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1. INTRODUCTION 

This review article has several interlocking themes - Levy processes, 
geometry and probability in Banach spaces, stochastic integration, stochastic 
evolution equations, Ornstein-Uhlenbeck processes and self-decomposability. 
We discuss each of these in turn. 

Infinitely divisible distributions and LCvy processes, their dynamic coun- 
terpart, have been the subject of intense activity in recent years. This is partly 
because their path decomposition into a continuous Gaussian part plus an 
independent superposition of jumps of all possible sizes makes them ideally 
suited for modelling random phenomena which manifest discontinuity. This is 
particularly pertinent for models of the stock market and indeed this has be- 
come a major area of application for LCvy processes (see e.g. [ll], [25], [19], 
Chapter 5 of [3] and Chapter 7 of [7]). 

All of the above references use finite-dimensional (and often real-valued) 
LCvy processes. Many workers in the field have recognised that the complexity 
of the market is often captured more effectively using infinite-dimensional sto- 
chastic analysis, particularly in the realm of interest rates [9], and it is likely 
that Ikvy processes will play a major role in this direction. 
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In this paper we review and survey results about Levy processes in Banach 
spaces with particular emphasis on the stochastic integrals which are used to 
construct the stochastic evolution equations which are of use in finance. A key 
feature of probability in Banach spaces is the role of geometry. In the Hilbert 
space case, these finer aspects do not come into play as the underlying geome- 
try is so well-behaved. After reviewing some basic facts about LBvy processes in 
Section 2, we describe the relationship between Levy measures and the geomet- 
ric notions of type and cotype in Section 3. 

In Section 4, we describe the LCvy-It6 decomposition alluded to above, 
which gives the sample path structure of a generic LCvy process in terms of 
Gaussian and jump components. Following Dettweiler [13], we give an ac- 
count of "strong" stochastic integration in Section 5. Geometric considerations 
again play a role in limiting the types of Banach spaces in which such integrals 
can be defined and despite the beautiful mathematics which so arises, this 
might be seen as a major drawback for stochastic evolution equations. In 
Section 6, we indicate how recent work on weaker types of stochastic inte- 
gration can overcome this obstacle, as they are not tied to the Banach space 
geometry. 

Levy-driven stochastic evolution equations are introduced in Section 7. 
Most of the work on these has been in the case where the driving process is 
a Brownian motion [12]. One particular example which has seen some atten- 
tion (at least in the Hilbert space context), and where the driving process is 
genuinely LBvy, leads to the idmite-dimensional Ornstein-Uhlenbeck process. 
Stationary solutions of this equation have the nice property that the random 
variables which comprise the process are operator self-decomposable in the 
sense of Urbanik [28]. 

Prebminaries. Let (a, (&, t 2 0), P) be a stochastic base wherein the 
filtration (St, t 3 0) satisfies the usual hypotheses of completeness and right 
continuity. Let E be a separable Banach space with dual E'. Duality between 
E and E' is expressed by means of (., -). g(E) will denote the a-algebra of all 
Borel sets in E. The open ball in E of radius r and centered on x is denoted by 
B,(x). We write B1 := B1 (0). If E and F are Banach spaces, then 9 ( E ,  F) 
denotes the linear space of all bounded linear operators from E to F. It is 
itself a Banach space with respect to the supremum norm. We write 
2 ( E )  = 9 ( E ,  E). 

If Y is an E-valued random variable defined on (SZ,  F, PP), its law is denot- 
ed by p,. We write X A I: whenever X and Y are E-valued random variables 
for which p, = p,. If a sequence of probability measures (en, n EN) converges 
weakly to q, we write en q as n -+ m. 

4 (E)  is the set of all a-finite Borel measures on E. For each p E A (E), we 
define ,i (A) = p (-A). p is symmetric if = p. 
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A F ( E )  is the subset of A ( E )  comprising finite Radon measures. If 
p E AF (E), its characteristic function is the map 4 : E' + C, where @(a) = 

J, ei<","> p (dx) for each a E E'. 
We will employ the notation E ( O ;  E) : = E(S2, F, P; E) for each p 2 1. 

Lebesgue measure on R+ is denoted by Leb, when convenient. 

v ~ d ( E )  is a symmetric Lkvy measure if it is symmetric and satisfies 
(9 v ( (0 ) )  = 0 ;  

(ii) the mapping from E' to R given by 

a + exp (J Ccos ( ( x 7  a))  - 11 v (dx)} 
E 

is the characteristic function of a measure in A F ( E ) .  
v E A (E)  is a Lkvy measure if v + i j  is a symmetric LCvy measure. We gather 

together some useful facts about Levy measures in the next proposition. Full 
proofs can be found in [20], pp. 69-75 (see also [14], Section 3.4). 

