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Abstract. We investigate the fine structure of the complex hyperbolic
Brownian motion in the unit ball of Cn. It turns out that the generator of the
process is locally very close to the generator of some simple transformation
of the classical Brownian motion. This fact helps us to give an intuitive
explanation why the invariant Laplace operator in the unit ball of Cn is a
difference of two ordinary Laplace operators – the question set by W. Rudin
in his monograph Function Theory in the Unit Ball of Cn.

In the second part of the paper we find stochastic differential equations
for the complex hyperbolic Brownian motion on the ball model of the com-
plex hyperbolic space and furnish in this way an important tool in a further
investigation of this process.
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1. INTRODUCTION

Let B ⊂ Cn be the open unit ball equipped with the Bergman metric. B is a
model of the complex hyperbolic space Hn(C). Analysis on the ball B is deeply
studied in [4] and in the sequel we use numerous facts from that monograph.

Let Aut(B) be the Moebius group of B, i.e. the group of biholomorphic maps
of B onto B. These maps from Aut(B) are isometries of B and they are all gen-
erated by unitary linear transformations from U(n) and by the maps ϕa, a ∈ B,
generalizing homographical maps in the unit disc of C. The definition of ϕa is the
following: fix a ∈ B, a 6= 0, denote by Pa the orthogonal projection of Cn on
the complex line lin[a] and by Qa = I − Pa the orthogonal projection of Cn

on the orthogonal complement to lin[a]. Then

(1.1) ϕa(z) =
a− Paz − saQaz

1− 〈z, a〉 ,

where sa = (1− |a|2)1/2. Observe that ϕa(0) = a. Now, if ψ ∈ Aut(B) and a =



346 P. Graczyk and T. Żak

ψ−1(0), then there exists a unitary operator g ∈ U(n) such that ψ = gϕa (Theo-
rem 2.2.5 in [4]).

2. RUDIN’S QUESTION

The invariant Laplace operator ∆̃ (invariant with respect to the action of the
group Aut(B)) is defined as follows: for a ∈ B and f ∈ C2(B)

(2.1) (∆̃f)(a) = ∆C
n
(f ◦ ϕa)(0),

where ∆C
n

is the ordinary Laplace operator in Cn. This is the Laplace–Beltrami
operator for B equipped with Bergman metric. It can be computed ([4], Theo-
rem 4.1.3 (ii)) that

(∆̃f)(a) = (1− |a|2)[(∆Cn
f)(a)− (∆Cfa)(1)],

where fa(λ) = f(λa).
In the last section of his monograph, Rudin asks the following ([4], 19.3.10):
Is there a more intuitive (geometric? group-theoretic?) way of seeing why,

except for the factor 1− |a|2, ∆̃f is a difference of two ordinary Laplacians?
We answer this question by investigating the fine structure of the complex

hyperbolic Brownian motion.

3. THE COMPLEX HYPERBOLIC BROWNIAN MOTION

The operator 1
2 ∆̃, one half of the Laplace–Beltrami operator on a Riemannian

manifold, is the generator of a diffusion process Xt – the Brownian motion on this
manifold.

Observe that, in the particular case when a = (a1, 0, . . . , 0), the formula (1.1)
reads as follows

ϕa(z) =
(

a1 − z1

1− ā1z1
,−

√
1− |a|2

1− ā1z1
z2, . . . ,−

√
1− |a|2

1− ā1z1
zn

)
(3.1)

=
(
ha(z1), ca(z1)z2, . . . , ca(z1)zn

)
,

where ha(z1) = (a1 − z1)/(1− ā1z1) is a homographical map of the unit disc
of C, and ca(z1) = −

√
1− |a|2/(1− ā1z1) is a factor depending only on the first

coordinate z1.
Let Bt = (B(1)

t , . . . , B
(n)
t ) be a standard complex Brownian motion in Cn,

starting from the origin, and let Wt = (W (1)
t , . . . , W

(n)
t ) be a standard complex

Brownian motion in Cn, starting from 0 and killed when exiting B. We denote by
τB the first exit time of Bt from the ball B. For t < τB the processes Wt and Bt are
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equal, next Wt goes to a “cemetery” state. The generator of Wt is equal to 1
2∆C

n |B
and the generator of Bt is 1

2∆C
n

, half of the Euclidean Laplacian ∆C
n

. Define

(3.2) Yt = ϕa(Wt) =
(
ha(W

(1)
t ), ca(W

(1)
t )W (2)

t , . . . , ca(W
(1)
t )W (n)

t

)
.

