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Abstract. For a sequence of random elements {G, n 2 1) taking 
values in a real separable Rademacher type p (1 < p < 2) Banach space 
and positive constants b,l 7 co, conditions are provided for the strong 

law of large numbers zy=, V;/bn + 0 almost surely. We treat the fol- 

lowing cases: (i) {Kt, n 2 1) is blockwise independent with EK, = 0, 
n 2 1, and (ii) {G, n 2 1) is blockwise p-orthogonal. The conditions 
for case (i) are shown to provide an exact characterization of Radema- 
cher type p Banach spaces. The current work extends results of Mbricz 
[12], Mbricz et al. [13], and Gaposhkin [8]. Special cases of the main 
results are presented as corollaries and illustrative examples or coun- 
terexamples are provided. 
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1. INTRODUCTION 

M6ricz El21 introduced the concept of blockwise independence for a se- 
quence of (real-valued) random variables and extended a classical strong law of 
large numbers (SLLN) of Kolmogorov (see, e.g., Chow and Teicher [6], p, 124) 
to the blockwise independent case. (Technical definitions needed in this paper 
will be discussed in Section 2.) Gaposhkin [7] and [8] also studied the SLLN 
problem for sequences of blockwise independent random variables; in those 
papers he also proved SLLNs for sequences of blockwise orthogonal random 
variables. 

In the present paper, we consider a sequence of random elements 
{K, n > 1) defined on a probability space (Q, P) and taking values in a real 
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separable Banach space X with norm II-II. We provide conditions for the 
SLLN: 

El=, 6 
lim - = 0 almost surely (a.s.), 
n-m bn 

where {b,, n > 1) is a sequence of positive constants with bn co. The Banach 
space X is assumed to be of Rademacher type p (1 < p < 2). The main findings 
are Theorems 3.1, 3.2, and 3.3. In Theorem 3.1 the random elements {K, n 3 1) 
are assumed to be blockwise independent with El/, = 0, n 2 1, whereas in 
Theorem 3.3 the random elements are assumed to be blockwise p-orthogonal. In 
Theorem 3.2, it is shown that the implication (3.2) -(3.3) in Theorem 3.1 
indeed provides an exact characterization of Rademacher type p Banach 
spaces. Theorems 3.1 and 3.3 are very general results in that they are new when 
the Banach space X is the real line R. Of course, special cases of Theorems 3.1 
and 3.3 are known to hold when X = R. 

The present work extends results of M6ricz [12], M6ricz et al. [13], and 
Gaposhkin [8]. Our proofs are substantially different from those of the earlier 
counterparts due to a recent and elementary result of Chobanyan et al. [5] 
(Lemma 2.5 below) and these differences will be discussed in Remark 3.2. 

The plan of the paper is as follows. Technical definitions, notation, lemmas 
and other results used in the proofs of the main results or their corollaries are 
given in Section 2. The main results are stated and proved in Section 3. In 
Section 4, some corollaries and interesting examples or counterexamples are 
presented. 

2. PRELIMINARIES 

Some definitions, notation, and preliminary results will be presented prior 
to establishing the main results. Let 3 be a real separable Banach space with 
norm 11.11. A random element in % will be denoted by V or I/,, etc. 

The expected value or mean of a random element V ,  denoted by EV, is 
defined to be the Pettis integral provided it exists. That is, V has an expected 
value EVE 3 if f (E V) = E (f (V)) for every f E X*, where %* denotes the (dual) 
space of all continuous linear functionals on 3. If E llVll < co, then (see, e.g., 
Taylor [18], p. 40) V has an expected value. But the expected value can exist 
when E I(VI( = co. For an example, see Taylor [18], p. 41. 