PROPOSITION 2.1. If v is a Lkvy measure on E, then: 
(i) For each a E El, 

j lei(","> - 1 - i { x ,  a )  I,, (x)( v (dx) < co . 
E 

(ii) The mapping fiom E to C given by 

a + exp (1 [ei("la> - 1 - i ( x ,  a )  I,, (x)]  v (dx))  
E 

is the characteristic function of a probability measure in d F ( E ) .  
(iii) v (Bd (0)") < m for all 6 > 0. 

(iv) supll.~ c l& , , ,  ,, I(% a)12v(dx) < m- 

Let X = ( X ( t ) ,  t >, 0) be a LCvy process defined on (a, F7 (6, t 2 0), P) 
and taking values in E. This means that: 

1. Each X is adapted to the filtration (St, t 2 0). 

2. For each 0 < s < t G m, X ( t ) - X ( s )  is independent of Fs and its dis- 
tribution depends only on t -s. 

3. X has cadlag paths with X(0)  = 0 (as.). 

4. t -+ X (t)  is stochastically continuous. 
We then have the Levy-Khintchine formula: for each t 2 0 

E (ei(x(f).a>) = e- f'(4 
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for all a~ E', where q : E' -, C is a continuous, hermitian, negative definite 
function for which q (0) = 0, which takes the form 

1 
(2.1) q(a)=-i(m,a)+-(Ra,a)+~[1-e'("~"~+i(x,a)1,,(x)]v(dx), 

2 E 

wherein ~ E E ,  R is a positive symmetric linear operator from E' to E and 
v is a LCvy measure. The triple (my R,  v) is called the characteristics of X. It 
uniquely determines the law of each X(t). 

EXAMPLES. (1) Brownian motion with covariance R is the Levy process 
BR with characteristics (0, R, 0). It has continuous sample paths (a.s.) and 
each BR(t) is centered Gaussian with 

E ((BR (s), a) (BR (t), b)) = (Ra, b) s A t for each a, b E E'. 

I (2) If (Y,, n E N )  is a sequence of i.i.d. random variables with common law 
I 

I 
p, and (N (t), t 2 0) is an independent Poisson process of intensity c, then X is 

I a compound Poisson process, wherein each X (t) : = zz l;. It has characteris- 
tics (-c jBl xp(dx), 0, cp). 

Note that when E is a Nilbert space, the covariance operator of any 
E-valued Brownian motion is always trace class (see e.g. [12], p. 55). 

3. TYPE, COTYPE A N D  LEVY MEASURE 

In Euclidean space, a Bore1 measure v which has mass zero at the origin is 
a Ltv y measure if and only if j (1 1x1 l2 A 1) v (dx) < m . In a general Banach space, 
this may not be sufficient, but it is of interest to try to identify some types of 
spaces for which it is. This is intimately tied up with Banach space geometry - 
specifically the notions of "type" and "cotype". We give a rapid review of these 
ideas in this section. The paper [26] is an excellent reference for the main 
concepts. The connection with Lkvy measures can be found in [6]  (see also [5] 
and [I]). 

Let (E,, be a Rademacher sequence, i.e. the E, s are i.i.d. symmetric 
I 

Bernoulli random variables each having range (-1, 1). E is said to be of 
type p if for every sequence (x,,  EN) of elements of E 

m m 

( 1 1 ~ ~ 1 1 ~ ) ~ "  < m * E n r n  converges as. 
n = l  n =  1 

Every Banach space is of type 1 and only E = (0) has type p > 2, so we 
assume that 1 < p < 2. If E : = E (M, d, p), where (M, d, p) is an arbitrary 
o-finite measure space, then E' is of type p for 1 < p g 2 and of type 2 for p > 2. 

A Banach space E is of cotype p if the implication in (3.1) is reversed. For 
cotype we can only have p 2 2. Every Banach space is of cotype m (where 
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the left-hand side of (3.1) is interpreted as a supremum). For 1 < p < 2, E is of 
cotype 2. Some useful relations between type and cotype are: 

If E is of type 2, then E' is of cotype 2. 

If E is of both type and cotype 2, then it is isometrically isomorphic to 
a Hilbert space. 

