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Abstract. Functional limit theorems are presented for the re- 
scaled occupation time fluctuation process of a critical finite variance 
branching particle system in Rd with symmetric a-stable motion start- 
ing off from either a standard Poisson random field or from the equi- 
librium distribution for intermediate dimensions a < d < 2a. The limit 
processes are determined by sub-fractional and fractional Brownian 
motions, respectively. 
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1. INTRODUCTION 

Consider a system of particles in Rd starting off at time t = 0 from a cer- 
tain distribution (standard Poisson and equilibrium fields are investigated in 
this paper). They evolve independently, moving according to a symmetric 
a-stable Lkvy process and undergoing finite variance branching at rate V 
(V > 0). We obtain functional limit theorems for the rescaled occupation time 
fluctuations of this system when a < d < 2a. This is an extension of Theorem 2 
in [7] where the starting distribution is a Poisson field and the branching law 
is critical and binary. 

1.1. Branching law. In [4], [7 ] ,  and [8] the law of branching is critical and 
binary. In this paper an extended model is investigated. The particles branch 
according to the law given by a moment generating function F. The function 
F fulfills two requirements : 

1. F f ( l )  = 1, which means that the law is critical (the expected number of 
particles spawning from one particle is 1); 

2, 6;" (1) < + a, which states that the second moment exists. 



(Note that the branching law in [7] is given by F (s) = f (1 +s2) and obviously 
fulfills the two requirements.) Although constraints imposed on F are not very 
restrictive and quite natural (so that the class of the branching laws satisfying 
them is broad), still there remain other interesting cases to be investigated. One 
of them is the class of branching laws in the domain of attraction of the 
(1 +P)-stable law, i.e., the moment generating function is 

the case studied in [5] and [6]. A remarkable feature of the latter case is that 
the limit processes are stable ones and not Gaussian as it occurs in the finite 
variance case. 

12. Equilibrium distribution. Another concept naturally related to particle 
systems is an equilibrium distribution. It has been shown that in certain cir- 
cumstances the system converges to the equilibrium distribution [I 11. It is both 
an interesting and important question whether the theorems shown by Bojde- 
cki et al. still hold in the case when the equilibrium state is taken as the initial 
condition. A conjecture in [4] states that the temporal structure of the limit is 
given by fractional Brownian motion. It is of interest to notice that the limit 1 

is different from the one in the case of the system starting off from the Poisson 
field (where temporal structure is sub-fractional Brownian motion). We study I 

behavior of the system for a branching law given by F. But there is still a broad I 

area of further studies. No attempt has been made to develop more general 
, 
I 

theory concerning systems with a general starting distribution (or a large class 
of distributions). 

1.3. General concepts and notation. Let us denote by NFoiSS and Nreq the 
empirical processes for the system starting off from the Poisson field with 
Lebesgue intensity measure and the equilibrium, respectively. For a measurable 
set A c Rd, NpiSS (A) and Nreq (A), respectively, are the numbers of particles of 
the system in the set A at time t. Note that they are measure-valued processes 
but we will consider them as processes with values in 9' (the space of tempered 
distributions) because this space has good analytical properties. 

The equilibrium distribution is defined by 

where the limit is understood in weak sense. The Laplace functional of the 
equilibrium distribution is given by 

00 

where 

(1.29 j (x, I )  : = E exp (- (Nf, q)), 
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H (s) = F (s) - s, cp : Rd -+ R + , cp E 2' (Rd) n C (Rd), and j satisfies the integral 
equation 

1 

j(x, 1) = %e-m(x)+ V j % - , ~ ( j ( . ,  s))(x)ds. 
0 

This equation can be obtained in the same way as (2.4) in [ll]. Note that in 
[11] the function cp is continuous with compact support. We approximate 
c p ~  2' using functions cp, with compact support cp, r cp. Using the Lebesgue 
monotone convergence theorem it is easy to obtain the above equations 
for cp (H is decreasing because of the criticality of the branching law). 

For an empirical process N, the rescaled occupation time fluctuation pro- 
cess is defined by 

where T > 0 and FT is a suitable norming. We are interested in the weak 
functional limit of X T  when time is accelerated (i.e., T tends to co). 