Let {Y,, n > 1) be a symmetric Bernoulli sequence; that is, {Y,, n 3 1) 
is a sequence of independent and identically distributed (i.i.d.) random varia- 
bles with P {Yl = 1) = P {Yl = - 1) = 1/2. Let Xm = X x X x X x . . . and de- 
fine 

CO 

%? (3 )  = {(vl , v,, . . .) E zm : vn converges in probability}. 
n = l  
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Let 1 $ p $ 2. Then % is said to be of Rademacher type p if there exists 
a constant 0 < C < co such that 

a3 a3 

E 1 1  C Y , v ~ I I ~  < C C IIvnIIp for all (v,, v2, . . .)Ew(x). 
n = l  n = l  

Hoffmann-Jargensen and Pisier 191 proved for 1 $ p $ 2 that a real separable 
Banach space is of Radeinacher type p if and only if there exists a constant 
0 < C < co such that 

for every finite collection {Vl , . . . , K) of independent mean 0 random elements. 
If a real separable Banach space is of Rademacher type p for some 

1 < p < 2, then it is of Rademacher type q for all 1 $ q < p. Every real separa- 
ble Banach space is of Rademacher type (at least) 1 while the 9,-spaces and 
1,-spaces are of Rademacher type 2 A p for p 2 1. Every real separable Hilbert 
space and real separable finite-dimensional Banach space is of Rademacher 
type 2. In particular, the real line R is of Rademacher type 2. 

A finite collection of random elements {Vl, . . ., VN) (N 2 2) is said to be 
p-orthogonal (1 < p < co) if E 1 1  KIIP < co for all 1 $ n $ N and 

for all choices of 1 $ n < m < N, for all constants {a,, . . ., a,), and for all 
permutations n of the integers {I, . . ., m}. A sequence of random elements 
{K, n 2 1) is said to be p-orthogonal(1 < p < co) if {V1, . . ., VN) is p-orthogo- 
nal for all N 2 2. The notion of p-orthogonality was introduced by Howell and 
Taylor [lo]; we refer to Howell and Taylor [lo] and Mbricz et al. [I31 for 

detailed discussion of p-orthogonality. 
Let {/Ik, k 2 1) be a strictly increasing sequence of positive integers with 

= 1 and set Bk = [Pk, Pk+l), k 2 1. A sequence of random elements 
{K, n 2 1) is said to be blockwise independent (resp., blockwise p-orthogonal 
(1 < p < a ) )  with respect to the blocks {B,, k 2 1) if for each k 2 1 the ran- 
dom elements {K, i E Bk) are independent (resp., p-orthogonal). Thus the ran- 
dom elements with indices in each block are independent (resp., p-orthogonal) 
but there are no independence (resp., p-orthogonality) requirements between 
the random elements with indices in different blocks; even repetitions are per- 
mitted. 

The following notation will be used throughout this paper. For x 2 0, let 
L x J denote the greatest integer less than or equal to x and let r x 1 denote 
the smallest integer greater than or equal to x. We use Log to denote the 
logarithm to base 2. The symbol C denotes a generic constant (0 < C < co) 
which is not necessarily the same in each appearance. 
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For {Pk, k 2 1) and {Bk, k k 1) as above, we introduce the following 
notation: 

~ i ~ ' = ~ ~ n [ 2 ~ , 2 ~ + ~ ) ~  k 2 l 9 m > O 9  

I, = {k 1 :  BPI #a), m 2 0, 

where I [ 2 m , 2 m + l )  denotes the indicator function of the set [2m, 2m+1), m 2 0. 
It is easy to verify that the following relations are satisfied: 

(i) If pk = 2k-1, k 1, then 

(2.2) cm = 1, m 0, and cp(n) =1, n 2 1. 

(ii) If Pk = Lqk-I I for all large k, where q > 1, then 

(2.3) c = 0 ( 1  and cp (n) = O (I). 

(iii) If Pk = L 2k"L0gk)" 1 for all large k, where > 0, then 

(2.4) cm=6((Logm)"L) and cp(n)=@((~ogLogn)"). 

(iv) If pk = L2k"] for all large k, where 0 < ct < 1, then 

(2.5) Cm - - 6 ( m  ) and cp (n) = 6 ((Log n)" -a)b). 

(v) If pk = Lka] , k 2 1, where ct > 1, then 

(2.6) em = 6 (2"") and cp (n) = 6 (nl/"). 

(vi) If pk = k, k 2 1, then 

(2.7) cm = 2", m a  0, and q(n) < n, n 2 1. 

The following result is well known when ti? = R and p = 2. 

LEMMA 2.1. Let {K, n 2 1) be a sequence of independent mean 0 random 
elements in a real separable Rademacher type p (1 < p < 2) Banach space. Then 

where the constant C does not depend on n. 