REMARK 3.1. This definition does not make sense for the Brownian motion
Bt on Cn because it may happen that ϕa(Bt) is not defined. We will study the
process Wt for t < τB .

Denote by LY the generator of the diffusion process Yt. By the invariance (2.1)
of the operator ∆̃ it follows that

LY |a =
1
2
∆̃|a,

so the generators of the hyperbolic Brownian motion Xt and the process Yt coin-
cide at the point a. One can interpret this fact saying that the hyperbolic Brownian
motion Xt is “locally” an image of the standard Euclidean Brownian motion. Rig-
orously, these processes are similar in the sense of comparison of their transition
probabilities

pX(t, a, y) � pY (t, a, y)

for t→ 0 and y near to a; see [1]. Recall that f � g means that there exists C > 0
such that C−1f ¬ g ¬ Cf .

4. THE INTUITIVE EXPLANATION

We answer Rudin’s question showing that the form of the isometry ϕa implies
that the Brownian motion Xt generated by one half of the invariant Laplace op-
erator 1

2∆̃ can be (locally) decomposed into two parts and both parts are (locally)
time-changed classical Brownian motions. Instead of the process Xt we look at the
process Yt. As we explained before, they are very similar “locally” at the point a,
their generators are equal at a.

The isometry ϕa(z) =
(
ha(z1), ca(z1)z2, . . . , ca(z1)zn

)
has a very particu-

lar form: on the first coordinate it is a homography (hence a conformal mapping)
while on all the remaining coordinates it is a dilation by the same factor, depending
on z1. Now the following facts are crucial for our reasoning:

A. Generator of a “product” of two independent processes is the sum of their
generators: If V1(t), V2(t) are two independent processes with generators L1, L2,
respectively, then the generator of the process (V1, V2)t­0 is equal to Lf(x, y) =
L1f(·, y)|x + L2f(x, ·)|y.

B. Standard Brownian motion after a dilation by c 6= 0 is a time-dilated Brow-
nian motion and its generator is multiplied by a constant: The process (cBt)t­0 is
equal in law to the process (Bc2t)t­0 and has the generator (c2/2)∆.
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C. Conformal image of a Brownian motion in C is a time-changed Brownian
motion. This conformal invariance of complex Brownian motion is a fundamental
result of Paul Lévy (see [3], V (2.5)), which reads as follows:

If F is an entire and non-constant function, F (Bt) is a time-changed Brown-
ian motion. More precisely, on the probability space of Bt there exists a complex
Brownian motion B̃t such that

F (Bt) = F (B0) + B̃〈X,X〉t ,

where 〈X,X〉t =
∫ t

0
|F ′(Bs)|2 ds is strictly increasing and 〈X, X〉∞ =∞.

Our objective is to describe the generator LY |a of the diffusion Yt, Y0 = a,
given by the formula

Yt =
(
ha(Ut), ca(Ut)Vt

)
,

where Wt = (Ut, Vt) = (Ut, V
(1)
t , . . . , V

(n−1)
t ) is a standard complex Brownian

motion in Cn starting from 0 and killed when exiting B. For u ∈ C and v ∈ Cn−1

let us consider a function G(u, v) = ca(u)v =
(
ca(u)v1, . . . , ca(u)vn−1

)
and let

Gk(u, vk) = ca(u)vk be the k-th coordinate of G. By the Taylor formula at 0 we
have

Gk(u, vk) = ca(u)vk � Gk(0, 0) +∇Gk|0 · (u, vk) = ca(0)vk.

We would like to apply such an expansion to the diffusion ca(Ut)Vt. In general, the
Itô formula implies that the deterministic differential is different from the stochas-
tic one. But as the function G is holomorphic, the Itô and the Taylor formulas coin-
cide (the terms with second order derivatives of G cancel because G is harmonic).
Thus, in a stochastic differential sense we have

ca(Ut)Vt � ca(0)Vt,

when t is small. Hence we can intuitively expect that the generator LY |a is the
same as for the process

Zt =
(
ha(Ut), ca(0)Vt

)
.

The facts A, B and C imply that the generator of Zt equals

LZ = A(a, z1)∆1 +
ca(0)2

2
∆2,...,n,

where ∆1 is defined to be equal to ∆C acting in z1 and ∆2,...,n = ∆C
n−1

acting in
z2, . . . , zn. It is easy to see that LZ can be written in the form

LZ = F1(a)∆C
n

+ F2(a, z1)∆1.