The a-stable process starting from x will be denoted by y:, its semigroup 
by K ,  and its infinitesimal operator by A,.  The Fourier transform of Yt is 

For brevity let us put 

where 

(in this paper we always assume that a < d < 2a, so h > 1) and 

We will now introduce two centered Gaussian processes. One of them is 
a sub-fractional Brownian motion with parameter h with the covariance func- 
tion Ch, 

and the second one is a fractional Brownian motion with parameter h and the 
covariance function ch, 

1.4. Space-time method. The space-time method is a very convenient tech- 
nique for investigating the weak convergence in the C (LO, z], 9' (Rd)) space. 



It was developed by Bojdecki et al. and can be found in [3]. If X = (X (t))t,Io,,l 
is a continuous Y'(Rd)-valued process, we define a random element 2 of 
Y'(Rd+l) by 

where @ E  Y(Rd+'). In order to prove that XT converges weakly to X in 
C([O, z], Y'(Rd)) it suffices to show that 

(2,, @> =- ( 2 ,  a> for all Q E ~ ( R ~ + I )  

and that the family X, is tight. 

2. CONVERGENCE THEOREMS 

We will present two theorems. In the first of them (which is a direct 
extension of Theorem 2.2 in [7]) we study the occupation time fluctuation 
process for the branching system starting off from the Poisson field with Lebes- 
gue intensity measure (denoted by A) with the branching law given by a mo- 
ment generating function as described in Section 1.1. The result is very similar 
to the one obtained in Theorem 2.2 of [7] - namely, the limit process is the 
same up to constants. 

THEOREM 2.1. Assume that a < d < 2a and let XT be the occupation time 
fluctuation process defined by (1.3) for the branching system NpoiSs, and 
FT = T ( ~  Then XT X in C ([0, z] , 9' (Rd)) as T + + co for any z > 0, 
where (X(t)),,, is a centered Y'-valued Gaussian process with the covariance 
function 

where cp,  $ E 9 (Rd). 

The second theorem concerns the case where the system starts from the 
equilibrium distribution. As mentioned hereinabove, the theorem is interesting 
because the limit has a different time structure from the one in Theorem 2.2 of 
[7] and Theorem 2.1. 

THEOREM 2.2. Assume that cc < d < 2a and let XT be the occupation time 
fluctuation process dejined by (1.3) for the branching system Ne9, and 
FT = T(3-d1a)12. Then XT * X in C([O, z], Y'(Rd)) as T + + co for any r > 0, 
where (X(t)),,, is a centered Gaussian process with the covariance function 

where q ,  t,b E 9 (Rd). 
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Remark  2.1. The limit processes above can be represented as follows: 
For Theorem 2.1 

x = (MK)I/~ 2ph 

and for Theorem 2.2 
x = ( M K ) ~ / ~  1rh,  

where ph and th are sub-fractional and fractional Gaussian processes, respec- 
tively, defined in Section 1.3. In both cases the limit process X has a trivial 
spatial structure (Lebesgue measure), whereas the time structure is complicated, 
with long range dependence. 

Re m a r k 2.2. The occupation time fluctuation processes of particle sys- 
tems form an area that receives a lot of research attention. We would like to 
mention some other related work. Firstly, the case of non-branching systems 
has been studied in [7], Theorem 2.1. The result is analogous both to Theo- 
rems 2.1 and 2.2 because the Poisson field is the equilibrium distribution for the 
system. The limit process is essentially the same as in Theorem 2.2. For the 
critical d = 2a and large dimensions d > 2a, there is no long range dependence 
and the results can be found in [8]. In [2] the fluctuations of the occupation 
time of the origin are studied for a critical binary branching random walks on 
the d-dimensional lattice, d 2 3, including also the equilibrium case. The con- 
vergence results are analogous to those in [7] and [8] and in this paper, but the 
proofs are substantially different. A similar model with ct = 2 was investigated 
in [9] (i.e. with particles moving according to Brownian motion). 