Proof .  Let Fn = a(Xi, 1 < i < n), n 2 1. Now it is well known but seems 
to have been first observed by Scalora [17] that {(IC;=, 611, Fn, n I} is a real 
submartingale. In the case 1 < p < 2, by Doob's submartingale maximal 
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inequality (see, e.g., Chow and Teicher [6], p. 255), for n 2 1 we have 

establishing (2.8). In the case p = 1, note that for n 2 1 

again establishing (2.8). rn 

PROPOSITION 2.1 (Hoffmann-Jwgensen and Pisier [9]). Let 1 < p < 2 and 
let % be a real separable Banach space. Then the following two statements are 
equivalent: 

(i) % is of Rademacher type p. 
(ii) For every sequence {V,, n 2 1) of independent mean 0 random elements 

in %, the condition 

implies 

LEMMA 2.2 (Howell and Taylor [10]). If 95 is a real separable Rademacher 
type p (1 < p < 2) Banach space, then there exists a constant C < co such that 

for all p-orthogonal sequences of %-valued random elements. 

LEMMA 2.3 (M6ricz et al. [13]). Let {V,, n > 1) be a p-orthogonal 
(1 < p < co) sequence of random elements in a real separable Banach space and 
suppose that there exists a sequence of nonnegative numbers {un, n 2 1) such 
that 

m m 

EIICT.;II~$ C U ~  for a l l m > n > l .  
i = n  i = n 

Then 

An immediate consequence o f  Lemmas 2.2 and 2.3 is that i f  {Vl ,  . . ., VN} is 
a p-orthogonal (1 < p < 2) collection o f  N 2 2 random elements in a real 
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separable Rademacher type p Banach space, then 

where the constant C does not depend on n, m, or N. 
The next lemma is most probably known but we are unable to locate 

a reference. It follows immediately from Holder's inequality writing ai = ai.  1, 
as was so kindly pointed out to us by the referee. 

LEMMA 2.4. I f  ai 2 0, 1 < i < n, and p > 1, then 

The following elementary result was recently obtained by Chobanyan et 
al. [5] and it will play a key role in the proofs of Theorems 3.1 and 3.3. Lem- 
ma 2.5 is closely related to a classical result of Prokhorov 1141 and [15] when 
% = R, the {K, n 1) are independent symmetric random variables, and 
bn = nu, n 2 1, with a > 0. 

LEMMA 2.5 (Chobanyan et al. [5]). Let {K, n > 1) be a sequence of ran- 
dom elements in a real separable Banach space %, let {bn, n > 1) be a non- 
decreasing sequence of positive constants, and let {k,, n > 0) be a sequence of 
positive integers such that 

(2.10) b k n + l  > 1 b k n + ~  < inf - and sup - 
n 2 0  bkn n 2 O  bkn 

Then 

(2.1 1) 
z=, K 

lim = 0 a.s. 

if and only if 

maXkn b k < kn + 1 1 (c:= kn 611 
lim = 0 a.s. 
n - t m  bkn+ I - bkn 

Remark  2.1. (i) Note that the first inequality of (2.10) ensures that 
{k,, n 2 0) is strictly increasing and limn,, bn = oo. 

(ii) It follows that if (2.12) holds for some sequence of positive integers 
{kn, n 0) satisfying (2.10), then (2.12) holds for every sequence of positive 
integers {kn, n > 0) satisfying (2.10). Thus, in order to prove the SLLN (2.11), 
nothing is lost in working with a convenient sequence such as kn = 2", n 2 0. 
This remark was made by Chobanyan et al. [5]. 
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(iii) If the random elements {K, n 2 1) are independent and symmetric, 
then by the random element version of LCvy's inequality (see, e.g., Araujo and 
Gin6 [3], p. 102) and the Borel-Cantelli lemma, (2.12) is equivalent to the 
structurally simpler and apparently weaker condition 

11~:;';- 611 
lim , = 0 a.s. 

3. THE MAIN RESULTS 

With the preliminaries accounted for, the main results may now be estab- 
lished. When 3Y = R and bn n, a version of Theorem 3.1 was obtained by 
Caposhkin [S] using a substantially more complicated argument. Gaposhkin's 
[S] condition is slightly different from (3.2) specialized to 3Y = R and bn z n 
and is at least as strong. Gaposhkin's [S] result is an extension of an earlier 
result of M6ricz [12] which was apparently the first SLLN for a sequence of 
blockwise independent random variables. 