As 1
2∆̃|a = LY |a = LZ |a (the last equality is based on stochastic intuition), we

get a simple answer to Rudin’s question. The exact values of the coefficients F1(a)
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and F2(a, a1) will be determined by calculations, made in the next section (see
Proposition 5.2).

We summarize our answer to Rudin’s question in the following way: The hy-
perbolic Brownian motion generated by the invariant Laplacian 1

2∆̃ is locally com-
parable near the point a to the “product” of two independent time-changed Brow-
nian motions

(
ha(Ut), ca(0)Vt

)
. Indeed, the first of these motions is the conformal

image of a two-dimensional classical Brownian motion and the second one is a di-
lation of classical Brownian motion in Cn−1. Hence ∆̃|a is a sum of two ordinary
Laplacians, multiplied by some functions of a.

5. FORMAL COMPUTATIONS

Using stochastic calculus, in this section we give proofs of all assertions of the
intuitive reasoning from the previous section.

For the complex Brownian motion Wt we can apply the “complex” Itô formula
(see [3], Proposition V (2.3)). If F is a holomorphic function and Wt is a complex
Brownian motion on C, we have

F (Wt) = F (W0) +
t∫
0

F ′(Ws)dWs.

This formula applies directly to the first coordinate Y
(1)
t = ha(W

(1)
t ) of the pro-

cess Yt. For other coordinates Y
(k)
t = ca(W

(1)
t )W (k)

t , k ­ 2, we write the complex
Itô formula for the space C2 and the holomorphic function G(z1, zk) = ca(z1)zk:

G(W (1)
t ,W

(k)
t ) = G(W (1)

0 ,W
(k)
0 )

+
t∫
0

∂G

∂z1
(W (1)

t ,W
(k)
t )dW (1)

s +
t∫
0

∂G

∂zk
(W (1)

t ,W
(k)
t )dW (k)

s .

Note that in both complex Itô formulas given above the terms with second deriva-
tives vanish because the holomorphic functions F , G are harmonic.

PROPOSITION 5.1. The diffusion Yt satisfies for t < τB the following system
of stochastic differential equations:

(5.1)
dY

(1)
t = A(Y (1)

t )dW
(1)
t ,

dY
(k)
t = β(Y (1)

t )Y (k)
t dW

(1)
t + C(Y (1)

t )dW
(k)
t , k ­ 2,

where A = h′a ◦ h−1
a , β = (c′a/ca) ◦ h−1

a and C = ca ◦ h−1
a .

P r o o f. By the complex Itô formula we have

dY
(1)
t = h′a(W

(1)
t )dW

(1)
t ,

dY
(k)
t = c′a(W

(1)
t )W (k)

t dW
(1)
t + ca(W

(1)
t )dW

(k)
t , k ­ 2.
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We need only to express the process Wt, appearing in the coefficients of these
equations, by Yt. We have

W
(1)
t = h−1

a (Y (1)
t ) and W

(k)
t =

Y
(k)
t

ca(W
(1)
t )

=
Y

(k)
t

ca

(
h−1

a (Y (1)
t )

) . ¥

Now we want to deduce the generator LY of the process Yt from the sys-
tem (5.1). Recall that if a d-dimensional real diffusion Xt satisfies the SDE

dXt = s(Xt)dβt + b(Xt)dt,

where βt is a d-dimensional real Brownian motion, s is a d×d real matrix valued
Borel locally bounded function, and b an Rd-valued Borel locally bounded func-
tion, then the generator of Xt is

LX =
1
2

d∑

j,k=1

mjk(x)
∂2

∂xj∂xk
+ 〈b,∇〉, m = (mjk) = ssT .

In the complex setting, we identify a complex number z = x + iy with the real
matrix

z̃ =
[

x −y
y x

]
.

With this convention, the stochastic differential equation

dYt = zdBt = zd(Ut + iVt),

where B = U + iV is a Brownian motion in C, U, V are 1-dimensional real inde-
pendent Brownian motions, z = x + iy ∈ C, becomes

d(ReY ) = xdU − ydV,

d(ImY ) = ydU + xdV,

i.e., if Ỹ = (ReY, ImY )T and β = (U, V )T , then

dỸt = z̃dβt,

so the coefficient z in the complex SDE is replaced by z̃ in the equivalent real one.
We have z̃w = z̃w̃ and (z̃)T = ˜̄z. If σ ∈ MC(n) is a complex square ma-

trix, then σ̃ ∈MR(2n) is obtained by replacing each coefficient σkl by the matrix
σ̃kl ∈ MR(2). We have (σ̃)T = (σ∗)̃ and σ̃(σ̃)T = (σσ∗)̃ . It follows that if Yt is
a diffusion in Cn satisfying the SDE

dYt = σ(Yt)dBt + b(Yt)dt,
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where Bt is an n-dimensional complex Brownian motion, σ ∈MC(n), b ∈ Cn are
Borel locally bounded functions, then the generator of Yt on R2n = Cn is

(5.2) LY =
1
2

2n∑

j,k=1

Mjk(x)
∂2

∂xj∂xk
+ 〈b,∇〉, M = (Mjk) = (σσ∗)̃ .