A useful alternative characterisation of type and cotype is as follows: 
E is of type p iff there exists C > 0 such that, given any n E N  and any set 

(XI, . . . , X,) of independent random variables in LP (Q; E), 

E is of cotype p iff the inequality in (3.2) is reversed. 
Now let v be a Borel measure on E and define y,(x) := llxllPr\ 1 for each 

x E: E and each p 2 1, so that j, y, ( x )  v (dx) E [0, a]. In the following we will say 
that v integrates y, if j, y,  (x) v (dx) < co. 

I 

I 
THEOREM 3.1 (Araujo and GinC). 1. E is of cotype 2 iff every Ltvy measure 

on E integrates y,. 
2. E is of type p ifl every Borel measure which integrates y p  and assigns 

I zero mass to {0) is a Ltvy measure. 

From this and the remarks made above we deduce the following 

COROLLARY 3.1. The following are equivalent: 
1. v is a Liuy measure ifl v integrates y2 and assigns zero mass to (0). 
2. E is isometrically isomorphic to a Hilbert space. 

Dynamical versions of the above results are due to Dettweiler [13]. 

THEQREM 3.2 (Dettweiler). 1. If E has cotype p, then the Livy measure of 
any LBvy process integrates y,. 

2. If E is of type p and v is a Borel measure which integrates y,  and assigns 
zero mass to {0), then there exists a Ltvy process having Livy measure v. 

4. THE LEVY- IT^ DECOIMPOSITION 

Let X = ( X ( t ) ,  t 2 0) be an E-valued LCvy process with characteristics 
(b ,  R, v). The jump at time t is AX ( t)  : = X ( t)  - X ( t  -). We obtain a Poisson 
random measure N on R+ x (E- {0)),  which has intensity measure LebOv, by 
the prescription 

N ( t ,  A):= # {0 < s < t ,  A X ( t ) € A )  

for each A E B ( E ) .  The associated compensator is denoted by N,  so 

fl (dt , dx) = N (dt , dx) - dtv (dx). 
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We say that A EB(E) is bounded below if 0 $A: Arguing as in Section 2.3 of [3], 
we see that if A is bounded below, for each t 2 0 

YA(t) : = AX (s) llAx,),Al = x N  ( t ,  dx) is finite a.s. 
O G s b t  A 

In fact, (YA(t),  t 2 0) is a compound Poisson process. 
If A is bounded below and A r B,(O) for some r > 0, we may define 

ZA( t ) :=  Y A ( t ) - { ~ ~ ( d x )  = j x N ( t ,  dx). 
A A 

Following arguments due to Dettweiler [13], we let (A,, n~ N) be a se- 
quence of Borel sets in B1 such that each Af, : = B1 -A, is bounded below and 
A, 4, {O} as n -+ oo (e.g. we may take each A, = B1,(,+ (0)). Each 

n- 1 

ZA,  ( t )  = Z A ~  ( t )  + z Z ~ ;  + 1 - A9 (t) 
j =  1 

is a sum of independent random variables. Then for each ~ E E '  

@,,,(a) : = E (exp {i (2,; ( t ) ,  a ) ) )  = exp { t  { (ei(Y9a> - 1 - i ( y  , a ) )  v (dy)) 
A f, 

+ exp ( t  { (ei{~.") - 1 - i ( Y ,  a ) )  v ( d ~ ) )  = 1 @t (a) 
B1 

as n -+ oo. By a slight variation of the proof of Proposition 2.1 (ii), we see that 
@, is the characteristic function of an infinitely divisible probability measure 
~ ( t ) .  By the Banach space version of Glivenko's theorem, p,,,(,) * e ( t )  as 
n + oo, and hence, by the ItB-Nisio theorem, ZA;(t)  converges a.s. to a random 
variable Z ( t )  whose law is ~ ( t ) .  We write 

and note that it is independent of the choice of approximating sequence. 
We then obtain 

THEOREM 4.1 (Livy-It8 decomposition). If X = ( X ( t ) ,  t 3 0) is an E-valued 
Livy process with characteristics (by R, v), there exists a Brownian motion 
BR with covariance R and an independent Poisson random measure N on 
R+ x (E-{0}), with intensity measure LebOv so that, for each t 2 0, 

X ( t )  = bt+ BR(t)+ J x N ( ~ ,  d ~ ) +  1 x N ( t ,  dx). 
B1 B f 

An alternative proof of the LCvy-It8 decomposition is given in the recent 
paper [2] which is based on a different approach to defining the compen- 
sated integral. Let f : E -+ E be a simple function, i.e. f ( x )  = z;=, cj  lA, for 
some n~ N, Al, ..., A, disjoint Borel sets which are bounded below and 
e l ,  . . ., c,EE. Let f :  E + E be measurable with j, 1 1  f (x)llPv (dx) < co for some 
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p 3 1. We say that f is p-approximable if there exists a sequence (f,, n EN) of 
simple functions such that 