THEOREM 3.1. Let {K, n 1) be a sequence of mean 0 random elements in 
a real separable Rademacher type p (1 < p < 2) Banach space 3 and let 
{bn, n 2 1) be a nondecreasing sequence of positive constants such that 

b2n+i b2n+ I 
(3.1) inf - > 1 and sup- < 00. 

n 3 0  b2n nBO b2n 

If {K, n 1) is blockwise independent with respect to the blocks {Bk, k 2 1) 
and if 

then 

(3.3) 
6 

lim = 0 a.s. 

Proof .  Set 

and 

Note that, for m 2 0, 

1 ETP < P - 1  , c, E (by Lemma 2.4) b;rn + I keI, 
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1 
<-c$-'C x x EII&IIP (by Lemma 2.1) 

b;m + 1 keIm i s ~ k ~ )  

It thus follows from (3.2) that xz=o ET,P < co, and so by the Markov inequali- 
ty and the Borel-Cantelli lemma 

lim T, = 0 a.s. 
m+oo 

Now it follows from the first inequality of (3.1) that 

The conclusion (3.3) follows immediately from Lemma 2.5. 

Remark  3.1. (i) The slower b, f co, the stronger is the assumption (3.2), 
but so is the conclusion (3.3). 

(ii) Theorem 3.1 is an analogue of an SLLN of Adler et al. 121 obtained 
for a sequence of independent random elements in a Rademacher type 
p (1 6 p 6 2) Banach space. The Adler et al. [2] result, which extends the 
implication (i) (ii) in Proposition 2.1 to more general norming constants 
0 < b, f co, is a random element analogue of a classical result of Kolmogorov 
(see, e.g., Lo6ve [ll], p. 250). It should be pointed out that this SLLN of Adler 
et al. [2] does indeed follow immediately from Theorem V.7.5 (or Corollary 
V.7.5) of Woyczynski [19] and the Kronecker lemma. 

(iii) When p = 1, Theorem 3.1 is not of interest since the mean 0 assump- 
tion, the blockwise independence assumption, and (3.1) are not needed. Indeed, 
for a sequence of random elements {K, n 2 1) in a real separable Banach space 
and constants 0 < b, f co, Cantrell and Rosalsky [4] recently proved that if 

(which is a weaker assumption than ')-"El E ll&ll/bi < a)), then 
n 

lim C K/b, = 0 a.s. 
n + c o  i = l  

irrespective of the joint distributions of the {K, n 2 1). 
(iv) If (3.1) holds where 0 < b, f and 

(3.4) c, = o (a") for all a > 1, 
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then a sufficient condition for (3.2) to hold is that 

(4.5) 
g E "KIlP < co for some 0 < q < p .  

i = 1  bf 

To see this, it follows from the first inequality of (3.1) that b2.+ 1/b2. 2 1 + 6 
for some 6 > 0 and all n 2 0. Thus for all m 2 1 we have 

(3.6) 

Hence 

thereby establishing (3.2). 

In the next theorem, we will show that the implication (3.2) => (3.3) holding 
indeed completely characterizes Rademacher type p Banach spaces. 

THEOREM 3.2. Let X be a real separable Banach space and let 1 < p < 2. 
Then the following two statements are equivalent: 

(i) X is of Rademacher type p. 
(ii) For every sequence of mean 0 random elements {K, n > 1), which is 

blockwise independent with respect to some sequence of blocks {Bk ,  k 2 1) and 
every nondecreasing sequence of positive constants {b,,, n 2 1) satigying (3.1), 
the implication (3.2) a (3.3) holds. 

Proof.  The implication (i) (ii) is precisely Theorem 3.1. To verify the 
implication (ii) (i), assume that (ii) holds. Let {K, n > 1) be a sequence of 
independent mean 0 random elements in X such that 
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In view of Proposition 2.1, it suffices to verify that 

Note that {I/;,, n 2 1) is blockwise independent with respect to the blocks 
{[2'- ', 2k), k 2 1). Set b, = n, n 2 1. Then (3.1) holds and, recalling (2.2), we 
see that (3.7) and (3.2) are the same. Thus, by (ii), we see that (3.8) holds. H 

The next theorem, when specialized to {K, n 2 1) being p-orthogonal and 
b, = na, n 2 1, where a > 0, reduces to a result of Moricz et al. [I31 by taking 
Bk = [2k-1, 23, k 2 1, and recalling (2.2). 