3. PROOFS 

The main idea used in both of the proofs is to study the Laplace functional 
of a process given by the space-time method. The Fourier transform is used for 
this purpose. This is similar to the method in [7]. In the case of Theorem 2.1 
the proof follows the same principle as Theorem 2.2 in [7]. The moment 
generating function can be represented by using the Taylor expansion and the 
following two statements need to be proved. Firstly, one has to check that the 
method used in [7] can still be applied. Secondly, it needs to be shown that 
terms of order higher than 2 play no role in the limit. The proof of Theorem 2.2 
requires more work. The Laplace formula contains a function that is a solution 
of a differential equation. This makes the computations more cumbersome. 
Some expressions in this proof had to be examined more carefully than in 
Theorem 2.1. It should be noted that Theorem 2.2 covers all branching laws 
described in Section 1.1. 

Now we introduce some notation and facts used further on. 
For a generating function F we define 

3 - PAMS 27.2 



The following fact describes basic properties of G which are straightforward 
consequences of the properties of F. 

FACT 3.1. 1. G ( 0 )  = F(1) -1  = 0. 
2. G'(0) = -Ft(1)+ 1 = 0 since F'(1) = 1. 
3. G"(0) = F"(1) < + 03. 

4. G (v) = ( M / 2 )  v2 + g (v) v2,  where M is defined by (1.7) and lim,,, g (v) = 0. 

The next simple fact will be useful in proving some inequalities. 

FACT 3.2. G (v) 2 0 for v E [O, 11. 

P r o  of. The property F"(1- v) 2 0 is an obvious consequence of the fact 
that all of the coefficients in the expansion of F" are non-negative and 
1 -v E [ 0 ,  11. We have GU(v) = F" (1  -v) 2 0.  We also know that G'(0) = 0 ,  so 
G'(v) 2 0 for V E  [ 0 ,  11. The proof is complete since G ( 0 )  = 0 and G is non- 
decreasing. 

The existence of the second moment of the moment generating function 
F implies also that G is comparable with the function v2. 

FACT 3.3. W e  have 

sup -y< + m .  
~ ~ [ 0 , 1 ]  

P roof .  Since both G ( v )  and v2 are continuous, we only have to check 
that the limit of the quotient at v = 0 is finite. This becomes obvious when we 
recall Taylor's expansion of G ( v )  from Fact 3.1, property 4. 

Let us now introduce some notation used throughout the rest of the paper. 
Pi will denote a positive function from 9 ( R d + ' ) .  The Lemma in Section 3.2 of 
171 explains why without loss of generality it can be assumed that Pi 2 0. 
We put 

1 

Y ( ~ , ~ ) = j P i ( ~ , t ) d t ,  
S 

To make computations less cumbersome we will sometimes assume that Pi is of 
the form Qi ( x ,  t )  = cp ( x )  $ ( t )  for E 9 (Rd), $ E 9 (R),  and hence 

where 
1 1 

~ T ( x )  = v ) ( * ) ,  x ( ~ )  = [ $ ( s ) ~ s ,  X i  = 7(;). 
FT 

Notice that q~ 2 0, x 2 0 as Pi 2 0. 
Let us introduce now an important function which will appear as a part of 

the Laplace functional of the occupation time fluctuation processes: 
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where N: denotes the empirical measure of the particle system with the initial 
condition N+ d6,. Let us note here that due to the fact that Y 0 we have 
vy E [0, 11. We also write 

For simplicity of the notation, we write 

when no confusion can arise. 
Now we obtain an integral equation for o which will play a crucial role in 

the next proofs. Note that similar computations can be found also in [12]. 

LEMMA 3.1. vy satisfies the equation 

t 

= I%-, [Y ( a ,  r+t-s)(l  -vy(., r+t-s,  s))- VG(V,(., r+t-s,  s))] (x)ds. 
0 

P r o  of. Firstly let us investigate 

t 

W(X, r, t) = wY(x, r, t) = Eexp(-I (N:, Y(., r+s))ds) = 1-vy(x, r, t). 
0 

We assume Y 0; hence we have w (x, r, t ) ~  [0, 11. By conditioning on the 
time of the first branching we obtain the following equation: 

t S 

+VIe-VsEexp(-I Y(q& r+u)du)F(w(q:, r+s ,  t-s)), 
0 0 

where t 0, r 2 0. Using the Feynman-Kac formula one can obtain the fol- 
lowing equation for w (for details see (3.13)--(3.17) in [7]): 



Since v (x, r, t) = v, (x, r ,  t) = 1 - W, (x, r, t), v satisfies the equation 

Its integral version is (3.8) (note that, in [7], G(t) = i t2).  Then we obtain 

FACT 3.4. We have 

P r o  of. This is a direct consequence of the equation (3.8), the fact that 
1 >, v 2 0 and Fact 3.2. 

