy
measure of Z (resp. o), then

(2.42) w(x) = —u(x)—xu' (x).

2.41) @, (1) = A

(4= 0).

We apply this in the case where g, is the law of 4,, that is, from (1.14) we obtain

G,(dx) = X7 (1 —e7 %) 110, or (x) dx.

o
raq—o

Then there exists a Lévy process (Z®, t > 0) with Lévy exponent ?, and Lévy
density w, such that the process (Y@, ¢ > 0), which solves

(243) JY9= — Y di+dZ,

admits ¢, as its invariant probability measure. Formulae (2.41) and (2.42) now
become

—1_(1 + A)a—l
A+Ap—a
2.3. Proof of point 3 of Theorem 1.1. First we recall this point:
Let K,'®¢/G, with e and G, independent. Then:

Q44) &,(2) =al A

W, () = (1—2) E [G, (exp(— xGJ)].
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(i) There exists a (1—a, K,) positive compound Poisson process (Y, t = 0)
such that

(2.45) 4,"2 | et dy,.
0

(i) 4, satisfies the following affine equation:
(2.46) 4,2 U= (4, + Ky,

where U, A4, and K, on the right-hand side are independent, and U is uniformly
distributed -on [0, 1]. o

2.3.1. Proof of (2.45) and (2.46). It hinges upon the following proposition:
ProposiTioN 2.3. Let (Y, t = 0) denote a subordinator, without drift, and

with Lévy measure u. Let

(2.47) X:= {e'dy,.

O'——-;B

We assume that X < oo a.s. which (from Jurek and Vervaat [15]; see also
Erickson and Maller [11]) is equivalent to

(2.48) { (ogx)pu(dx) < co.

[1,00[
Then:

(249) @ E(e ") = exp(-T(I —e *)u(l, oo])%)'

In particular, X is self-decomposable.

(ii) If, in addition, (Y;,t > 0) is a (y, K) compound Poisson process (i.e.
y:=u(R,) < o0), then
(2.50) . Xy (x +K),

where U, X and K on the right-hand side are indépendent, and U~is uniform on

[0, 11.

2.3.2. We prove that Proposition 2.3 implies (2.45) and (2.46). We know
from (1.16) that

(251) Efexp(~14,)] = eXp(-(l—Ot)Oj?(l—e_"‘)E[exp(—xGa)] d_;‘)
0

On the other hand, from the definition of K, we have
(2.52) P(K, > x) = P(¢/G, = x) = P(e > xG,) = E [exp(—xG,)].
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We denote by y, the law of K,. Then, replacing E [exp (—xG,)] in (2.51) by its
value as obtained in (2.52), we get

@53)  Elexp(—id)] = exp(—(l—a)?(1-e‘*x)ua([x, oo[)d;").

It then suffices to compare (2.51) and (2.49). Then we apply Proposition 2.3 to
obtain (2.45) and (2.46), with y =1—a.

2.3.3. Proof of Proposition 2.3 (see also [15] for the original proof).

2.3.3.a. Approximating X = I: e~ 'dY, by the Riemann sums Ziexp(ﬂti) X

(¥, Y,) we obtain

i+1—

(2.54) E(e~*) = exp(—uj?dt?(l—exp(—le"x))u(dx)) :

by Fubini’s theorem (after making the change of variables e ™' x = v in the last
equality).

2.3.3b. Proof of point (ii) of Proposition 2.3. Recall that (¥, t > 0)

may be represented as N
t

Y; = Z Ki,
i=1
where (N,, t > 0) denotes a Poisson process with parameter y, independent of

the sequence of i.i.d. variables (K;). Let T; be the first jump time of (N,, t > 0).
Then we have

© T @©
X=[e'dY, = [e'dY,+ [ e7'dY,
0 0 Ty

=exp(—T) K +exp(—T) X, -

where X is independent of (T, K ), and is distributed as X. This proves (2.46),
since, as T; is exponentially distributed, with parameter y, we obtain

exp(— Ty) 2 U,

2.33.c. Another proof of (2.50). If we denote by 8 (resp. ¢) the Laplace
transform of X (resp. K), then, the relation (2.50) is equivalent to

6(1) = E(jl'exp [—Au" (X +K)] du) = yE(i exp [—Av(X +K)] v" ! dv)

A
= ljO(u) o (uu' " du,
Ay
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ie.
A

(2.55) AYB(2) = ij(u)(p(u)u”'ldu,
0

which, taking derivatives, is equivalent to

—0@0@A) =y(1-p@R) @“A=0),
and hence

256 "B =E(E )= exp(—uf(l—e_‘l")Vﬂx([v, oo[)djﬁ), ‘
0

where px denotes the law of K. It now remains to observe that the Lévy
measure of subordinator (¥, ¢ > 0) is equal to y- yk, and then to compare (2.54)
and (2.56).

2.4. Remark 2.4. We come back to the result of Winkel (cf. Subsection 1.2).
Let (z;, [ 2 0) be a subordinator, without drift and with Lévy exponent @. Let

A9:= 4,
with the notation of Subsection 1.2. Hence, by (1.9),

& (1+2)—D ()

.57y - E[exp(—Ai49)] = o0

A natural question is the following: which are the positive r.v.s 4 such that
A% A® for some subordinator (z;, I > 0)? The answer to this question is
elementary; for any positive r.v. 4 there exists a unique subordinator (z;, [ > 0)
without drift and with Lévy exponent &, with &(1) =1, such that

(2.58) A2 4O,

24.1. Proof of Remark 24. Let ¥ be the Laplace transform of 4 and
denote . by u, the law of A. Then

B4 (dx)
1—e™™

Yy()=E(e )= [e ¥ du,(x) = [e (1 —e7)
0 o
Let ¥, be defined by
1

There is no difficulty in showing that v, is a Lévy measure, ie.

(xA1)¥,(dx) < o0.

S ey 8
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Let @ denote the associated Bernstein function and (7, [ = 0) the correspon-
ding subordinator

D(A) = ojo (1—e )9, (dx).
We have °

2.60) y()= j e (1 —e™%)7,(dx)

8

= [ (1—e™ 0097, (dx) - jﬂ~€“WAﬁ) v (1+7)—¥ ().

<

It is clear that ¥ (0) = 1 = ¢ (1)— @ (0) = & (1). Then, from (2.57) and (2.60) we
obtain
E[exp(—A4®)] = &1+ )—D () = Y(I) = E(e™*),

that is
A® (1aw) A.

The uniqueness of (75, [ = 0) may be proved by using similar arguments.