1. (f,,  EN) converges to f pointwise v a.e.; 
2. l i m n * ,  j,Ilf (x)-fn(~)Il~~(dx) = 0. 
Now suppose that f is p-approximable by (f,, n 6 N). For any BE 

9 (E - {0)), define 

S f  (x)N(t, ax):= lim J f,(x)N(t, dx), 
B n + m  g 

whenever the right-hand side exists in E (a, 9, P) and the limit is independent 
of the choice of approximating sequence. In this case, jB f (x) fl (t, dx) is called 
the strong p-integral of f: In [2], the LCvy-It6 decomposition is established 
wherein jBl xfl(t, dx) is a strong 2-integral, but such a decomposition only 
holds under the constraint that either y ,  is v-integrable or E is type 2 and y, is 
v-integrable. 

Note that both Dettweiler [13] and Albeverio and Riidiger [2] obtain the 
LCvy-It6 decomposition for the more general class of additive processes, i.e. 
those which have independent but not necessarily stationary increments. 

5. STRONG STOCHASTIC INTEGRATION 

In this section, we closely follow the beautiful survey paper by Dettweiler 
[13]. Let X = (X(t), t 3 0) be an E-valued LCvy process and let F be another 
separable Banach space. Fix T > 0 . 9  will denote the predictable cr-algebra on 
[0, TI x 52. We fix a subspace Y of Y(E, F )  and equip Y with a norm such that 
its embedding into Y(E, F) is continuous. Let b (Y) denote the space of all 
simple predictable mappings from R+ x 52 into &(I"), so @E&(Y) if there is 
a partition 0 = to < t ,  < . . . < t, < tn+ , = T and Y-valued random variables 
!Do, . , ., @, with each Gj being Ftl-measurable (1 < j < n) such that 

n 

@ = C @jl , t j , t j+ l l .  
j = O  

For such a process we define its strong stochastic integral via the usual prescrip- 
tion: 

The process X is said to be Kprimitive, where 1 < p < oo, if there exists a mea- 
sure L on (B x [0, a, 9) and a constant C > 0 such that 
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for all T 2 0. Since B (Y) is dense in ZP (I; T) : = E ( a  x [0, TI, P, A), we 
see that IT extends by continuity to a bounded map from XP(A; T) into 
E(Q, 9, P), and this gives us the required extension of the strong stochastic 
integral. 

The requirement that X be E-primitive imposes geometric constraints on 
the Banach space F and probabilistic constraints on the process X. To ap- 
preciate these, we need some definitions. 

The Banach space F is said to be p-uni$ormly smooth if there exists K > 0 
such that 

I lx+~l l~+I lx -~I I~  < 2 llxllP+K llyllP for a11 x, ~ E F ,  

and it is p-smoothable if it is p-uniformly smooth with respect to an equivalent 
norm. In fact, we must take 1 < p < 2. The p-smoothable property is equiva- 
lent to a number of other interesting geometric Banach space properties (see 
e.g. Theorem 18.7 in [26], p. 91). The spaces L', r > 1, are all p-smoothable for 
some 1 < p < 2 .  

Let nT be a partition of [0, TI taking the form 0 = to < t, < . .. < tn < 
tn+ , = 7: We define the p-integrable variation Var(P)(X; nT) of X with respect 
to this partition to be 

n 

Var@)(X; nT) : = C E(IIX (ti+ l)-X (ti)llP), where p > 1 ,  
i = O  

so VadP)(X; .nT)~[O, m]. We say that X is of p-integrable variation if 

~ a r ? )  (X) : = sup Var'P) (X; nT) < 00 for all T > 0. 
ZT 

Let E be a Hilbert space and X be a LBvy process having the Lkvy-It6 
decomposition X (t) = BR (t) + f,, xfl (t, dx) for all t > 0. X has integrable 
2-variation, in fact 

Vary) (X) = (tr (R) + 1 11x1 l 2  v (dx)) T. 
B1 

If E has cotype p and X is centred with E(llX(t)llp) < 00, then X is of 
integrable p-variation [13]. 

We have the following beautiful result which shows the importance of 
these ideas in establishing E-primitivity. 

