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Abstract. The main theme of Urbanik's work was infinite divisi- 
bility and its r d c a t i o n s .  The aim of this memorial article is to trace 
the application of this theme in mathematical fmanoe, one of the main 
growth areas in contemporary probability theory. 

We begin in Section 1 with a discussion of the nature of prices. In 
particular, we focus on whether (or when) prices may be taken as 
continuous, with a view to using Lbvy processes to model the case of 
prices with jumps. We turn in Section 2 to asset return distributions; 
prime candidates for modelling here include the normal, hyperbolic 
and Student t cases. In Section 3, we turn to distributions d type G, in 
particular, those in which the mixing law is not only inFmiteIy divisible 
but also self-decomposable (i.e. in the class SD), which includes all 
three cases above. Then in Section 4 we turn to the dynamic counter- 
part of this, in which the law of class SD occurs as the limit law of 
a stochastic process of Omstein-Uhlenbeck type, with Livy driving 
noise. Finally, in Section 5 we discuss stochastic volatility models. 
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1. LEVY PROCESSES IN FINANCE ,rnr 

The central theme of Urbanik's work in probability theory was infinite 
divisibility. This in turn is intimately linked with Lkvy processes and their 
structure. 

The history of Lkvy processes in finance pre-dates, in a sense, that of LCvy 
processes themselves. As is well known, in his remarkable thesis, Louis Bache- 
lier in 1900 (see [2]) was the first to use Brownian motion to model movements 
of stock prices, despite the fact that a proper mathematical basis for Brownian 
motion did not emerge until the work of Daniel1 in 1919-1921 and Wiener in 
1923, which provided us with Wiener measure and the Wiener process (see 
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Shafer and Vovk 1481, 5 3.2, for Daniell's contribution). The Livy-Khintchine 
formula, and the theory of Gvy processes, emerged through the work of 
several authors during the 1930s (see Lkvy's obituary [35] for the detailed 
history). The use of Brownian motion as driving noise for modelling stock 
prices via geometric (or economic) Brownian motion was advocated by Sarnu- 
elson from 1965 on [45], and this was the model used in the pioneering work 
by Black and Scholes [17] and of Merton [42] in 1973. 

Now Brownian motion, and so geometric Brownian motion, is continu- 
ous, and so provides a model in which prices evolve continuously. Immediately, 
one has to stbp, and consider this carefully. Are prices continuous? The answer, 
of course, is that it depends on the closeness with which prices are observed. In 
broad outline, prices do indeed evolve continuously, except under the influence 
of major economic shocks. In fine detail, prices jump. This is partly because 
prices are measured in terms of money, and money is quantized. More impor- 
tantly, it is because prices are determined through trading - price is the level 
at which markets clear, or supply balances demand. Without trading, or in an 
illiquid market, one does not know how much an asset is worth. With trading, 
or in a liquid market, one does - not exactly, but approximately, or to within 
the interval within which price currently fluctuates under the influence of trad- 
ing (or of the bid-ask spread needed to fund the maintenance of the market). 
Thus price is inherently dynamic. 

Again, one needs to take into account the nature - principally, the size 
- of the economic agents involved, or the trades being made. Small investors, 
or minor economic agents, are price takers and not price makers - they are 
able to enter the market, trade in the volume they choose, and leave, without 
disturbing the market price. (Of course, this is only true to the approximation 
above: the very act of trading does shift price, if observed closely enough.) By 
contrast, large investors, or major economic agents, are price rnakrs, because 
the size of trades they need to make inevitably shifts market prices (they thus 
lack the anonymity of the small trader, and this can be seriously damaging, 
especially when a large trader is forced to trade through publicly visible 
weakness). 

The upshot of all this is that one needs to distinguish bef~een different 
types of trading conditions, and model them differently. Under the 'normal 
scenario', one has the every-day movement of heavily-traded stocks under 
normal market conditions. Here, continuous price evolution (modelled by 
Brownian noise) may be suitable for many purposes - as in the Black-Scholes 
model, the benchmark model of mathematical finance. However, even here the 
model does not withstand close scrutiny, particularly over short time intervals. 
For example, it gives tails that are much thinner than those actually encoun- 
tered. One has the attractive alternative of using a Livy-based model instead 
(for textbook references, see [211, [47], [34]). Since the price movements one is 
attempting to model consist of 'jitter' - large numbers of very small move- 
ments taking place very rapidly - one has a wonderful modelling resource 
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ready to hand. This is to use a LBvy measure which has infinite mass (in the 
neighbourhood of the origin, as it is finite elsewhere) - and thus produces 
idnitely many jumps in finite time. 