3. PROPERTIES OF THE VARIABLES G, (0 <a<1)
PROOFS OF THEOREMS 1.2 AND 1.3

3.1. Proof of point 1 of Theorem 1.2. First we recall this point:
Gy, is arc-sine distributed; ie. it is distributed as beta (%, 3):
1
(31) f1z() _—1 , (u)
Gyy m {0,1]
Proof of 3.1. It suffices to take a = 1/2 in (1.17) or to note that
1 1—(1+4)~12

1 1
—E(—— ) =E[———),
<1 +'113<1/2,1/2)> (1 + lGl/z)

where the last equality follows from (1.19).

3.2. Proof of point 2 of Theorem 1.2:
If « = 1/p, with p an integer, p>= 2, then

E [eXp( AeB(1/2,1/2))] = E[exp (—4y12)] =

p—1

o= fop 0= 2 % i ()4 1077 10,

9 — PAMS 26.2



340 J. Bertoin et al.

In fact, this is the formula following (2.37), which was proved above in
2.2.3.b. We obtain (1.26) from (1.25) after the change of index j=p—i.

3.3. Proof of point 3 of Theorem 1.2:
(3.2) G, "21-G,.
Thanks to (1.17), or (1.18), this relation is obvious.

34. Proof of point 4 of Theorem 1.2:
As w—.1, G, converges in law to a uniformly distributed r.v. on [0, 1].
To prove this assertion it is sufficient to observe that
. 1 a 1—(1+4"1 log(l1+4)
IimE{ ——— | = = ,
paty (1+AGa) i l—a (1421 2
where the last equality follows from (1.19). Moreover, if U is a uniform r.v. on
[0, 1], we have

1 1o 1 log(1+4)
E<1+}.U) = £1+ludu = Z[log(1+l)—log(1)] =

3.5. Proof of point 5 of Theorem 1.2:
As a— 0, G, converges in law to an rov. Gy which satisfies

(3.3) @) Joo(u) = (g (sin(nf)uf =1 (1—u) P dp) 110,1; (4)
1 1
34 = Lo,17(w);
G4 u(1—u) n2 4 (log (1 —u)/u) 0.
.. (law) 1
(3.5) (1) Go = T e Texp O

where C is a standard Cauchy variable.

35.1. Proof of (3.3) and (3.4).

3.5.1.a. We first note that formula (3. 3) indicates, with the notatlon used in
formula (2.32), that the measure vo(dy) is Lebesgue measure on the interval
[0, 1]. On the other hand, from (1.25) we obtain

Jay, W) = <n(p1__“ I)I‘Ji Sm(p) iP=1(1 — )" z/p) 110,11(w)

= %(5 (sin(rnp)u’ (1 _")_'Bdﬁ) lio,13(4),

which proves (3.3). In fact, we have only studied the limit, as p — oo, of fg, ..
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But the explicit formula (1.17), which gives fg , easily shows that, as « |0,
fe, converges (to fg,)
3.5.1.b. The relation (3.4) follows from

%i(sin mB)u’ "1 (1—u)~Pdp = %Imicxp (ﬁ(in+logﬁ)) dp

1 1
 u(l—w) n2 4 (log [u/(1 —u)])*
35.1.c. Proof of (3.5. We observe from (3.4) that

E ( 1 ) } 1 1 1 4
= u
14+4Go/ o 1+Auu(l—u) n?+(log [u/(1 —u)])’
and after the change of variable u/(1 —u) = v and then logv = nw we get

E 1 ‘}’ 1+v 1 iy = 1 "f 14¢€™ dw
144Gy g 1+v+Avn?+log2o T o 1+(A+1)e™ 1+w?

whereas

E 1 _E 1+e™ _1 "f 1+e ™ dx
1+4/(1+e)) T \U4+i+e™) n 0 1+i4+e ™ 1+x2
‘}’ 1+e™ dw
o 1+ +A)e™ 14+w?
which yields (3.4). Below (cf. Remark 3.2), we shall give another proof of the

convergence in law of G,, as o — 0, towards (1+exp(n C)) . This completes
the proof of Theorem 1.2. m

3.6. Remark 3.1 (A relation between G, and the gamma subordinator).
3.6.1. For any A and p positive reals, we write, using (1.15) and (1.16),

Elexp(=(A+w4)] _ A+A+u—@A+pf
" Eloxp(—pd,)] A+afF— i e

=exp< 1- oc)j'(l e Arux_1 4 e ") E [exp(— xG)]d;>

(.6)

Letting « — 0 on both sides of (3.6), and using the already proved fact that
G, G, as a— 0, we obtain
log(1+A+u)—log(A+u)
log(1+w)—logu
® d
= exp(— f e (1 —e™*) E [exp(—xGy)] %)
0

(3.7)
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3.6.2. We denote by &, the Lévy exponent of the subordinator
(™ 'y, t = 0), where (y,, t > 0) denotes the standard gamma subordinator.
Thus

A 1
3.8 E —— = = —t(log(A+u)—1 ,
089 Blep(~2n)| = = o (gt —logi)
ie.

?,(4) =log(A+p)—logp.
Hence, formula (3.7) takes the form

S,(1+4)—9,(4)
®,(1)

(3.9) = exp(—T(l—e-*ﬁe—ME[exp(—‘xGo)] d?x)

3.6.3. Let (X, ¢t > 0) denote a diffusion process whose inverse local time
(=¥, 1 > 0) at 0 is distributed as (™7, I > 0). Such a diffusion (X, ¢t > 0)
has been described explicitly by Donati-Martin and Yor (cf. [9]) as an illus-
tration of Krein’s representation of subordinators. Furthermore, we define, for
t=0,

g :=sup{s<t, X¥ =0}, d¥:=inf{s> X¥ =0},

(3.10)
A(u) c= dgu)_g(eu),

where ¢ denotes a standard exponential variable independent of (X, ¢ > 0).
Then, as we apply Lemma 2.1, formula (3.9) becomes

(3.11) Efexp(—44,)] = exp(—Z(l—e‘lx)E [exp(—x(u+Go))] gxi)

It follows from (3.11) that A4, is self-decomposable.
We note that this formula (3.11) is quite similar to (1.16), when we replace:
e the stable (@) process (z{*, [ = 0) by the gamma process (u~'y;, [ = 0);
‘e the r.v. G, by the r.v. u+G, (and also replace the co@fficient (1—a)
by 1 in (1.16)). '
It is tempting to let u tend to 0 in (3.11). However, this is not possible for
two reasons:
(i) the process (u~'7,, 1 > 0) does not converge as u— 0;

(ii) the measure x~ ! E[exp(—xGo)]dx is not integrable near oo (as
E{log(1/G)) = o), and hence it does not define a Lévy measure.