FACT 3.5. For the system NyiSS the covariance function is given by 

(3.10) cov ((NY", cp), (N:'", $)) 
U 

=(A,cpFv- . - .$ )F" ( l ) .VS(A ,cpz+v- , r$ )dr ,  u < v ,  
0 

where cp, + E Y (Rd). 

The proof of the fact follows from a simple computation which can be 
carried on using formula (3.14) of [lo], so we omit it. 

3.1. Proof of Theorem 2.1 

3.1.1. Ti  g h t n e s s. The first step required to establish the weak convergence 
is to prove tightness of X,. By the Mitoma theorem [14], it is sufficient to 
show tightness of the real processes (X,, 4) for all 4 €9(Rd).  This can be 
done by using a criterion from [I], Theorem 12.3. Detailed examination of the 
proof in [7] reveals that only the covariance function of the NFoi" is needed 
([7], Section 3.1). One can see that the covariance function (3.10) is essentially 
the same as for the binary branching. Hence the proof from [7] still holds for 
the new family of processes. 

3.1.2. The Laplace  , funct ional .  The second step uses the space-time 
method. According to (1.10) we define 2, (from now on r = 1). To establish the 
convergence we use the Laplace functional. By the Poisson initial condition we 
have (this equation is the same as (3.10) in [7]) 
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Now we make similar computations to (3.21H3.23) in [7]. By combining (3.11) 
and (3.8) we obtain 

= exp { J  J' Y T ( x ,  T-s )v , (x ,  T - s ,  s)+ V G ( V T ( X ,  T - s ,  s))dsdx}. 
Rd 0 

The last expression can be rewritten as 

where 

M S  
G ( v T ( x ,  T - s ,  s))- - ( j%YT(. ,  T + U - ~ ) ( x ) d u ) ~  dxds, 

0 Rd 2 0  I 
To complete the proof we have to compute limits as T -, + co . We claim 

I2  ( T )  -+ 0 ,  1 3  ( T )  -+ 0 .  
I 

Combining (3.12) with the above limits we obtain 

lim Eexp{-(TT, a))  = exp @ ( x ,  t ) ~ j ( y ,  s )dxdych(s ,  t)dsdt 
T + + m  

hence the limit process X T  is a Gaussian process with covariance (2.1). 

3.1.3. Convergence  proofs .  I 1 ( T )  does not depend on F, so it can be 
evaluated in the same way as (3.32H3.34) in [7]. 

Let us now deal with I ,  (T ) .  Using (3.9) we obtain 

Now the rest of the proof goes along the same lines as in [7]. 



We will turn to I 2  ( T )  which is a little more intricate. Combining (3.13) and 
property 4 from Fact 3.1 we get 

where 
T s 

I ; ( T )  = j j v T ( x ,  T - s ,  S ) ~ - ( ~ ~ Y ~ ( - ,  ~ + u - s ) ( x ) d ~ ) ~ d x d s ,  
0 Rd 0 

(3.16) 
T 

I g ( T )  = J S g ( v T ( x ,  T - S ,  s ) ) v T ( x ,  T - S ,  ~ ) ~ d x d ~ .  
0 Rd 

By inequality (3.9) we have 

Combining (3.8) and (3.3) yields 

We have Ys Y 0  for Y 0, which is a direct consequence of the fact that 
Y is the semigroup of a Markov process. By Fact 3.3 we have c ( F )  such that 

L 

Hence 

Except of the constant c ( F )  the last expression does not depend on F. 
Next we consider 



Occupation time fluctuations 191 

The rest of the proof goes along the lines of the proof of inequalities 
(3.39H3.42) in [7], and hence we acquire I i (T)  -+ 0. 