THEOREM 3.3. Let {K, n 2 1) be a sequence of random elements in a real 
separable Rademacher type p (1 $ p $ 2) Banach space and let {b,,, n 2 1) be 
a nondecreasing sequence of positive constants satisfying (3.1). If {K, n 2 1) is 
blockwise p-orthogonal with respect to the blocks {B,, k 2 1) and if 

then 

(3.10) 

m x E ( L ~ ~  i ) ~  (q (i))'- l < oo, 
i = 1  bf 

c;=, K 
lim ---=--- = 0 a.s. 

P r o  of. Define a m ) ,  k €Im,  m 2 0, and Tm, m 2 0, as in the proof of Theo- 
rem 3.1. Note that, for m 2 0, 

1 
E T$ < - ci- ' x E (T,'m))p (by Lemma 2.4) 

b;m+ 1 k s I m  

1 < - c;- C x   LO^ (2card BLm)))' x E I I KI I p  (by (2.9)) b$m+ 1 k€Im ~ E B L ~ )  

It thus follows from (3.9) that x,"=, ET; < oo. The rest of the argument is 
exactly the same as that at the end of the proof of Theorem 3.1. H 

Remark  3.2. We close this section with discussion of the main difference 
between the structure of the proofs of Theorems 3.1 and 3.3 and that of the 
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earlier results by Mbricz [12], M6ricz et al. [13], and Gaposhkin [8]. As in 
M6ricz [12] and Gaposhkin 181, let us now take b, = n, n 2 1, and % = R 
(although Mbricz et al. [I31 took b, = nu, n 2 1, where a > 0, and they as- 
sumed that the Banach space % is of Rademacher type p (1 < p < 2)). Moricz 
[12], M6ricz et al. [13], and Gaposhkin [8] bounded El=, l/;/n (where 
2" < n < 2"") by 

k 

(3.1 1) +- max ( x  51. 
2"2"<k<2"'+1 i = 2 m  

They then argued that each of the two terms on the right-hand side of (3.11) 
converges to 0 a.s. as m -+ co. Their arguments that the first term on the 
right-hand side of (3.11) converges to 0 a.s, as m + co did not use any (type of) 
independence hypothesis; only (a type of) orthogonality was used. However, in 
our proof of Theorems 3.1 and 3.3, we only need to argue that the second term 
on the right-hand side of (3.11) converges to 0 a.s. as m -+ co. This is the case 
because we then apply Lemma 2.5, and so we are in effect bounding XI=, &/n 
(where 2" < n < 2"' l) by 

which via the Toeplitz lemma converges to 0 a.s. as m --+ co (see Proposition 3.1 
and Theorem 9.1 of Chobanyan et al. [5]). 

4. COROLLARIES AND EXAMPLES 

In this section, some particular cases of Theorems 3.1 and 3.3 are pre- 
sented as corollaries, Some illustrative examples or counterexamples are also 
provided. 

When the underlying Banach space is the real line, p = 2, and b, = n, 
Corollaries 4.1, 4.3, 4.4 (take a2 = I), and 4.5 reduce to results of Gaposh- 
kin [8]. This special case of Corollary 4.1 is also the SLLN for a sequence of 
blockwise independent random variables obtained by Mbricz [12]. In view of 
Remark 3.1 (iii), we formulate Corollaries 4.1-4.5 assuming that p > 1. 

COROLLARY 4.1. Let {c, n 2 1) be a sequence of mean 0 random elements 
in a real separable Rademacher type p (1 < p < 2) Banach space and let 
{b,, n 2 1) be a nondecreasing sequence of positive constants such that (3.1) 
holds. If { ,  n 2 1 is blockwise independent with respect to the blocks 
{[2'-', 2k), k > 1) (or, more generally, with respect to the blocks {[bk, /Ik+ 
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k 2 I) ,  where 8, = Lqk-'J for all large k and q > 1) and if 

then (3.3) holds. 