3.7. Proof of Theorem 1.3 (Links between the r.v.’s G,, the unilateral stable
variables, and the Mittag-Leffler distribution). We refer the reader to the In-
troduction (Subsection 1.5) for the definitions of T, T, Z, and M, (u<]0, 1]).




Self-decomposable random variables 343

3.71. Proof of point 1 of Theorem 1.3:
Z, admits the density:

sin (1 u) 1
np x2+2xcos(ntp)+1 lo,or(x

(3.12) Jz,(0) = ().

In fact, formula (3.12) is due to Lamperti [16]. A proof of (3.12) can be also
found in Chaumont and Yor (cf. [7], ex. 4.21, p. 116). We refer the mterested
reader to this proof.

3.7.2. Proof of point 2 (i) of Theorem 1.3:
)(l—ar)/a

Z,_ e (T, -
‘1 (law) ( 1—« (lﬂv) 1—a K
R 28 R (A LY

To prove this formula we shall show that (G,/(1—G,))" is distributed as
Z,_,, which implies (3.13). Indeed, for any h: R, — R, Borel, we have

=)}

o sin(ra)? u \* Wl (l—u) !

T l—a = £ h((l—u) )(1—u)z"‘—2(1—u)"u“cos(na)+u2“du
_sin(ma) T dx N
1t(1 oc)j ) x?—2xcos(no)+1

(after making the change of variables (1/(1 —u))" = x). Consequently, by (3.12),

G. \\|_sin(r(1—a) % dx
EI:h<<1"Ga))]_ n(l—a) (jyh(x)x2+2xcos(1t(1—oc))+1

= E[h(Z:-.)]
3.1.3. Proof of point 2 (ii)) of Theorem 1.3: -

(M)

1 (law)
(3 4) G (M1 a)l/a_l_(Mr )l/a’

where M, _, and M _, on the right-hand side denote two independent r.v.’s, with
the Mittag-Leffler distribution with parameter 1—u.

To prove (3.14), we use (cf. Introduction, Subsection 1.5)
I'(n+1)
I'(un+1)

On the other hand, using the elementary formula we get

(3.15) E(M") = (n> —1).
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1 1
(3.16) E(H‘") T n)j u*" "1 E [exp (—uT,)] du

| I'(l+n)
= u" lexp(—uf)du = ———
Ty P Tn+1)
Now, comparing (3.16) and (3.15), we deduce that
M, "2 1Ty,

and (3.14) now follows from (3.13). .-

(n> —1).

3.8. Remark 3.2. We present here another proof of the convergence in law
of G,, as & — 0, to 1/(1+e™), where C is a standard Cauchy r.v. It suffices to
prove that

log(1—G,)—1og(G) ™" nC as a~0
or, by (3.13), that

(law)

1
(3.17 ;(log(T{_a)—}og(Tl_a)) —>'nC as a—0,

where T; _, and Tj_, are two independent copies of a one-sided stable (1 —a)
rv. But T,_,— 1, as « —» 0, in probability. Hence (3.17) is equivalent to

(3.18) —(:r1 —Ti-)™®2C  as a—0.

We prove (3.18):

E[exp <i§ Tl_,,)] =E [exp (%exp (1%) Ti-. ):l
= exp{ lcx|11 :exp <l——(1 oc))}
|4t~ T .. (r
= exp {— e I:cos (5(1 —oc)) +zsm‘<§(1 ——oc))]}.

e

Hence

E| exp iﬂ(Tl_a—Tl’_,) = |E| exp iéTl_a
o o
=exp{ 214 % 1cos( (1—a)>}

= exp<_2|j_|1‘“m“5in_((n/zw)

o
—exp(—n|i]) = E(exp(iAnC)) as a—0.

2
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4. PROOF OF THEOREM 14 (ON THE ALGEBRA OF VARIABLES G, X, y)

4.1. Proof of points 1 and 2 of Theorem 1.4. First we recall these points.

Point 1. For every a, b such that 0 <a<b <1 there exists an ru.
X, such that

b(1+2)P—1
— = 7 = 0).
(41) E[exp( "{Xu,b)] a(l +2.)b'—1 (’1 O)
Point 2. For every 0 <a; < ... <a,<1, )
n—1
(4'2) Xal,a.. (lg_—W) Z Xm.a“.l:
i=1

where the variables on the right-hand side are assumed to be independent.
The rv.’s X, are infinitely divisible.

4.1.1. Proof of (4.1).

4.1.1.a. For this purpose, we shall work in a slightly more general frame-
work than what we strictly need. We first recall that we use the term Bernstein
function for a function @: R, — R, of the form

=)

4.3) D)= [(1—e v (dx)

0

for v(dx) > 0 such that |, (1 Ax)v(dx) < oo.
In other terms, @ is the Lévy exponent of a subordinator (T}, y > 0) with
Lévy measure v(dx), and without drift term, i.e.

(44 E[exp(—AT;)] = exp(—y® (4).

LEMMA 4.1. Let ®,, ®,, P denote three Bernstein functions which satisfy

(i) &1 = §30P,;

(ii) I: .xv3(dx) < oo, where v denotes the Lévy measure associated with ©;.
Then there exists a positive r.v. X such that

- 1 &,(4) ) <
E(e™)=——2" with Cy = [ xv5(dx).
Moreover:
1 dil(l)_ 1

(4.5) E(e_lX)=C_3¢2(l)_a

E(f exp(—AT®)¥5(y)dy) (A=0),
0

where

(4.6) (T,®, y = 0) denotes the subordinator associated with ®,;

@4.7)  V3(y) =v3([y, o)) is the tail of vj.
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Proof of Lemma 4.1. We have

B()_0(0,0) ° (1 —exp(— 8, () x))
5D 6w om )@

= [ va (dx) J exp(— &5 (1)) dy

xp(—@2(4) y)¥3(y)dy  (Fubini).