In the following formulas we identify a = (a1, 0, . . . , 0) with its first coordi-
nate, i.e. we write a instead of a1.

PROPOSITION 5.2. Let ∆k be the Laplace operator in the k-th complex vari-
able zk on Cn. The generator L of the process Yt at the point a has the following
form:

L|a =
1
2
|A(a)|2∆1 +

1
2
|C(a)|2

n∑

k=2

∆k =
1
2
|C(a)|2∆Cn − 1

2
D(a)∆1,

where D(a) = |C(a)|2 − |A(a)|2.

P r o o f. From (5.1) we deduce that the matrix σ equals

σ(z) =




A(z1) 0 . . . . . . 0
z2β(z1) C(z1) 0 . . . 0
z3β(z1) 0 C(z1) . . . 0

...
...

...
...

...
znβ(z1) 0 . . . . . . C(z1)



.

When z = a = (a1, 0, . . . , 0), we have z2 = . . . = zn = 0, so the matrix σ(a) is
diagonal and

σσ∗(a) =




|A(a)|2 0 . . . . . . 0
0 |C(a)|2 0 . . . 0
0 0 |C(a)|2 . . . 0
...

...
...

...
...

0 0 . . . . . . |C(a)|2



.

The proposition now follows by the generator formula (5.2). ¥

COROLLARY 5.1. The Laplace–Beltrami operator has the following form:

∆̃|a = C2(a)∆C
n −D(a)∆1.

P r o o f. The formula follows directly from the last proposition and the fact
that L|a = 1

2∆̃|a. ¥



352 P. Graczyk and T. Żak

Coefficients C(a) and D(a). Now we compute the exact values of the coeffi-
cients in L|a and ∆̃|a:

C(a) = ca(0) =
√

1− |a|2, A(a) = h′a(0) = |a|2 − 1,

D(a) = C2(a)−A2(a) = |a|2(1− |a|2).
Finally,

∆̃|a = (1− |a|2)[∆Cn |a − |a|2∆1|a].
Recall that fa(λ) = f(λa). The operator |a|2∆1|a may be identified as an Euler
type second order operator Ef(a) = ∆Cfa(1) (Rudin [4] uses this last notation).
In fact, by the chain rule ([4], (1.3.3))

|a|2∆1f(a) = 4
∂2

∂z∂z

∣∣
z=1

[f(za)] = ∆Cfa(1).

Consequently,
∆̃|a = (1− |a|2)[∆Cn |a − E|a].

COROLLARY 5.2. For an arbitrary b ∈ B the invariant Laplacian is equal to

∆̃|b = (1− |b|2)[∆Cn |b − E|b].

P r o o f. If b ∈ B and b̃ = (|b|, 0, . . . , 0), we consider a unitary transforma-
tion u such that u(b̃) = b. All the three operators ∆̃, ∆C

n
and E are invariant with

respect to the action of u. ¥

REMARK 5.1. The operator E is degenerated elliptic. If the starting point is
z 6= 0, then the diffusion process Zt generated by E takes only the values from the
complex line lin[z]. On such a complex line, Zt is a time-changed 1-dimensional
complex Brownian motion, with generator |z|2∆C, the solution of the equation
dZt = ZtdBt, where Bt is a complex planar Brownian motion.

By Corollary 5.2, up to a change of time, the complex hyperbolic Brownian
motion can be interpreted as a Euclidean Brownian motion in Cn perturbed by Zt

generated by the operator E.

6. SDE FOR THE BROWNIAN MOTION ON B

Stochastic differential equations for the complex hyperbolic Brownian motion
Xt on the upper half space model of Hn(C) have been given in [2]. In this section
we find stochastic differential equations for Xt on the ball model B. This is an
important tool for a further study of the process Xt. Let Herm+(n) denote the
cone of positive definite Hermitian matrices of order n.
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LEMMA 6.1. Let A(z) be a locally bounded Borel function with values in
Herm+(n) and let L be a diffusion generator of the form

L =
n∑

j,k=1

ajk
∂2

∂zj∂z̄k
.