The term used nowadays for infinite-mass Lkvy processes is in$nite actinity 
(a term we learned from Professor Hklyette Geman). It provides the natural 
real-world context for i&nite-mass Uvy processes. These processes, whose 
existence and path properties were laid bare by Lkvy in the 1930s, once stood 
as prime examples of mathematical constructs which, while beautiful mathemat- 
ically, seemed completely divorced from reality. Nowadays we are all used, as 
probabilists, to the extent to which our subject has been harnessed to serve the 
needs of mathematical finance, and of the financial services industry more 
generally. It is worth remarking that things move in the other-direction too. 
Finance provides a setting in which some of our models in probability, pre- 
viously regarded as arcane, idealized or as mathematics for its own sake, seem 
natural, realistic and inevitable. 

The jumps in a Livy process are very natural for modelling purposes in 
finance, and the first chapter in [21] gives a particularly good justification for 
them. By contrast, the independent increments assumption is less easy to de- 
fend. It is perfectly reasonable (at least to a first approximation) to treat tomor- 
row's price-sensitive information as independent of yesterday's, under normal 
market conditions. It is not reasonable during a sustained financial crisis. One's 
normal modelling assumptions thus break down, precisely when one needs 
them most - during a crisis. This is, of course, less an argument against Uvy 
models in finance than a recognition that one needs more than one model. At 
the very least, one needs a model for use during normal conditions, as above, 
and a model specifically designed for crises. Such models focus on extremes, 
rather than typical price movements: the relevant probability is extreme value 
theory (EVT), and the relevant finance is quantitative risk management (QRM). 
The application of EVT to QRM is very topical; a recent monograph account 
is [41], and a forthcoming one is [3]. 

We close this section by making some remarks on the interplay between 
economics and finance. Much of economics is concerned with how prices are 
arrived at. By contrast, in much of finance, one takes prices (of theunderlying 
asset - the underlying) as given, and the focus is on questions - pricing, 
hedging and so on - concerning derivatives - things derived from the under- 
lying. One may thus regard finance as a specialized part of economics, where 
prices are given. As the remarks above on agents being price takers or price 
makers show, this boundary between finance and economics is blurred rather 
than sharp. However, it is in the realm of infinite-activity Ltvy-based models 
that this interface comes into focus. 

It is interesting to compare the viewpoint above, in which we single out 
the infinite-activity case as crucial, to that expressed by Malliavin and Thal- 
rnaier ([37], 48.1, p. 98) in their study of Malliavin calculus applied to math- 
ematical finance. There, they restrict to the finite-activity case (which they call 



$nite type), for technical convenience, as "this class of processes is qualitatively 
sufficient for the needs of mathematical finance". As they remark, the finite- 
activity case is dense in the general case. 

In the BIack-Scholes-Merton model, the benchmark model of mathemati- 
cal finance, the price St of a stock evolves over time in such a way that the 
Iog-price log S, is a Brownian motion (see e.g. [Ill, or any text- on mathemati- 
cal finance). Instead of log-prices, one may focus on returns over some return 
interval of Iength 6 > 0. These are the relative price changes 

Using the Taylor approximation log (1 +x) -- x for small x shows that working 
with returns is substantially equivalent to working with log-prices, Because of 
their great financial importance, return distributions have been studied in 
depth; see e.g. [32] for background. 

The properties of return distributions depend (inter alia) on the length of 
the return interval 6. For long 6 (of the order of a month, say), since the return 
over a month is the sum of the returns over the days of the month, and these 
may be taken independent (at least approximately), one has aggregutional 
Guussianity: the return is the sum of a sizeable number of approximately in- 
dependent random variables, and so the central limit theorem applies; the 
returns are thus Gaussian, and one is back with the Black-Scholes-Merton 
model as described above. At the other extreme, one may have 6 small, and be 
deaIing with high-frequency data (tick data, with 6 of the order of minutes or 
seconds, is common nowadays). For reasons involving scaling arguments (akin 
to those arising in physics) - see [38] - the return distributions in such cases 
have heavy tails (Pareto tails - decreasing like a power, or like a regularly 
varying function). This is in stark contrast to the ultra-thin tails in the Gaus- 
sian case above with 6 large. As one might expect, for 6 intermediate - daily 
returns, say - one obtains intermediate tail decay - typically;semi-heavy tails, 
in which the log-density decays linearly, rather than like a quadfatic as in the 
Gaussian case or a logarithm in the Pareto case. This occurs in the hyperbolic 
model, for which see e.g. [12] and the references cited there. 