Ii
Ot 8 ©

Hence

A
G~ & (R 0D)

which proves Lemma 4.1, once we have observed that

[+ 9]

7300y = [ dy [ra(@) = [ xvs(@9) = Cs.
y 0

4.1.1.b. We now prove (4.1). For any 6€]0, 1[ we write

4.8) D;(4) = (1+4y°—1.
®; is a Bernstein function since

0 Can € Tdx
@9) P5() = Fr = 5)§ (1—e™™)

(in fact, ®; is the Lévy exponent of the Esscher transform (cf. [21]) of the stable
(0) subordinator) with associated Lévy measure

6 —x
(4.10) Vs (dx) 1_'(1 6) 3F1 1[0 w[(x) dx
In particular,
@11). { xvs (dx) = 8.
1]

In the sequel, ¢ denotes either a, b, or ¢ := a/b < 1, where 0 < a < b < 1. Note
that

(4.12) D, (P, (A) = (B (D) +1)'—1 = (1 + AP —1+1)—1

=1+)*-1=01+2)"—-1=d,(})
and that

4.13) 0j?xvc(dx) =c=a/b < .
0
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We may then use Lemma 4.1 with ¢, = @,, &, = &, and ; = &,; given (4.12)
and (4.13), we deduce the existence of an R,-valued r.v. such that

idil(l) _ §(1+/1)“—1
Cs®,() a(l+AP-1

Elexp(—AX,,)] = (42 0).

4.1.1.c. We now prove (4.2). This follows immediately from the definition of
X,, and from the obvious formula

g (1+A)"—1 "Tag (1+4"—1

el S A L=0). -
sy —1 - U grapog 420

(4.14)

4.1.1.d. We now prove the infinite divisibility of X,,. We may write,
from (4.2):

n—1
4.15) Xp = ) Xor2z804 g1z

i=0
We know (cf. [18], pp. 314-321) that X, , is infinitely divisible as soon as the
following condition (called “uan”) is satisfied:

@416) Ye>0, sup P(X ba>8 =0 as n— .

a+iP5%a+ i+ 1252
i=0,1,2,....,n—1

But, by differentiation of (4.1), we obtain

h—
4.17) E(Xap) =5~ 2
Thus,
n b —a
55 ) = P(Xa+i(b':a)’a+(i+l)r(.b—a) > 8) < %—,
and hence
(n) b_a
sup 0’ <———>0 asn—oo.
i=0,1,2,...,n—1 2ne
4.2. Remark 4.2 -

4.2.1 (Self-decomposability of X ;, 0 <c < 1):
Let X, denote an r.v. whose law is characterized by

LA+A—1
(4.18) E[exp(—AX, )] = E(—%

Then X, , is infinitely divisible, and its Lévy measure j., is given by

4.19) o (d) = (1= E exp (—x/Go] =
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Proof of (4.19). In order to prove that

L(1+2y—

(420) S = enp(— ] (1= s (05

we take logarithmic derivatives of both sides. Thus

1 (41
4.21) 7¢ Ar—1
Denoting by (L) the left-hand side of (4.21), we get, using (1.19),

Cl—c (1 (1+a7?
@ —T“(rm)

_1—c E(l—i—/l“l—l_(l_)l__l ¢ 1—(+ayt
N A A+4-1 A Al—c (14+4F—1

§ e™** xp.,1 (dx).
0

=(1—¢) [Oj?_e""‘d:fc—(oj'J e **dx) E[exp(—1eG,)]].

0

We then deduce from (4.21) that
1
(4.22) #e () = (1—0)_[(Go—teg) * 1+ 1 dx,
where [, denotes Lebesgue measure on R, and p., the law of eG,. The

explicit computation of the convolution in (4.22) easily leads to (4.19). We note
that the obtained formula:

(423)  E[exp(—AX.,)] = CXP(—(l—C)T(l—e""‘)E[exP(—x/Gc)} ‘%")
0
may be compared with the “dual” formula (1.16)
- E [exp(—A4.)] = exp (—(1 —0) Oj? (1—e *E [exp(—rxG‘;)fI —‘%)

On the other hand, formula (4.23) implies that X, is self-decomposable.
4.2.2 (Self-decomposability of X,;, 0 <a < b < 1). Writing
Xap+Xp1 aaw)Xa 1

we deduce that the Lévy measure v,; of X,, equals

(4.24)  vap(dx) = % {(1—a) E [exp(—x/G,)]—(1—b) E [exp (— x/Gy)]} dx.
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We prove now that X, is self-decomposable. From (4.24), this assertion,
equivalent to

@ap(x) 1= (1—a) E [exp(—x/G,)]—(1 —b) E[exp (—x/Gs)],
is a decreasing function (of x), or, by derivation,

(1—a E(Lexp(—x/Ga))——(l —b)E (iexp(—x/Gb)) =0
G, Gy

or, taking the.Laplace -transform in x of this expression, -+

1 1
w(,l).=(1—a)E(1HGa>—(1—b)E(1HGb) _

is the Laplace transform of a positive function. But this assertion is an easy
consequence of the following

LemMA 4.3. For any 0 <a<b <1 and any ue[0, 1]

(4.25) (1-a) fe. (@) = (1) f, ().
Indeed, with h(x):=(1—a) fs,(x)—(1—D) fs,(x) we have
1 1 @ 1
W) = j'lj_);xh(x) = gh(x)dxg;exp<—lu—$>du

We now prove (4.25). By (1.17), we need to show that

(1 _u)a—l ua—l
(1—u)?*—2(1 —u)fu®cos(na)+u*

asin(na)

(L—wy/u)" Lu?
(t— u)/u)za —2((1—w/u) cos(na)+ 1

is greatef than the same expression where we replace a by b (with a < b). Then,
putting (1 —u)/u = x, we have to prove that

= asin(ma)

asin(na) S x**t?—2xb cos(na)+ x> ~*

bsin(nb) = x?*—2xPcos(nb)+1.

1= 0(x).
But it is easy to verify that 0(x) > 0 as x > + o0, 8(x) » 0 as x = 0, and that
0(x) reaches its maximum for x = 1. The value of this maximum equals

1—cos(na)
1—cos(nb)’
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Hence, Lemma 4.2 will be proved if we show that

asin(na) _ 1—cos(na)
bsin(rb) ~ 1—cos(nb)

O<a<b<).

But, this relation is equivalent to

1 (™ L (mb
22\ 2 )SpB\7 )

ie. the function x — x~'tg(x) is increasing on [0, n/2[. We have
1 (ma 1 1
—t —_— ] = — e —
a g( 2 ) Ttn;l (n—1/2)*—a*/4

<1 Z 1 lt 1/]
- ) ——————-=-tg|—] =
n 2 n—127—b%4 b E\ 2

We note that for 0 < b < 1 we also have (we define X, as the limit in law
of X,, for a|0):

log(1+2)

log(142)
1+2)P—-1 '

Efexp(—4Xop)] =b 2

and E[exp(—AiX,y4)] =

From the latter relation we easily deduce
X 0,1 (lg_lv) e U

with e and U independent, e a standard exponential variable, and U uniform
on [0, 1]. The density of X, ; equals

[+ 4} e*‘!
on,l (x) = (j Tdt) l(xZD)
and its Lévy measure, from (1.29), is equal to
1 -
Vo,1 (dx) = ;E [exp(—x(1+e©)]dx =

with C. a standard Cauchy r.v., ie.