THEOREM 5.1 (Dettweiler). If F is p-smoothable and X is of integrable 
p-variation for some 1 < p < 2, then X is E-primitive for every Y with 
A = P@a, where, for each 0 < s < t < cn, 

a as ,  t]) : = lim inf Var(P) (X; n,) - lim inf Var(P) (X; n,). 
Zt n.9 

If we drop the condition that F be p-smoothable, Dettweiler has shown 
that there is no natural theory of strong stochastic integration for any l" 
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which is sufficiently rich so as to contain all finite rank operators. For full 
details see Theorem 3.2 in [13], p. 70. 

In the above discussion, we have given a "holistic" construction of the 
integral j: @ (s)dX(s). An alternative approach is to make a direct use of the 
LCvy-It6 decomposition and try to define 

- 

T T T T 

= b j  @(s)ds+J @ ( s ) d ~ ~ ( s ) + j  J @(s)xfl(ds, dx)+J j @(s)xN(ds, dx). 
0 0 0 B1 0 Bf 

The first term in (5.1) is a (pathwise) Bochner integral (provided @ is 
sufficiently regular) and the last term is just a random finite sum, in fact 

The difficulty is then reduced to the definition of the two middle terms and 
these will be subject to the constraints described above. 

The most intensive development of this approach has been in the case 
where E = F is a Rilbert space and T = 9 ( E )  (see [4], [27], [17], [la]). In this 
case, we may consider more general stochastic integrals which are of the form 
So jBl@(s, x)M(ds, dx), where M is the martingale-valued measure defined on 
[0, T] x B1 given by 

(5.2) M (10, t] , A) = BR (t) Go (A) + 1 xfi (asy dx) 
A - (0) 

for each 0 < t < T and each A E  98 (B,).  It is shown in [4] that this stochastic 
integral can be defined, by a natural extension from simple functions, to the 
real Hilbert space of all P@&?(B,)-measurable @ for which 

T 

E (J J tr (@ (s, x) T (x) 4 (s, x)*) v (dx) ds) < m , 
0 Bl 

where 
if x = 0 ,  

T (x) = 

This recipe coincides with that of [I21 for strong stochastic integrals with 
respect to Brownian motion if @(s, x) = 0, whenever x Z 0. 

Finally, we remark that Riidiger [24] has extended the work of 121 to 
define strong p-integrals Jfa Je-{o) f (x. s)fl(ds, dx) for suitable predictable 
mappings f : E x R+ x D -, F, where E and F are separable Banach spaces. 
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6. WEAK AND PETTIS-STYLE STOCHASTIC PNTEGRATION 

In this section, we continue to deal with stochastic integration with respect 
to martingale-valued measures of the form (5.2), but these are now taking 
values in a separable Banach space E. We denote by z the isometric embedding 
of E into E" given by i (x) (a) = (x, a) for each x E E, a E E'. Generalising Sec- 
tion 2 of 141, we define a field (Q,, x E E) of positive, symmetric operators from 
E' to E by the prescription 

R if x = 0 ,  
~ x = { ~ ( ~ l ( . , ~  i f x g o .  

Now we extend the construction of [21]. Let F = (F (t, x), t 2 0, x E B1) 
be P@g(B,)-measurable Lf(E)-valued random variables. We say that F is 
Q-weakly I? if for each x E B,, a E E', T > 0 

1. t + F (t, x) Q, F (t, x)* a is weakly measurable, 
2. I : J ~ ~ ( F ( ~ ,  x)Q,F(t, x)*a, a)v(dx)dt < m. 

Let d = do u (O), where do = ( A  E 97 (B1); 0 4 A} and let 9' (T) be the 
space of all F for which 

N1 N2 

F = C C Fij 11t,,t6+ il 
i=o j=o 

where N1, N2 EN, 0 = to < tl < . . . < tNl + , = A,,, . . ., ANZ are disjoint sets 
in d and each Fij is a bounded Ft,-measurable Lf (E)-valued random variable. 

i For F E Y (T), and for each a E E', we define 
I 

I T N1 N z  ~ (6.1) J J (F(t, x)M(dt, ax), a) := C C (FijM(ti+l-ti, Aj), a). 
I 0 Bi i=o j=o 
I 

Standard calculations lead to 

T T 

E ( I J  J (F(t, x)M(d', ax), a)l" = J I (F(t, x)QxF(t, x)*ay a)v(dx)dt, 
0 Bi 0 BI 

and this enables us to extend the construction of the weak stochastic integral 
1: IBi (F (t, x)M(dt, dx), a) to arbitrary F which are Q-weakly E by a stan- 
dard limiting argument. 