Before proving the convergence of I'i(T) we state two facts: 

FACT 3.6. nT (x, T -s, s) -+ 0 in uniformly x E R ~ ,  s E [0, TI, as T -+ + CQ. 

Proof .  We have 

The last line contains the definition of the potential operator of the semigroup 
Ft which is bounded with respect to x (this can be found in [13], Lem- 
ma 5.3). H 

FACT 3.7. The following convergence holds: 

P r o  of. One easily checks that 

Hence the result follows from (3.14) and the convergence I', (T) -, 0 as T -+ 0. 

It is now easy to prove the convergence of I;. From Fact 3.1, property 4, 
we know that for given E > 0 we can choose 6 such that, for all XE(-6, 6), 
Ig(x)l < E. Fact 3.6 provides us with To such that, for all T 2 To, 
nT(x, T-s, s) i 6. Combining this with (3.9) we obtain, for all T 2 To, 
g(vT(x, T-S, s)) < E.  Hence for T > To we get 

Since E was chosen arbitrary, we have the convergence I','(T) -+ 0, and hence 
also 12(T)+0 as T -+ +a. 

Thus we obtained the limits for I,, I, and I, and the proof of Theorem 2.1 
is completed. 

3.2. Proof of Theorem 2.2 

3.2.1. Tigh t  n e s s. We begin by claiming that the family {XT) T, is tight. 
Close examination of Section 3.1 in [7] reveals that only the covariance func- 



tion of the underlying system is significant for the proof. By (3.16) in [4] we 
know that the covariance function of the branching system is of the same form 
as the covariance function of the non-branching system with the Poisson initial 
condition. From this we conclude that X T  is tight. 

3.2.2. The  Laplace  func t iona l  for  X T .  We consider 8, defined by 
(1.10). Using (1.3) and interchanging the order of integration we obtain 

To prove the convergence of 8, to 8 we will use its Laplace functional 

It is easy to check that 

where 

Now we check that 0 < -ln(wT) is integrable. For T big enough, by Fact 3.6 
and inequality (3.9) we have 0 < V T  < c < 1. Hence there exists a constant 
C such that we have -In (wT)  = - ln (1  - vT)  < CvT < CnT.  A trivial verifica- 
tion shows that nTELY1(Rd),  SO by (1.1) and (3.18) we obtain 

where WT satisfies the equation 

It will be a bit easier to deal with VT ( x ,  I )  = 1 - WT ( x ,  1). The equations have 
the form (let us recall that G is defined by (3.1)) 
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and 
1 

(3.20) VT(X, 1) = %VT(X)--V[%-~G(VT(., ~ ) ) ( ~ ) d s ,  
0 

WT is defined by (1.2) with cp (x) = -1n wT (x) (wT E [0, 11, hence cp is positive). 
One can easily see that the definition implies that WT E [0, 11. Consequently, 
VT E [0 , I], which together with Fact 3.2 yields G (VT) 3 0. Hence we obtain the 
inequality 

(3.2 1) VT(x, l )<%vT(x)  ' for all X E R ~ ,  1 2 0 .  

Combining (3.17) and (3.19) we obtain 

T 

E exp { - (TT,  @)} = exp { j J' YT (x, t) dtdx) exP { - J' VT (x) dx) 
Rd 0 R d 

where 

+aJ 

x exp {V j j G(VT(x, t))dxdt) = A(T)-B(T),  
0 Rd 

+aJ 

B (T) = exp {V j j G (VT (x, t)) dxdt). 
0 Rd 

Let us note that A is the same as (3.11) in the first proof, hence we know that its 
limit is given by (3.1 5). 

3.2.3. Limi t  of B. To complete the proof, the limit lim,,. , B (T) has to 
be calculated. It suffices to consider 

Using Fact 3.1, property 4, we split it in the following way: 

where 
+a3 

B2 (T) = 'f 1 (&VT (x ) )~  - ( & n ~  ( ~ ) ) ~ d x d t ,  
0 P P J  



+a3 

B4 ( T )  = S g (VT ( x  , t)) VT ( x ,  t12 dxdt. 
0 Rd 

We will prove the following limits (let us recall that we assume (3.2) for sim- 
plicit y) : 

Bl (TI -, 0 ,  B2 (TI -, 0 ,  

B4 ( T )  -, 0 ,  
as T - ,  +a. 