___log(i+}t) = exp(—}o(l —e"“‘)E [CXP(_;C(I +e9) dx).

E[exp(—4X,,4)] =
4.3. Remark 4.4. Let us come back to Lemma 4.1. Under the hypotheses of
this lemma, there exists an R,-valued r.v. X such that

12,0
C33, ()

(4.26) E(e *) =
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It is natural to look for some criterion which ensures that X is infinitely
divisible. Some further hypothesis on the Bernstein functions ®;, @,, and @, is
needed. Here is a framework which yields a positive answer to our question.
For the sequel of the discussion in this remark, we refer the reader to Bertoin
and Le Gall [4]. Let us assume that the functions @, and @, are related to
a continuous branching process. More precisely, let (Z (z, x); t, x > 0) denote
a continuous branching process, where t indicates the time parameter, and
x = Z(0, x) is the initial size of the population. Then

4.27) .. E[exp(—AZ(t, x))] = exp(—xu(t, ), .

where u(t, 1) solves the differential equation

(4.28) %u(t, A= —(u, )

with y denoting the branching mechanism of Z.
For each t >0, A —u(t, 1) is a Bernstein function and

(4.29) u(t+s, A) = ult, u(s, 1).
The relation (4.29) plays here the role of the relation &; = $;0 P, with
O, (A)=u(t+s,4), DPA)=u(s,4) and D3(1)=u(, ).

In this new set-up, we copy again the relation (4.14), which now takes the form
n—1 :

(4.30) u(t+s, 3= ] —itismd
i=ou(t+(@i+1)s/n, 1)

and we notice, as in point 4.1.1.d above, the infinite divisibility of the r.v. whose

Laplace transform (in 4) equals

u(t+s, )
u(t, )

We also note that the Bernstein function @,(4) = (1+4)*—1 (0 < a < 1) coin-
cides with-u(t, A), for a=e7", and { the branching mechanism:

¥ (q) = (1+q)log (1+9)

(see [4]). Point 1 of Theorem 1.4 is a particular case of the situation that we just
described in Remark 4.4.

4.4. Remark 4.5. The relation (4.2):
n—1
(4.31) X0 Y Xparn, (O<ay<..<a,<1l),

i=1

where the variables on the right-hand side are independent, invites to raise the
following question: does there exist a homogeneous Markov process without

i
|
i
i
i
l
i
j
\
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positive jumps (Z,, t = 0) such that X,, may be distributed as T, under P,,,
where P, denotes the law of (Z,, t > 0), starting from @, and T, = inf{t >

Z, > b} (a < b)? The purpose of this Remark 4.5 is to show that such a process
(Z., t = 0) does not exist; of course, it is also of interest to compare the present
Remark 4.5 with the preceding Remark 4.4. :

4.4.1. Proof of the non-existence of (Z,,t 0). Assume that such
a process exists. Since

b(l+AP—1

i S > Y
aeayp—1 “>0a<h)

4.32) © Elexp(—AX.p)] =

we would have

E, I: f(Zr,)exp (— jb "%f(zs)) ds] = f(a)

0

for any regular function f, ie.

E, [cxp ( - gb g% Z,) ds)] ;8;

where P, denotes the law of Z starting from a, & is the infinitesimal generator
of Z, and f belongs to the (extended) doma.m of &. Thus, we should infer, for
any 4 > 0, that

(142
Z

t

4.33) (M;L @):= exp(—At), t = 0)

is a martingale. Hence

g (CH=1 _a+ar—1
“ Z, a

(4.34)

Writing [ = log(1+4), ie. A =e'—1, we obtain (4.34) in the form

(4.35) E, (———e"p (IZZ:)_ 1) = exp((e'—1)1) (ea — 1)

(4.36) = %E [exp (I(N,+a))—exp (IN,)],

where (N,, t = 0) denotes a standard Poisson process. Taking derivatives on
both sides of (4.36) with respect to I, we obtain

Ey[exp(12)] = - E[(V,+ @ exp (1N, + )~ N,exp (IN)];
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hence, by the Laplace inversion, the law of Z, is identified as

@437) P,(Z.edx)= l(i 5,,+.,(dx)(n+a)e-f;—"'— 3 5,,(dx)ne“‘t_n>.
n=0 * n=0 |

a n!

But the measure featured on the right-hand side of (4.37) is signed; hence (Z,)
does not exist.

44.2. Looking for signed measures on the path space. Write,
for [ =0, .

:(a) (a> 0);

then define, for any t > 0,

(4.38) P, ¢1(a) = exp((e'=1) 1) 01 (a).

Our search for a process (Z;, t > 0) in 4.4.1 led us to the relation (4.35), which
we now write as

(4.39) E,[¢:(Z)] = P, o1 ().

On the other hand, the relation (4.38) leads to the semigroup property for
(P>, since

(4.40) P,(P.¢))(a) = exp((¢'— 1) 1) Ps (¢} (@)
= exp((e' =) (t+9) ¢:(@) = Pr+; 01 (a).

Of course, by the relation (4.37), the semigroup (P,) is not positive. Nonetheless,
it is tempting to ask the question: does there exist a Markov “process”
(2, (Z:,t=0), (Ps, a> 0)) with signed measures (P,) on path space, such that
the r.v’s T;, under P,, are distributed as X,,?

_exp(la)—1 -
- a

4.5. Proofs of points 3 and 4 of Theorem 1.4. Let us recall:
Point 3. For any a€[0, 1],

(4.41) : e ™e G, +¢,Gy_,. )
P‘oi'ntA 4. For any o[}, 1],

(4.42) ‘ G, Ty oyt X g
For any a€[0, 1], _

(4.43) Xo1-ateG "2y .