We say that an F which is Q-weakly I? is stocha~tically Pettis integrable if 
there exists an E-valued stochastic process (Y(t), t 2 0) such that 

T 

( Y ( t ) , a ) = j J ( F ( t , x ) M ( d t , d x ) , a )  for each ~ E E ' .  
0 81 

The stochastic Pettis integral has been introduced and studied in some 
detail by van Neerven and Weis 1211 (see also [23]) in the case where A4 
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reduces to a Brownian motion. It generalises the original construction of Pettis 
[22] to a random framework and appears to be independent of geometric 
constraints. 

7. L&W-DRNEN ORNSTEIN-UWEENBECK PROCESSES 

In recent years there has been a great deal of interest in stochastic evolution 
equations of the form 

(7.1) d Y (t) = J Y (t) dt + B ( Y (t)) dM (t) 

whose solution, subject to the initial condition Y (0) = Yo (as.), is a stochastic 
process Y = (Y(t), t 2 0) taking values in a Banach space E. Here J is 
the idnitesimal generator of a Co semigroup of linear operators on E, 
M = (M (t), t 2 0) is a semimartingale taking values in another separable 
Banach space F, and B is a suitable Lipschitz mapping from E to 9 ( F ,  E). Of 
course, solutions to (7.1) may not exist in general. The most extensive studies 
have been in the case where E and F are Hilbert spaces and M is a Brownian 
motion or a cylindrical Wiener process in the sense of [12], pp. 96-98. Recently 
there has begun to be some interest in the generalisation to LCvy processes (but 
still in a Nilbert space context); see e.g. [4], [17], [18], [27]. One of the 
simplest examples of (7.1), which has itself been the object of extensive study, is 

(7.2) d Y (t) = J Y (t) at + BdX (t) . 
Here we have taken B to be a fixed operator in 9 ( F ,  E) and X = (X(t), t 2 0) 
to be an F-valued Gvy process. The equation (7.2) has a weak solution if we 
can find Y for which 

for all a E Dom (J*), t 2 0. Necessary and sufficient conditions are known for 
a unique weak solution to (7.2) to exist when F is a Hilbert space and X is an 
F-valued Brownian motion or, more generally, a cylindrical Wiener process 
(see [8], [21]). The construction of [21] utilises the stochastic Pettis integral to 
construct this weak solution in a direct and appealing way. 

From now on we will take E = F to be a Nilbert space and X to be 
a general LCvy process. In this case, there is a unique weak solution to (7.2) and 
it coincides with the mild solution given by 

The stochastic integral appearing in (7.3) is sometimes called a stochastic 
convolution. It is constructed in a strong sense in [lo] and 141, in the former 
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case holistically and in the latter case via the Ltvy-It8 decomposition as out- 
lined in Section 4 above. The process Y = (Y(t), t >, 0) as given in (7.3) is called 
a L6vy-driven Orstein-Uhlenbeck process. It clearly generalises the well-known 
real-valued process obtained by taking E = R and each S(t) = e-" for some 
A > 0 (see e.g. Section 4.3.5 of [4] and references therein). Y is a Markov 
process. If (S (t), t 2 0) is "stable", i.e. lim,, , S (t) u = 0 for all u E E, then Y is 
strictly stationary if and only if (see [lo]) 

(A) limtt, So S(t) bdx exists; 
(B) j," tr(S(t)RS(t)*)dt < m; 

In the exponentially stable case where, for all t 2 0, IIS(t)ll < Ce-" for 
some C 2 1, A > 0: 

(A) and (B) always hold. 

a j," S (t) dX (t) exists in distribution iff j," jB; S (u) xN (du, dx) exists in dis- 

tribution. 

A suffi~cient condition for stationarity is jllrl, I log (1 + Ilxll) v (dx) < m and it is 
well-known that this is also necessary when dim(E) < og (see e.g. Theorem 
4.3.17 in [3] and references therein). We say that an E-valued random variable 
Z is operator self-decomposable if and only if for each t > 0 there exists a ran- 
dom variable 2, which is independent of Z and for which 

(7.4) z A S(t)Z+Z,. 

From (7.3) we see that Yo is operator self-decomposable with each 
Z, qo S (t - s) dX (s) if and only if Y is strictly stationary. Indeed, in this case 
we have from (7.3) 

We remark that operator self-decomposability for Banach space valued 
random variables was first introduced by Urbanik in [28] (see also [15], [16]). 
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