Because the return over interval 6 is the sum of the n returns over subin- 
tervals of length S/n, and these are independent (to the order of accuracy 
considered here), return distributions are typically injinitely divisibh. As the 
return interval 6 varies, and indeed as the type of asset one is dealing with 
varies, the modelling flexibility provided by the LCvy-Khintchine formula be- 
comes available; see e.g. [Ill, $2.10-12, $5.5. The field of Livy finance is so 
important that several books are now devoted to it; see 1471, [21], [34], cited 
above. 
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Recall that the infinitely divisible laws are the limit laws of triangular 
arrays - two-suffut arrays of independent random variables, individually neg- 
ligible. It is plausibIe that one will still have sufficient modelling flexibility i f  one 
restricts this from two suffices to one - limits of independent sequences, suita- 
bly normed; the class of limit laws so obtained is the class of self-decomposable 
distributions, SD. This class SD has been found to serve very well, from 
the distributional or static point of view. Furthermore, it also serves from 
the dynamic point of view, when one considers time series. For, the defin- 
ing property of - -  self-decomposability is that, for each CE(O,  l), X should 
satisfy 

X 2 c X + X ,  

for some random variable X,, where denotes equality in distribution and 
the variables on the right are independent. This relation has the form of an 
autoregressive scheme of order 1, thereby making available much of the machin- 
ery of time series (see e.g. [18]). For both these reasons, the class SD is a prime 
candidate for use in modelling asset return distributions. 

I Three prime examples are to hand: 

1. Normal distributions. This is the Gaussian case of the Black-Scholes- 
Merton model, relevant to (say) monthly returns (the rule of thumb is that 16 
trading days suffice for aggregational Gaussianity). 

2. Hyperbolic distributions. Self-decomposability is due to Halgreen [27] 
in 1979. The log-density has linear asymptotes at f oo, like the lower branch of 
a hyperbola (semi-heavy tails). 

3. Student t-distributions. Infinite divisibility is due to Grosswald [26] in 
1976; for self-decomposability see e.g. Jurek [29]. The density decays like 
x-''''', where v is the degrees of freedom (heavy tails). Although the limit as 
v + m is Gaussian, this passage to the limit skips over the semi-heavy tails 
above. 

Although the modern era in mathematical finance began in 1973 with 
Black, Schdes and Merton, mathematical finance itself goes back to 1952, with 
the work of Markowitz [40]. Markowitz left us two key insight:: 

1. Look at risk and return together, not separately. (Risk is measured by 
variances or covariances, return by means, hence rnean-variance theory.) 

2. Diversify. In order to protect oneself against the uncertainty inseparable 
from holding risky stock, one should hold a portfolio - a range of different 
assets - balanced, so that changes that harm some of our holdings will help 
others. This balance requires negative correlations in our holdings. 

Thus by Markowitzian diversification, one should work in d dimensions, 
where d is the number of different assets we hold (d may be large, as the range 
of investment opportunities open to us is unlimited), and one should start with 

11 - PAMS 26.2 
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the d-vector p of means and the d x d covariance matrix Z, which should 
exhibit plentiful negative correlations. 

The upshot of the above is that our asset returns will be modelled in 
d dimensions by a self-decomposable distribution, or process, with &, E) as 
a parameter. 

3. DISTRIBUTIONS OF TYPE G 

We turn now to a suitable subclass of SD,, the class of self-decomposable 
distributions in d dimensions. A random d-vector H: or its distribution v, is said 
to be of type G (following Marcus [39] in 1987) if - 

in distribution, where u, E are independent, a2 is ID and E - N,(O, E )  is multi- 
variate normal (multinormal). (Other definitions of type G in d dimensions are 
in use; see [7] for details and references.) Then Y has characteristic func- 
tion (CF) 

(G) $v (t) : = E [exp (it Y ) ]  
1 2 T  =E[E[~X~{~*CE)] (C]  = E[exp{-TO t Zt)] =6($tTEt), 

where r$ is the Laplace-Stieltjes transform (LST) of a2. Thus 

X : = p + Y  

has CF 
$x (t) = exp (itT p) 4 (4 tTZt)y 

and so X is elliptically contoured, X - EC, I$, Z, 4) in the notation of [24], 
Definition 2.2. Also, as both the definition as an independent product and the 
above derivation of the CF show, Y is a normal variance mixture (NVM) (see 
[24], Chapter 2). 