As usual, it is understood that in these relations, whenever several r.v.’s are
featured on one side, they are assumed independent. In the sequel of this work,
this convention shall always be in force, without being stated each time. More-
over, ¢, with or without an index, indicates a standard exponential r.v.; G, and
G, denote the r.v.’s defined in Theorem 1.2.
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45.1. Proofs of (4.42) and (4.43). From (1.19) we get
1\ @ 1-(1—ppt

1+4G,) 1—a (14+47—1

o (N1

T 1o (1+AF—1 (1+AT

If 1 —a < %, ie. a >4, then (4.45) implies, from the definition (1.41) of the
rv’s X,

E[exp(—2eG,)] = E [exp(—AX .1 - )] E [exp (— Ayt — o)1
which yields (4.42).
If « <4, (4.45) takes the form

1 1—a (1+AF—1
m_ E[exp(_.'%eGu)] (1+,1)1_¢_15

(4.44) E[exp(—AieG)] = E( 1=0

(4.45)

hence
1

1+t
which yields (4.43).
We note that, if o >4, (4.42) implies that eG, is infinitely divisible.

45.2. Proof of (4.41). It is not difficult to show that (4.42) and (4.43) imply
(4.41). However, we may also prove (4.41) directly, since

= E[exp(—AeG,)] E [exp(—2X,,1-4)],

1 1
E[exp(—4eG,)] E[exp(—4eGi_)] = E(l +1Ga>'E(1 +AG1_¢>

a1+t 1—a 1=+ 1
T l—a (144 -1 o« (Q4A1—1 144

= E(e™%9).

5. PROOF OF THEOREM 1.5 (THE ALGEBRA OF THE R.V’S X ,, G, ; AND GAMMA)

‘We begin with the existence of the r.v.’s G,;.

5.1. Proof of point 1 of Theorem 1.5. Let us recall parts (i), (i) and (iii) of
this point:

For any a, B, 0 < a, B <1, there exists an r.v. G,g taking values in [0, 1],
such that

~ 1\ a I—(14ap!
(5.1) E[exp(——AeG,,,,)]—E(1+iGm,ﬂ)—1_B e 420,
1\ @ A apmia
(5:2) E(1+Ga,ﬂ>_1—ﬁ TE T *420).
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The density of G,y is

(5-3) fG,,g(“) Lio,1y (W) ——— (1 )

(1 —u)u* tsin(mo) +u®* (1 —wf ~ sin (e B+ (1 —uf* P~ L u P sin (n (e — ﬁ))
(1—u)?*—2(1 —u)*u*cos (no) +u>*

5.1.1. Let us define

o AT —(14Af 1= F
1-p 1+ A)—A*
We shall show that F, 4 is the Stieltjes transform of the function fg, , (1) defined

by (5.3). To prove this, it suffices, with the help of the inverse Stieltjes transform,
to show that

(5.4) Fop(l) = (1> 0).

5 I bW @30,

However, for ue[0, 1], the function

1

ﬁ[Fa,ﬂ(_u_in)_Fa,ﬂ(_u'}'ir’)J

1w f(mu—igf =l —u—inf " (—u—in*~?
~ 2inl—B (1 —u—in)—(—u—in)"

_(—u+in)"‘1—(1—u+i11)”‘1(_u+m)rﬂ>
(1—u+in)*—(—u+in)*

converges, as 70, to

1 o
2it1—p o
y __ua—l e—im_(l _u)ﬂ—l ua—ﬂe—in(a—ﬁ) _uac—l eim_(l _u)ﬁ-l ua—ﬂein(u—ﬂ)
(1—u)*—u*e™ (1—uf—u*e™
o N

~ 2in(1—B) (1 —u)* —2(1— u) u* cos (mo)) + u?*’
where N is given by
N:= (_ua—l e—iua_(l _u)ﬂ‘l ur—# e—iu(a—ﬂ))((l _u)a_ua eimx)

_(_uz—l eiﬂ:az_(l _u)ﬂ—l uu—ﬂ ein{at—ﬂ))((l _u)a_uat e—imz).

10 — PAMS 26.2
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Hence, for ue]0, 1[,
1

ﬁ[Fa,ﬂ(_u—i”)_Fa,ﬂ(_u""irI)]
=04 x

n(1-p)

w1 —w)*sin (ra)+u**F (1 —u)f " Lsin(n ) +(1 —u)f* 7 4~ Fsin (n (x—B))
X (1—uw?**—2(1 —ufu*cos(ro)+u**

= sz,p (u)r

and it is not difficult to see that if u > 1, we have
1 S
o [Fap(—u—in)—Fop(—u-+in)] ©=°50.

5.1.2. We now prove that fg, , is a probability density.
It is obvious that, for « > B, fs, ,(w) = 0, and this follows from elementary

manipulation if o < . Moreover, j(l) J6.,Wdu =1, since from (5.2) we get

1 Lo AT (A4 ek
gf(},,p(u)du_ml_ﬁl (l+,1)z_lu

B a 1—(1+1/3f7*
Camel—f (1 —1

5.1.3. We now prove (5.1).
It follows immediately from (5.2), since

E( 1 ) 1E( 1 )_ o 1A =@+ T /e

144G,) 4 \1/A+G,,) 1—B2 (A+2y2f — /2y
| @ 1—(+Ap o
1B (+A—1

5.14. We prove that, for any ae[0, 1], G,,"2’ G, (part (iv) of point 1).
This follows immediately from the explicit value of the density fg, ., as given
by (5.3), or again from (5.1):

g1 \_ o« t=@tipt o/ 1
144G,,) 1—a (+4°—1 = “\14+.G,/)

5.1.5. We prove that, for a€]0, 1[, G, 1 -, is beta (x, 1 —o) distributed (part (v)
of point 1).
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This follows immediately from the explicit value of the density fg, ,_,, or
again from

E( 1 )_1_(1“)”_ 1 _E( t )
[47Ge1-0) A+ =1 (427 "\I+2Bai-0/)

5.2. Proof of point 2 of Theorem 1.5 (Algebraic properties). We recall:

(5.6) (i) If a+B =1, then ¢Gop"® y—py+ X1 po-

(5.7) (ii) If a+B <1, then yyq_p "2 eGop+Xo1—p-
(iii) For any O<a, f,y < 1:

(5.8) ¢; Gopte,Gp, "2 e G,y +e, Gy

(59) If a+B=1, then yy-p+X1-p,+¢€,Gy, e G,\+es Gg.