Let zj = uj + ivj and let the sequence (xj) be defined as u1, v1, u2, v2, . . . , un, vn.
Then, with respect to the real partial derivatives ∂/∂xj , the generator L has the
following form:

L =
1
4

2n∑

j,k=1

γjk
∂2

∂xj∂xk
,

where the 2n×2n real matrix (γjk) = Γ = Ã (defined in the previous section) is
symmetric and positive definite.

P r o o f. When j = k, we have

∂2

∂zj∂z̄j
=

1
4

(
∂2

∂u2
j

+
∂2

∂v2
j

)
, ajj ∈ R and ãjj = ajjI2.

The lemma is then obvious.
When j < k, we put ajk = c + id and Dm = ∂/∂zm, D̄m = ∂/∂z̄m. Com-

pute

4[ajkDjD̄k + ājkD̄jDk] = 2Re
(
(c + id)

(
Re(DjD̄k) + iIm(DjD̄k)

))

= 2
(
cRe(DjD̄k)− dIm(DjD̄k)

)
.

Since

Re(DjD̄k) =
∂2

∂uj∂uk
+

∂2

∂vj∂vk
and Im(DjD̄k) =

∂2

∂uj∂vk
− ∂2

∂vj∂uk
,

it follows that in the matrix Γ of coefficients of second partial derivatives of L the
2×2 block Γ(uj ,vj),(uk,vk) corresponding to the rows uj , vj and the columns uk, vk

can be chosen equal to
[

c −d
d c

]
= ãjk and Γ(uk,vk),(uj ,vj) = ãT

jk = ãkj . ¥

COROLLARY 6.1. Let Xt be a diffusion onCn being a solution of the stochas-
tic differential equation dXt = σ(Xt)dBt, where σ is a locally bounded Borel
function with values in MC(n). Set σσ∗ = A. Then the generator of Xt is equal to

L =
n∑

j,k=1

ajk(z)
∂2

∂zj∂z̄k
.
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P r o o f. By (5.2), the matrix of second order coefficients of L onR2n is equal
to M = (σσ∗)̃ = Ã. We apply Lemma 6.1. ¥

Let Bt be a standard Brownian motion on Cn and Xt the complex hyperbolic
Brownian motion. Recall ([4], 4.1.3 (ii)) that the generator of Xt is equal to

LX =
1
2
∆̃ = 2(1− |z|2)

n∑

j,k=1

(δjk − zj z̄k)DjD̄k.

Let us put
λ(z) =

√
1− |z|2, Z(z) = (zj z̄k)jk = zz∗,

where z is a column vector (z1, . . . , zn)T and z∗ = (z̄1, . . . , z̄n). The matrix A(z)
of coefficients of DjD̄k in this generator can be written in the form

A(z) = 2λ2(z) (I − Z) .

In the next theorem we determine two simple systems of SDE verified by the pro-
cess Xt.

THEOREM 6.1. The complex hyperbolic Brownian motion Xt is a solution of
the following SDE in the matrix form:

dXt =
√

2λ(Xt)
(

I − Z(Xt)
1 + λ(Xt)

)
dBt.

It is also a solution of the equation

dXt =
√

2λ(Xt)
(

I − Z(Xt)
1− λ(Xt)

)
dBt.

P r o o f. According to Corollary 6.1, we search for σ ∈ Mn(C) such that
σσ∗ = A(z). It is sufficient to find s ∈Mn(C) such that ss∗ = I − Z.

Observe that Z2 = zz∗zz∗ = |z|2Z, so the matrices Z2 and Z are collinear.
In such a case it is natural to look for s of the form s = I − cZ. Then

s2 = I − 2cZ + c2|z|2Z = I − (2c− |z|2c2)Z

and we determine c such that 2c− |z|2c2 = 1. There are two solutions

c =
1
|z|2 (1± λ) =

1
1∓ λ

. ¥

Observe that the matrix σ1 = I − Z/(1 + λ) is Hermitian positive definite,
with an eigenvalue λ > 0 and the eigenvalue 1 of multiplicity n− 1. This follows
from the facts that Zz = |z|2z and that the matrix Z is of rank 1. In particular,
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the matrix I − Z has an eigenvalue 1 − |z|2 = λ2 > 0 and the eigenvalue 1 of
multiplicity n− 1. So σ1 =

√
A, the Hermitian positive definite square root of A.