Suppose now that the law of a2 is not only infinitely divisible but also 
self-decomposable. That is, for each c E (0, I), 

for some LST 4,. Replace s by 4 tT Zt. As in the proof of (GI, each of the three 
terms is the CF of a d-vector, which shows that Y and X are also SD. They are 
thus absolutely continuous ([46], Theorem 27.13). The density generator g of 
X thus exists ([13]; [24], 9 2.2.3). Since the density of X is unimodal ([46], tj 53) 
and is a function g of the quadratic form (x - y)T C-I (x -p), g is decreasing. As 
a2 is SD, its U v y  measure is absolutely continuous, with density of the form 
k ( x ) / x  with k  decreasing (see ag. [46], Corollary 15.11). 
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From some points of view, the cumulant-generating functions are more 
convenient. Writing 

we have 
Q (t) = bTp -!- ~ ( f ) ,  K (t) = K (itT xf). 

Distribution of type G with g2 SD are suitable for modelling asset return 
distributions in d dimensions; for background and details, see [13] and [14], 

- .  

4. PROCESSES OF ORNSTEM-UHLENBECE W E  

We now introduce dynamics into the picture. Each SD v is the limiting 
law, of Y', say, of the process Y = (I: : t 3 0) of Omstein-Uhlenbeck (OU) type 
given by the solution to the stochastic differential equation 

where c > 0 and Z = (2,: t 2 0) is a LCvy process (the background driving 
U v y  process or BDLP) whose Lkvy measure vo satisfies the logarithmic inte- 
grability condition 

and conversely: each Uvy process satisfying (log) gives an SD law in this way. 
The stochastic representation 

holds, and the cumulants are linked by 

m 

(4 xr, (z) = 1 K ~ , ( Z ~ - ~ ~ )  ds 
0 

.,* 
([46], § 17; [I]), or equivalently 

Such processes provide a way to model asset returns dynamically: the dis- 
tributional properties for fixed time are as above, and the process is stationary 
(either by starting in the stationary distribution, or by leaving equilibrium to be 
approached as time elapses). Of course, such processes are discontinuous ex- 
cept in the case where the BDLP is Brownian motion and the process of OU 
type is the classical Ornstein-Uhlenbeck process. 
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The covariance is of course undefined except in the L2 case, when the 
autocorrelation is as in the classical Ornstein-Uhlenbeck case: 

corr (x, I;+") = exp (- c luf). 

By superposition of independent processes of OU type, correlations of the form 

can be obtained (for example, the case m = 2 allows one to handle both 'fast' 
and 'slow' effects, which is often useful). By passage to the limit (or by using 
independently scattered random measures and Lkvy random fields), correlations 
decaying like a power rather than an exponential, and so giving long-range 
dependence (LRD), may be constructed. See [4] for background and details. 

EXAMPLES. 1 .  Student processes. The Student t = t (d, v, 2) distribution in 
d dimensions with v degrees of freedom and covariance matrix C is defined by 
the density 

This is thus elliptically contoured, with density generator of the form 

and as noted above it is also SD. Further, it is NVM: with the inverse gamma 
distribution Ir = Ir (a, 8) defined for a, j3 > 0 by the density 

this is the mixture of Nd (0, E) with mixing law IT(4 v, i v ) .  One may thus find 
a stationary Markov process Y with limiting law t = t ( d ,  v, C); Eee Heyde and 
Leonenko [28], Theorem 3.2. For KL(x) the Bessel function of the third kind 
(Macdonald function) 

the CF is given by 

See e.g. [28], (2.5H2.7) and Remark 2.2, and [33]. 
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The Student t-distributions have Pareto tail-decay. They are thus useful 
for modelling stationary processes with heavy tails. Such tails may occur 
towards the high-frequency end of the data spectrum. For very high-frequency 
data, however, the elliptically contoured property may not hold, and details of 
market microstructure involving trading hours, lunch breaks and the like be- 
come important. For background, including an empirical study, see e.g. Bing- 
ham and Schmidt [16]. 

2, Hyperbolic processes. If instead of the inverse gamma distribution one 
uses the generalized inverse Gaussian (GIG) mixing laws, one obtains general- 
ized hyperbolic (GH) distributions as the limit laws of the OU processes. Such 
GH laws have semi-heavy tails, and may occur for medium-frequency data 
(daily returns, for example); they were studied in [12j, and were one of the 
motivating examples for [13]. A different dynamic version is contained in the 
work of Barndorff-Nielsen and Pkrez-Abreu [dl. 