(5.10) If 0(-!-/3 < 1, then 'Y(l_p)“l"eGﬂ,.},(lgV)el Ga,.y-f-ez Gﬂ+Xa.1—ﬂ‘

5.2.1. Proofs of (5.6) and (5.7). From the relation (5.1):

E 1 o 1—(142p7
1+4G,,)  1-B (1+4*—1"°

once both the numerator and denominator have been multiplied by (1+ 1) %,
we obtain

Y W ALY s AV
(5.11) E[CXP(—ler.ﬂ)]—E<1+Agu’ﬂ>_<1_ﬂ A+a—1 ) A+F

If a+f =1, ie. 1—p < a, this relation takes the form

- _EA[eXP (—4eGop)] = E[exp(—AX1-p )] E [éXP (—4ya - ﬂ);l:«

ie. (5.6).
If a+B<1,ie a<1-—p, we write (5.11) in the form
1 _ 1B (1+AF—1
(1+1)1_5—E[6XP( ﬂ-eGa,ﬂ)] (1+l)1_ﬂ—1,
ie.
1
(1 +}.)1—ﬂ =E [CXp(-—ﬂ.eGa,ﬁ)] ‘E [exp(_lxa,l_ﬂ)].

We have obtained (5.7).
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5.2.2. Proofs of (5.8), (59) and (5.10). From (5.1) we get

1 1
_ _ -E -
E[exp(—4eG,,4)] E [exp(— AeGy,,)] (1+ le) E< 1+,1GM)

Ca 1—(14FT B 1—(14Ay!
T1-B (+A—1 1—y (I+Af—

o 1—(1+27"" B 1—(1+27"
1=y (I+AF—1 1= (1+AP—

= E[exp(—41eG,,)] - E [exp(—4eGy)],

i.e. we obtain (5.8).
Finally, the relations (5.9) and (5.10) follow easily from (5 8), (5.6) and (5.7).

The proof of point 2 (iv) of Theorem 1.5 is obtained by similar arguments.
5.3. Remark 5.1
53.1. If we take y = o in (5.8), we obtain

(5.12) elG,,'ﬂ+e2Gﬁ,a = elG +€2Gﬁ
In particular, taking f = 1—a in (5.12), we obtain

(law)
e1G,+¢,G1-4 = ¢,Gy1-ot¢2G g0

(law) (law)

elﬁal a+e2B1—aa_ ))a+))(1 -a) = €.

This is our relation (4.41).

It is not difficult to show, after making some manipulations which are
quite similar to the preceding ones, that (4.42) and (4.43) are particular cases of
(5.9) and (5.10).

5.3.2. Of course, we did not find directly the explicit value of fg, ,, as given
by (5.3), with the help of the proof described in the above points 5.1.1 and 5.1.2.
Prior to that proof, we developed a heuristic computation which was quite
similar to the one made in Subsection 2.2.3. -

S

6. THE (6, G) SELF-DECOMPOSABLE VARIABLES. PROOFS OF THEOREMS 1.6 AND 1.7

6.1. Let G be a positive r.v. such that
6.1) E[log*(1/G)] < .

It is not difficult to show that (6.1) is equivalent to either of the following
assertions:

(6.2) gj? E[exp(—xG)] d% < 00;




Self-decomposable random variables 359

® d
6.3) [(xADE(E )= < o,
0
ie. E(e“G)jd;zfl(x;o) is the Lévy measure of a subordinator;

(64) E(log(14+4/G)) < o for one (hence any) value of 1> 0.

We may then formulate, thanks to the Lévy—Khintchine formula, the fol-
lowing '

DEeFINITION 6.1. Let 8 >0, and G be an R.-valued r.v. which satisfies
(6.1). We shall say that an R.-valued r.v. 4 is (8, G) self-decomposable if, for
every 4 =0, :

(6.3) E(e*) = exp(—6 ?(l—e“")E(e"‘G)d?x).

The equality (6.5) may also be written as
(6.6) E(e™**) = exp {—OE (log (1 +1/G))},

the latter formula (6.6) being obtained, e.g., as an application of the Frullani
integral (see [17], p. 6). In fact, we thought of Definition 6.1 after considering
formula (1.16), which, in our terminology, may be stated as: the r.v. 4, is
(1—a, G,) self-decomposable.

6.2. The notion of (3, G) self-decomposability is related quite naturally to
the standard gamma subordinator.

Statement and proof of Theorem 1.6 (A link between the standard
gamma subordinator and the (6, G) self-decomposability).

Let (y,, t = 0) denote the standard gamma subordinator whose Lévy—Khin-
tchine representation is of the form

(6.7) _;_E[exp(—ly,)]= =exp(—tlog(1+4) (,t>0),

1
_ 1+ 2
and let h: [0, co[ = [0, o[ Borel.
Point 1. Define
(6.8) dy:= [ h(wdy,.
V]

Then A, is a.s. finite if and only if

(6.9) [ log (L +h(w)du < .
0
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Point 2. Under the hypothesis (6.9), Ay, is self~decomposable, with Lévy—
Khintchine representation

(6.10) E[exp(—Ad,)] = exp(—]?(l—e'*")F,,(x)dYx)
0

with

(6.11) Fp(x) = g exp (—m> du.

Point 3. For any r.v. G > 0 satisfying (6.1), there exists h satisfying (6.9)
such that

OE(e™*%) = F4(x) = jexp< I ))

In other terms, every (0, G) self-decomposable r.v. may be written in the form
(6.8) for a well-chosen function h.

Recall (cf. the remark following the statement of Theorem 1.6 in Subsec-
tion 1.8) that:

o The function h, whose existence is asserted in the above point 3 is ex-
plicitly given in terms of 6 and G via the formula

huw) = for ue(0,8) and h(u) =0 for u> 4.

1
1 (u/s)

e The Laplace transform y,, of the r.v. 4, is hyperbolically completely
monotone. '

6.2.1. Proof of (6.9) and (6.10). By a density argument, it suffices to
consider h continuous, with compact support. Then we have

(612 E[exp(~A h()dp)] = lim E [exp(~ 1T h() ..~ ]
=limexp {—) (t;:+1—t)log(1+4h(z))} (by (6. 7))
= exp(— Z log(1+ Ah(p)dt) = exp (— Z dt Z e *(1 —e"”'“”‘)%z—c)
since, for every v = 0, the Frullani integral (cf. [17], p. 6) gives
log(1+v) = Z e"‘d;x(l —e ),

Hence, making the change of variables h(t)x = y, and then applying Fubini’s

Ll
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theorem, we obtain

E(exp(—4 j h(u)dy,)) = p(—?dt?e_x(l—ewlh(t)x)d%)

I
[¢)
»d
o
N
|
Ot B
S
o~
O B
[¢)
>
o
/_\
3‘
—_~
C‘/
-
—
)—l
I
s
-
N——

¥
=exp(—°§(1—e ) (I p( h(t))dt>)

which proves both (6.9) and (6.10).