The matrix σ2 = I − Z/(1− λ) is also Hermitian, but not positive definite.
The matrices σ1, σ2 are all Hermitian matrices such that Xt satisfies dXt = σdBt.

Another form of the matrix σ, important in applications, is triangular. The next
theorem gives a lower triangular system of SDE verified by the process Xt.

THEOREM 6.2. The complex hyperbolic Brownian motion Xt is a solution of
the following SDE in the matrix form:

dXt =
√

2λ(Xt)Σ(Xt) dBt,

where Σ(z) = [σij(z)]i,j=1,...,n with
(1) σij(z) = 0, 1 ¬ i < j ¬ n (by the definition of the lower triangular

matrix),

(2) σii(z) =

√
1− |z1|2 − . . .− |zi|2√

1− |z1|2 − . . .− |zi−1|2
, i = 1, . . . , n,

(3) σij(z) =
−z̄jzi√

(1− |z1|2 − . . .− |zi−1|2)(1− |z1|2 − . . .− |zi|2)
,

1 ¬ j < i ¬ n.

If i = 1, then in (2) we put 1− |z1|2 − . . .− |zi−1|2 = 1.

P r o o f. According to Corollary 6.1, it is enough to show that ΣΣ∗ = I − Z.
In order to compute the entries of ΣΣ∗ we need the following lemma:

LEMMA 6.2. For m ­ 2 the following identity holds:

m−1∑

i=1

|zi|2
(1− |z1|2 − . . .− |zi−1|2)(1− |z1|2 − . . .− |zi|2)

=
|z1|2 + . . . + |zm−1|2

1− |z1|2 − . . .− |zm−1|2 ,

where for i = 1 we put 1− |z1|2 − . . .− |zi−1|2 = 1.

P r o o f. The proof of the lemma follows immediately by an easy observation:

1
1− |z1|2 − . . .− |zi|2 −

1
1− |z1|2 − . . .− |zi−1|2

=
|zi|2

(1− |z1|2 − . . .− |zi−1|2)(1− |z1|2 − . . .− |zi|2) . ¥
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Let us compute first the diagonal entries bmm of ΣΣ∗. Using Lemma 6.2, we
get for m = 1, 2, . . . , n

bmm =
n∑

i=1

σmiσ̄mi =
m∑

i=1

σmiσ̄mi =
m−1∑

i=1

|σmi|2 + |σmm|2

=
(|z1|2+ . . .+ |zm−1|2)|zm|2

1− |z1|2− . . .−|zm−1|2 +
1−|z1|2−. . .−|zm|2

1−|z1|2− . . .−|zm−1|2 = 1−|zm|2.

Now we deal with the off-diagonal entries. By the Hermitian symmetry of I − Z,
it is enough to consider the case 1 ¬ j < k ¬ n. Using Lemma 6.2 again, we get
for such j, k:

bjk =
n∑

i=1

σjiσ̄ki =
j∑

i=1

σjiσ̄ki

=
j−1∑

i=1

|zi|2zj z̄k

(1− |z1|2 − . . .− |zi−1|2)(1− |z1|2 − . . .− |zi|2)
+

−zj z̄k

1− |z1|2 − . . .− |zj−1|2

= zj z̄k · |z1|2 + . . . + |zj−1|2
1− |z1|2 − . . .− |zj−1|2 −

zj z̄k

1− |z1|2 − . . .− |zj−1|2 = −zj z̄k. ¥

EXAMPLE. As an ilustration we write down two systems of stochastic differ-
ential equations for the case n = 2. Let us put |X(t)|2 = |X1(t)|2 + |X2(t)|2. The
first system is the one described in Theorem 6.1:

dX1(t)
2
√

1− |X(t)|2 =
(

1− |X1(t)|2
1+

√
1−|X(t)|2

)
dB1(t) +

−X1(t)X̄2(t)
1+

√
1−|X(t)|2 dB2(t),

dX2(t)
2
√

1− |X(t)|2 =
−X̄1(t)X2(t)

1 +
√

1−|X(t)|2 dB1(t) +
(

1− |X2(t)|2
1+

√
1−|X(t)|2

)
dB2(t).

The second system (triangular) is the one from Theorem 6.2:

dX1(t)
2
√

1− |X(t)|2 =
√

1− |X1(t)|2 dB1(t),

dX2(t)
2
√

1− |X(t)|2 =
−X̄1(t)X2(t)√

1− |X1(t)|2
dB1(t) +

√
1− |X(t)|2√
1− |X1(t)|2

dB2(t).
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