5. STOCHASTIC VOLATILITY 

In the classical Black-Scholes-Merton model, the volatility of a stock is 
a parameter, the standard deviation of the return, measuring the sensitivity of 
the price to new information. In the Black-Scholes formula, the option price 
does not depend on the mean return, but does depend crucially on the volatili- 
ty - which is unobserved, and has to be estimated, whether from past prices 
bstoric volatility) or by inference from observed option prices (implied vola- 
tility). Because of its importance, volatility has been intensively studied - and 
this has revealed that volatility is not constant, but varies. Since the variability 
of volatility (or volatility of volatility, 'vol of vol') is difficult to account for in 
terms of what can be measured (asset price, strike price, time to maturity etc.), it 
is natural to take it as stochastic and use a stochastic volatility model (SV). 

In the BNS model (Barndorff-Nielsen and Shephard [S]), one takes the 
log-price process x* as in the BlackScholes-Merton model, 

dx* (t) = (p+ Po2 (t)) dt + a (t) dw (t), 

where w is a Brownian motion driving the log-price process and thCvolatility 
process 02(t)  is assumed stationary and independent of w. It may thus be 
modelled as an OU-process, 

da2 (t) = - ;la2 (t) dt +dz (It), 

where z = (Z (t))t,o is a subordinator independent of w (as the increments of 
z are positive, the process a2 is also positive, as required by its interpretation as 
a volatility). Subject to the logarithmic integrability condition on z, the process 
a2 is well-defined as a stationary Markov process, whose equilibrium dis- 
tribution is self-decomposable. One may approach the modelling either via this 
equilibrium distribution, or via the subordinator. A range of examples are 
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considered in [g]; see also 191. They also consider simulation, via series re- 
presentations, and fit their model to various financial data sets. Pricing of 
financial derivatives is also discussed, and hedging (their model is arbitrage- 
free, so equivalent martingale measures exist, but as Levy-based models are 
incomplete, they are not unique). Their approach has been influential, and is 
widely used. 

The multivariate case is also considered in [S], 9 6.4, 3 6.5. In particular, 
factor madeis are considered (§ 6.5.2). Here, the dimensionality d of our number 
of assets is reduced to some lower effective dimensionality, q say, reflecting the 
fact that asset prices often move together, under the influence of a smaller 
number of driving mechanisms. For example, q may be the number of industri- 
al sectors represented in our portfolio, and there may be symmetry within but 
not between sectors. See 1141 and [l5] for models of this kind. 

For other approaches to stochastic volatility modelling, in one or higher 
dimensions and using Lkvy or Ornstein-Uhlenbeck processes, see e.g. Barrucci 
et al. [lo], Malliavin and Mancino ([36], or [37], Chapter 2), Geman et a]. 
1251, Carr et al. [20], and Nicolato and Venardos [43]. For a comparison of 
COGARCH (continuous-time generalized autoregressive conditional hetero- 
scedastic) and Orstein-Uhlenbeck approaches, see Kliippelberg et al. [31]. 

In the multidimensional case, one approach is to model the evolution of 
the stochastic volatility matrix E, over time. Here, covariances and correlations 
may evolve with time, as happens with actual portfolios. One may harness for 
this purpose recent results in the theory of random matrices. For a recent study 
of this kind, see Philipov and Glickman [44], who use Wishart processes (Bru 
[19]), and work in discrete time. Wishart processes form a natural modelling 
tool in this area (and also in the theory of random matrices, an area of great 
current interest); for background, see [23] and 1221. As in [31], comparison 
between discrete and continuous time is very interesting, and is the subject of 
current work. 

In Memoriam, Kazinierz Uabanik (193&2005) 
,w 

Like so many others, I was deeply influenced by Urbanik's work. Part of 
my thesis (1969) was influenced by his generalized convolutions, and this in- 
fluence extended into several of my papers in the 1970s and 1980s. During this 
time, I had the pleasure of getting to know Urbanik, when he visited me in 
London. I always considered his work - and this aspect of my own work - as 
theoretical. Since my interests expanded into mathematical finance in the 
1990s, it has been a constant source of interest to see how theoretical probabili- 
ty of this kind has found applications in fields unthought of in earlier times. It 
is for this reason that I chose this subject matter for my contribution to the 
Urbanik Memorial Volume. 
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