P r o o f. Recalling (2.2) and (2.3), we infer that the assumption (4.1) ensures 
that (3.2) holds. The conclusion follows directly from Theorem 3.1. sa 

COROLLARY 4.2. Let { K ,  n 3 1) be a sequence of mean 0 random elements 
in a real separable Rademacher type p (1 < p < 2) Banach space and let 
{bn, n 1 )  be a nondecreasing sequence of positive constants such that (3.1) 
holds. If { n 3 1 is blockwise independent with respect to the blocks 
{[Pk,  Pk+ k 2 I) ,  where Pk = L 2k1(L0gk)u J for all large k and a > 0,  and if 

then (3.3) holds. 

P r o  of. Recalling (2.4), we see that the assumption (4.2) ensures that (3.2) 
holds. The conclusion follows directly from Theorem 3.1. 

COROLLARY 4.3. Let {c, n 3 1)  be a sequence of mean 0 random elements 
in a real separable Rademacher type p (1 < p < 2) Banach space and let 
{bn, n 2 1)  be a nondecreasing sequence of positive constants such that (3.1) 
holds. If {K, n 3 1)  is blockwise independent with respect to the blocks 
{ [ B k ,  P k + l ) ,  k 3 11, where Pk = L2k"_1 for all large k and 0 < a < 1, and if 

then (3.3) holds. 

Proof.  By (2.5) the assumption (4.3) ensures that (3.2) holds. The con- 
clusion follows directly from Theorem 3.1. . 

COROLLARY 4.4. Let { K ,  n 3 1)  be a sequence of mean 0 random elements 
in a real separable Rademacher type p (1 < p < 2) Banach space and suppose 
that { K ,  n 3 1)  is blockwise independent with respect to the blocks 
{ [Lka l  J, L(k+lY1 J ) ,  k 3 I) ,  where a ,  > 1. Let a2 3 a;'. If 

where q = ( p  (a,  a, - 1) + l ) / a l ,  then 

c:=, K 
lim - = 0 a.s. 
n'o3 nuz 
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P r o  of. Recalling (2.6), we obtain 

a, 

= C C < co (by (4.4)) 

and the conclusion follows from Theorem 3.1. 

Remark  4.1. Apropos of the constant q in Corollary 4.4, it may be noted 
that a2 < q < a2p. 

Counterparts to Corollaries 4.1-4.4 can easily be given when {K, n 2 1) is 
blockwise p-orthogonal with respect to a sequence of blocks. We content our- 
selves with only presenting the counterpart to Corollary 4.1. Corollary 4.5 is an 
extension of the classical SLLN resulting from the celebrated Rademacher- 
Meniov fundamental convergence theorem for sums of orthogonal random 
variables (see, e.g., Rkvksz [16], pp. 86-87). 

COROLLARY 4.5. Let {G, n 2 1) be a sequence of mean 0 random elements 
in a real separable Rademacher type p (1 < p < 2) Banach space and let 
{b,, n 2 1)  be a nondecreasing sequence of positive constants such that (3.1) 
holds. If { K ,  n 2 1) is blockwise p-orthogonal with respect to the blocks 
{[2k-1,  29, k 2 1)  (or, more generally, with respect to the bloclcs { [ f i , ,  f ik+ ,), 
k 2 l ) ,  where fik = LqH-' J for all large k and q > 1) and if 

then (3.10) holds. 

P r o  of. Recalling (2.2) and (2.3), we infer that the assumption (4.5) ensures 
that (3.9) holds. The conclusion follows directly from Theorem 3.3. 

We close by presenting four examples. The first example illustrates Theo- 
rem 3.1 and Corollary 4.1. 

EXAMPLE 4.1. Let {W,, n 2 1)  be a sequence of independent mean 0 ran- 
dom elements in a real separable Rademacher type p (1 < p < 2) Banach space 
and suppose that 

" IIW;I'P < oo for some a > 0 .  C,, 

Let 2 m < n < 2 m + 1 ,  m 2 O .  Then E K = O ,  n > l ,  and 
{V,, n 2 1) is blockwise independent with respect to the blocks { [ P I ,  2lC), 

5 - PAMS 27.2 
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k 2 1). Now, using (4.6), we obtain 

Thus, by (2.2) and Theorem 3.1 (or by Corollary 4.1), 

C=, K 
lim - = 0 a.s. 

Finally, we note that, by Theorem 1 of Adler et al. 121, we also have 

C;=, W 
lim = 0 as.  

The second example shows that Theorem 3.1 can fail if the series in (3.2) 
diverges. More specifically, Example 4.2 shows that we cannot replace (3.2) by 
the weaker condition E 1 ( l/'.l lp (9 (n))'- '/b$ = 0 (1). 