6.2.2. Proof of point 3 of Theorem 1.6. Assume now that G satisfies
(6.1), or (6.4), and é > 0. Let us consider the probability space obtained from
the unit interval [0, 1], fitted with Lebesgue measure, and realize G in the form

(6.13) G(w)=(1/m)(w), wel0,1],

for a well-chosen function h, with support in [0, 6]. Then we obtain

—%Gv _ 5 f x

4 x
=£e"p< h())‘i"_I p( h(v)>
Thus

E[exp(— Afh(u)dy,,) —exp{ f—e zy)_(j p( ) )}
0 0 h(@)
T - —xy By
=expq—0 [ (1—e"?)E(e™*%)—.
Y y
Finally, it is clear, as a consequence of the definition (6.13), that
| E(iog+ é—) < oo«»E(log(Hé)) < 00> [ log(1+h(w)du < co.
[}

6.2.3. Proof of Theorem 1.7. Mutatis mutandis, it is exactly the same as
the proof of point 3 of Theorem 1 (cf. Proposition 2.3 and Subsection 2.3.3
above).

6.24. Proof of Theorem 1.8.

DEFINITION 6.2. A function F: ]0, co[ — R, which belongs to C*, satis-
fies (ST, o) if the following conditions (6.15)}(6.17) hold:

(6.15) F admits a holomorphic extension to C\]—o0, 0];
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(6.16)  for every u > 0, lim,_.o, F(—u+in):= F, (4) exists and is continuous
(resp., lim, o, F(~u—in):= F_(u) exists and is continuous), and
Im (F- (u)—F, (w) = 0 for every u > 0;

(6.17) for A real, lim,. ,AF(4) =0 > 0.
Let A denote a positive r.v. with Laplace transform i:
Ee ) =y(), i=0.
We assume that F:= 'y satisfies (ST, 9).
6.2.4.2. We show that: f@):=@2nd) * (Im (F- (u)— F+(u))) defnes a proba-
bility density on R, and A is (8, G) self-decomposable, where G is an r.v. with

density f.

In fact, we have already proved this when we showed the existence of the
r.v.’s G, (Subsection 2.2.1) and of the r.v.’s G,z (Subsection 5.1). We now sum-
marize the important points of this proof:

¢ By inversion of the Stieltjes transform, we have

_efdu_ 1y
I =[5 = 5y
e f is positive (from (6.16)) and has integral 1 (from (6.17)).

e Let G denote an r.v. with density f Then

1y ¥

-6 Oj? e **E(e*%)dx = —%(A).

hence

Consequently, by integration,

E(e_ld) — l/l(ﬂ.) — eXp<_5I(l_e—lx)E(e—xG)d??)'

" “The results of the paper are gathered in the table which follows.
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Random Density Laplace ;
variable (* only the density is given, not the LT) transform
o —(a - a a ;
4, (0<a< 1) F_(]_Ta‘_)x ¢ “}(l—e x)l(x;g) (1+l) —A
asin (o) ¥ (1—x)!
G, 0< 1 :
O<z<h " T=@)® (1= —2(1—x) x* cos (ra) + 2= tro.n () f
G ! ! 1j0.17(%) exp| A I A 3
o X — - ;
1/2 o B z '—x(l—x) 10,11 N P4 5/ 2
|
ol (mk _ . f
G”p, pEN, D = 2 * mkgl Sln(;—) xk/P 1 (1 _x) kip 1[0’1-](x) I
G1 llovll(x) l"l(l—e—l)
(law) 1 1 1 1 :
* " 1+exp@C) x(1-x) , ( I—x)" ro.u(%) .
i 7w +{ log— . ,
! C standard Cauchy x l
o
| Gog (0 <a, f<1) |» !
| # n(1—p) i
} (1—x)x“'1si'n('n:ou)+ch““’(1w—x)“’_lsin(ﬂ:ﬂ)+(1—x)"+""lx"""sin('rt(ac—ﬂ))1 ® :
{ (1—x)**—2(1— x)* x* cos (ma) + x>* 10,41% '
|
] G (IE_BJ)G
(law) sin(ma) _ B
Gurea ™ Buse D et (1) 10,000
b(1+4y-1
X, 0<a<b<1 _—
o (0 <a ) a 1+ =1
X, 0<a<1) 1a+4°-1
: | a A
Gaw) - ©et 7 |- log(l+A4
Xﬂl =eU (j_dt)].(x;o) _-g.(T_.l
log(1
Xos 0<b<1) log@+4)
1+ -1

Main properties:

(law) (lnw)

4, =" e'dY, (Y, t>0)is an (x, K,) compound Poisson process, with K,

(law)

¢/G,.
4,

U”"(A +K,) (U, 4,, K, independent, and U uniform on [0, 1]).
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S+

Rartdom Stieltjes transform Lévy measure
variable
E —xG,
4, 0<a<1) (l_a)—&x—p;—f—ﬂdx
ATt (1+ 2yt ) L
G, (0 <a<l) &m— non mﬁmtely divisible
1 s N
G2 non infinitely dl_Vlslb!e

Gy, PEN, p22

non infinitely divisible

G, log(1+4) non infinitely divisible
aw) 1 1
o= ! non infinitely divisible
1+exp(rC) A(1+i.)10g(1+11>
C standard Cauchy 4

G, (0 <a, f<1)

o Al (14 Q)L gemp
1-p~ (+ap—2

non infinitely divisible

(law)

o AT —(14Ap!

Goe = G,
" l—a (1+2—a"
(lzw) ATt . .
Gai-a = Bri-a Ty non infinitely divisible

|X., ©<a<b<1)

Joader oo )

X,1 0O<a<xl)

(- FIER X,

(law)

XO,l =e-U

%E [exp(—x(1+e™)]dx
C standard Cauchy

Xop 0<b<1)

;lc—{E [exp(—x(1+¢™)]

ool )]s

Main properties:

(law)

(law)

e = €1G¢+22G1_¢; if dE[l/Z, 1]: EG, = y1—1+X1—¢,1; if “E[Oa 1/’2]’ X!.I—E+EG1":)V1"E‘

(law) . law) . (law)
elG,'p+eszﬂ. =w elG,,',+e2G,,; lfft+ﬁ = 1, eG,,‘;(=w ?1_,+X1_3‘¢; lftl+ﬂ < 1, Y1-8 =w CG1‘3+X¢,1_,9.
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