Limi t  of B1. By (3.21) we obtain 

Combining this with inequality (3.21) and equation (3.20), we see that the last 
equality is not greater than 

J J (V % - t t  G (VT (. , t')) ( x )  d t') (2% V T  (x))  dxdt. 
0 Rd 0 

Taking into account the form of G (Fact 3.1, property 4) we infer that this 
expression is equal to 

B11 (T)+B12 (TI ,  
where 

B12 ( T )  = S (V g ( ~ T ( . ,  t')) VT ',(., t ~ ) ~  (x )  dt1)(2% vT (x))  dxdt. 
0 Rd 0 

Once again we use inequality (3.21) and obtain 

+co t 

B 1 1 ( T )  < V M  S S (1 6 - t r  (%I V T  ( x )  dt ') (% (x))  dxdt 
0 Rd 0 
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Applying (3.9) twice we see that the last expression is not greater than 

Using the Plancherel formula and (1.4) we infer that the last form is equal to 

x exp {-(2t-t ')  12, +z21u} G ( z l  +z2)dzl dz2 dt'dt 

x exp {-  t'lz21u) exp {-(2t - t') lzl +z21u) dtrdtdzl dz2 

Before proceeding further we will estimate AT: 

Hence 

and this immediately implies (see (3.7)) 

(3.24) 
C 1 

If iT  (z)] < - - [I - exp { - T 1z1")]. 
F~ l z I u  



Here, and in what follows, C denotes a generic constant. Coming back to (*) 
and using the last inequality we obtain 

1 
X-[l -exp {-  T lz2lU)] 

1 
[I-exp{-T lzl +z2lU)] dzl dz,, 

lz2 l a  Iz1+ z21U 

which after substituting Ti/' z1 = y, and Ti/" 2, = y2 yields 

where 

The integral BY1 is finite, which will be proved in the Appendix. The expression 
B;, (T) can be evaluated as follows: 

As 1-d/a < 0, we get B;,(T)-+O; hence also Bll(T)--+O. 
From Fact 3.6 and inequalities (3.9) and (3.21) we know that VT (x, 1) -+ 0 

uniformly as T -+ 0, and so g (VT (x, 1)) < E for T sufficiently large. Hence 

Thus B12 (T) -, 0 and also B1 (T) --+ 0. 

L imi t  of B2. Let us first estimate the expression nT-vT using (3.8) 
and (3.3): 

T 

nT(x)-vT(x) = 1 T T - u  YT(', T -u ) (x )~u  
0 

T 

-S TT-u [yT(., T-u)(l-v,(., T-u, u))-VG(V,(., T-u, u))] (x)du, 
0 
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Applying Fact 3.3 we see that the last expression is not greater than 

where c is a constant. By inequality (3.9) we get 

We have 

Applying (3.9) and (3.25) we infer that the last form is not greater than 

where 

Now, applying the Plancherel formula, then interchanging the order of inte- 
gration and integrating with respect to t, we get 

L 
- j J exp { - 2 t  lzla) GT(z)AT(z)dzdt  
(2nId 0 Rd 

where 



First we shall compute lim,, + , B21 (T). We have 

The inner convolution can be estimated using the inequality (3.23) and sim- 
plification (3.2) : 

In the last inequality we use the fact that @ is bounded and @ (x)/lxlU is inte- 
grable. Hence we have 

Thus B21 satisfies 

Using (3.24) and integrating with respect to u we see that the right-hand side of 
this inequality is not greater than 

Substituting ZT'/" = y we infer that this expression equals 

where 
T3 

Bil  (TI = CUVTd'.' 

It is clear that the integral Bi1 in the last expression is finite since in a neigh- 
borhood of 0 the integrated expression is proportional to 1/lylu and it is 
0 (l/ly13") as lyl -+ + oo (recall that cc i d i 24. Now only Bil needs to bc 
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evaluated 
~f 

( T )  = C" ~ ' 6  - 3'3 - dlu) - 2dlctl12 = ~t T(  - 3 4- d / a ) l 2  
2 1 

Hence it is obvious that Bil ( T )  + 0 as T + 0, and so lirn,,, B2, ( T )  = 0. 
Before proceeding to Bz2 we will make the following estimation using the 

inequality (3.23): 

C 1 1 
$ - [ -[I-exp{-uIxlu)]- [ I  -exp { -u  lz-xla}] dx. 