EXAMPLE 4.2. Let {Wn, n 2 1) be a sequence of independent mean 0 ran- 
dom elements in a real separable Rademacher type p (1 < p < 2) Banach space 
where 

1 1 
P{llWnll = 2n-1) = P{Wn=O) = 1- n >  1. 

1 + Log n' 1 + Log n' 

Let V. = Wn-2m+1,2m < n <2"+',m 2 0, andlet b, = n, n 1. ThenEK =0,  
n 2 1, and {K, n 2 1) is blockwise independent with respect to the blocks 
{[2k-1, 2k), k > 1). NOW V2m+1-l = W2m, m 2 0, and SO {V2m+1-l, m 2 0) is 
a sequence of independent random elements with 

Then, recalling (2.2), we obtain 



Strong law of large numbers in Banach spaces 219 

and so (3.2) fails. Moreover, since 

by the Borel-Cantelli lemma we have 

P{11V2m+i-111 = 2""-1 i.0. (m)} = 1. 
Thus, 

IIV2m+l-111 1 = limsup 2m+1-1 IIKII < lim sup - 
m + a ,  n + m  n 

< lim sup 
I lC;= 1 & I  I + lim sup 

IIC;:; 611 
as. 

n+co  n n--+CO n-1 

implying 

lim sup 
IIC:= 1 Kll 

= lim sup 
IIC;=,vill 1 

2 - as.  
~ + C O  b n n+ a, ~1 2 

Thus (3.3) fails. We also note that for all large n, writing 2'" < n : 2"'" and 
again recalling (2.2), we get 

- - (2(n-2m+l)-1)p 

nP (1 + Log (n - 2"' + 1)) 

The third example shows that the Rademacher type p hypothesis in Theo- 
rem 3.1 cannot in general be dispensed with, Example 4.3 concerns the 
real separable Banach space Zl of absolutely summable real sequences 
v = {vj, j > 1) with norm llvll = C;=, lvjl. The element of Z1 having 1 in its nth 
position and 0 elsewhere will be denoted by v("), n > 1. 

EXAMPLE 4.3. Consider the real separable Banach space 1,. It is well 
known (see, e.g., Adler et al. [I]) that Z1 is not of Rademacher type p for any 
1 < p < 2. Define a sequence of random elements {W,, n 1) in Z1 by requiring 
the {W., n 3 1) to be independent with 
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Let I/'. = Wn-2m+1,2m < n < 2"+',m 2 0. Let 1 < p < 2 andlet b, = na,n 2 1, 
where p-' < a < 1. Then EK = 0, n 2 1, and {K, n 2 1) is blockwise indepen- 
dent with respect to the blocks {[2k- ' , 2k), k 2 1). Now, by (2.2), 

since ap > 1, and so (3.2) holds. Next, for MEN,  

and so 

Consequently, (3.3) fails. 

The final example, which is a modification of an example of Mhricz [12], 
shows apropos of Corollary 4.1 that under its hypotheses the series E:=, K/bi 
can diverge a.s. Consequently, the conclusion of Corollary 4.1 (or Theorem 3.1) 
cannot in general be reached through the well-known Kronecker lemma 
approach for proving SLLNs. 

EXAMPLE 4.4. Let the underlying Banach space be the real line and let 
p = 2. Let {X,, n 2 1) be a sequence of independent mean 0 random variables 
such that P {XI # 0) = 1 and Enm=, EX: < oo. Define for n 2 1 

and let b, = n, n 2 1. Then EK = 0, n 2 1, and {K, n 3 1) is blockwise in- 
dependent with respect to the blocks {[2k-1, 2k), k > 1). Now 

and so, by Corollary 4.1, (3.3) holds. However, 

x1 LLogtl J 1 i =x, C -- diverges a.s. as n -+ co, 
i = l  l+Logi  ,=, l + m  

LogieN 
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and by the Khintchine-Kolmogorov convergence theorem (see, e.g., Chow and 
Teicher [6], p. 113) 

n 

C Xi  converges a.s. as n -+ co. 
i =  3 

LogigN 

Consequently, for n 2 3 

6 x 1  C-= n 

+ C Xi diverges a.s. as n -+ co . 
i = l b i  i = ,  1+L0gi i = 3  
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