FZT Rd 1x1" Iz - XI" 

Substitution xu1" = y yields that the last expression is not greater than 

C 1 
u2 -dl"-., . .-.  1 C' 

S a [ I -  exp { - IY~")] lzul/u - ylu [ I  - exp { - IZU'"- yl")l dy < - 
F+ Rd I Y ~  F$ 

since the integral can be regarded as a convolution of .5f2 functions, so it is 
bounded. This clearly implies 

4 d 

IB2, (T)I $7 S - S exp { - (T  -u) lzl") ~ ~ - ~ / " d u  ]AT (z)I dz 
F~ R d  l z l a  0 

By (3.24) the last expression is not greater than 

1 
(1 - exp { - T 1 ~ 1 ' ) )  (1 - exp { - T Jzl"}) dz, 

lzl 

which after substituting zT1" = y can be rewritten in the form 

The integral is finite (the same proof as for B;,) and 

which yields B2, ( T )  + 0 as T + + co. 
Limi t  of B3. Applying the Plancherel formula to B3 ( T )  we get 

1 2 g 3  ( T )  = ,I j exp {-2tlzla) (Mz)) dzdt 
( 2 4  0 Rd 



Substituting uf = u/T we obtain the last expression in the form 

Let z = [ T ( u l  +u2)]-'lay. Then the last expression takes the form 

Therefore, by the Lebesgue dominated convergence theorem and integration 
by parts, we obtain the limit of B3 ( T ) :  

1 l 1  1 
lirn B3 (T) = --- j 1 (ul+ ~ 2 ) '  - exp { - 1 ~ 1 ' )  (4 x ( ~ 1 )  x ( ~ 2 )  dul du2 dy 

T - + + m  2 (24,  0 0 Rd IY~" 

Limi t  of B4. Firstly, let us notice that 
+a, 

B1 ( T )  +B2 ( T )  +B3 ( T )  = J j VT ( x ,  t)2 dxdt, 
0 Rd 

and hence 
+ m  

j j V T ( ~ , t ) 2 d x d t - + C  as T + + m .  
0 Rd 

Secondly, by Fact 3.6 and the inequalities (3.21) and (3.9) we know that 
VT (x) -+ 0 uniformly as T -+ 0. Hence g (WT (x))  $ E for T sufficiently large, so 

which clearly implies that B4 ( T )  -+ 0 as T ;. + a. 
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P u t t i n g  t he  resu l t s  together .  Combining the previous results we 
conclude that 

and finally, by (3.15), 

where ch is the covariance function of the fractional Brownian motion defined 
by (1.9). This Laplace functional defines a process ST corresponding to the 
Gaussian process X ,  with the covariance (2.2), and hence Theorem 2.2 is 
proved. 

4. APPENDIX 

The appendix contains a technical fact used in the main proof. 

FACT 4.1. We have 

S 
1 1 

- 1 l - e ~ ~  {-l~1l")l 
I Y I + Y ~ ~ )  lylla 

P r o  of. Substituting x = yl + y, and z = y, we get 

1 1 
x - [I - exp { - lzl")] [I - exp { - IxJ")] dxdz 

lzl" 1x1 

1 
x [I - exp { - (x - z(')] - [I - exp { - (zlu}] dzdx = (*) . 

lzl" 

Let us investigate now 

S 
1 1 1 

[I- exp { - Ix - zl")] 7 [I - exp { - 1z1")] dz 
,2d (XI" + lz]" + Ix - sl" Ix - 21" lzl 

4 - PAMS 27.2 



1 1  1 
$ --[I-exp{-1z1")]- [I - exp { - Ix - zl'}] dz 

Rd l z l a  Iz(a I X  - 21' 

The last integral is finite since in the neighborhood of 0 the integrated 
function is 0 (I/Jz(") and for big (zl is 0(1/Jz12'). Going back to (*) we obtain 

by the same reason as above. 
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